STICKELBERGER RELATIONS AND TAME EXTENSIONS OF PRIME DEGREE BY L. N. CHILDS¹ ## Introduction Let K be an algebraic number field with ring of integers $O = O_K$. Let L be a Galois extension of K with group G, and with ring of integers O_L . The extension L/K has a normal integral basis if there exists an element α of O_L so that $\{\sigma(\alpha) \mid \sigma \text{ in } G\}$ is a basis of O_L as an O_K -module, or equivalently, O_L is free of rank one as a module over the group ring $O_K G$. The extension L/K is tame if for each prime ideal P of O_K , the ramification index P0 of P1 in P2 is relatively prime to P3. A theorem of P4. Noether asserts that tameness of P5 is a necessary and sufficient condition for O_L to be a locally free (hence projective) $O_K G$ -module of rank one. Thus tameness of P6 is a necessary condition for the existence of a normal integral basis for P6. Let G be abelian, and let Cl $(O_K G)$ be the group of isomorphism classes of rank one projective $O_K G$ -modules. Let $R(O_K G)$ be the set of classes of Cl $(O_K G)$ which are represented by rings of integers of tame Galois extensions of K with Galois group G. Then $R(O_K G)$ measures the extent to which tameness fails to suffice for the existence of normal integral bases. In case G is cyclic of order l, prime, and K contains a primitive lth root of unity ζ , L. McCulloh [7] showed that $R(O_K G)$ is generated by the set of classes which are images under action by elements in the Stickelberger ideal J of $Z[\Delta]$, $\Delta = \operatorname{Aut} G$ (as defined in Section 2 below). The purpose of this paper is to show that one inclusion of McCulloh's equality holds without assuming existence of ζ , namely, that classes in the image of the Stickelberger ideal are represented by rings of integers of tame extensions. A consequence of our result is to show anew that the classical Kummer-Stickelberger relations on the ideal class group of $\mathbb{Z}[\zeta]$, ζ a primitive *l*th root of unity, *l* prime, are a consequence of the Hilbert-Speiser theorem (tame abelian extensions of Q have normal integral bases). Our derivation is different from both the proof via Gauss sums [5, Section 105–109] and the proof of [1], and shows that McCulloh's result is not just an analogue but a generalization of the Stickelberger result for extensions of prime degree (cf. [7, (1.3.2)]). Our method of proof is essentially a Galois descent argument. Received May 23, 1979. ¹ Partially supported by the National Science Foundation. For the remainder of the paper, l is a prime number, ζ is a fixed primitive lth root of unity, $\lambda = 1 - \zeta$. G is cyclic of order l with fixed generator σ , \hat{G} is the group of complex characters of G; χ_0 , χ_1 in \hat{G} send σ to 1, ζ , respectively. Let $\Delta = \operatorname{Aut}(G)$. If δ in Δ acts by $\delta(\sigma) = \sigma^a$, 0 < a < l, we write $a = t(\delta)$. Any non-trivial element χ of \hat{G} may be written as $\chi = \chi_1 \delta$ for some δ in Δ . Let $\Omega = \text{Gal }(Q[\zeta]/Q)$. If γ in Ω acts by $\gamma(\zeta) = \zeta^a$, 0 < a < l, write $a = t(\gamma)$. We let γ in Ω act on χ in \hat{G} by $\gamma(\chi) = \gamma \cdot \chi$. We refer to [7] for unexplained notation and proofs of numerous facts used here. I wish to thank L. McCulloh for several stimulating discussions, S. Ullom for informing me of reference [6], and the University of Illinois at Urbana for its hospitality during the research on this paper. Let K be a number field, $K_{\zeta} = K[\zeta]$, O be the ring of integers of K, O_{ζ} the ring of integers of K_{ζ} , $\Gamma = \text{Gal }(K_{\zeta}/K)$. We wish to describe Cl (OG) and Cl $(O_{\zeta}G)$. We use the description of Jacobinsky and Frohlich [2] which describes the class group in terms of ideals of a maximal order. Namely, Cl $(O_{\zeta}G)$ is identified as the cokernel of the map $$U(O_{\zeta,I}G) \stackrel{i}{\to} \operatorname{Map}(\hat{G}, I_{\zeta})$$ where $O_{\zeta,l}$ is the semi-local ring obtained by localizing O_{ζ} with respect to the multiplicative set $\mathbf{Z} - l\mathbf{Z}$, I_{ζ} is the collection of fractional ideals of K_{ζ} prime to (l), Map (\hat{G}, I_{ζ}) is the set of functions from \hat{G} to I_{ζ} , U() is the units functor, and $i(\beta)(\chi) = (\chi(\beta))$, the principal ideal generated by $\chi(\beta)$, for β in $U(O_{\zeta,l}G)$. We denote by ϕ_{ζ} the canonical map from Map (\hat{G}, I_{ζ}) onto the cokernel, which we identify with Cl $(O_{\zeta}G)$. The description of Cl $(O_{\zeta}G)$ is based on the fact that the maximal order of $O_{\zeta}G$ is $\bigotimes_{\chi \in \hat{G}} O_{\zeta}e_{\chi}$, where $$e_{\chi} = \frac{1}{l} \sum_{i=0}^{l-1} \chi(\sigma^{-i}) \sigma^{i},$$ hence Map (\hat{G}, I_{ζ}) is the group of fractional ideals of the maximal order of $K_{\zeta}G$ which are prime to (l). In a similar way we may identify Cl (OG) as the cokernel of the map $$U(O_lG) \stackrel{i}{\to} \mathrm{Map}_{\Gamma} (\hat{G}, I_{\zeta}),$$ where $\mathbf{n} \in \mathbf{Ma\dot{p}}_{\Gamma}(\hat{G}, I_{\zeta})$ if $\mathbf{n} \in \mathbf{Map}(\hat{G}, I_{\zeta})$ and $\mathbf{n}(\gamma \chi) = \gamma(\mathbf{n}(\chi))$ for all γ in Γ . This description may be obtained by either identifying the group of fractional ideals prime to l of the maximal order \overline{OG} of KG with its image in Map (\hat{G}, I_{ζ}) under the map induced from the inclusion from \overline{OG} to $\overline{O_{\zeta}G}$; or it may be obtained from [3, p. 428]. 260 L. N. CHILDS We let ϕ be the canonical map from Map_r (\hat{G}, I_{ζ}) onto Cl (OG). Putting the two sequences together gives the commutative diagram with exact rows, where the rightmost vertical map is induced from the inclusion map $OG \subset O_{\zeta}G$. It is a fact [7, (2.4.1)] that if **m** is in Map (\hat{G}, I_{ζ}) and has the property that $\mathbf{m}(\chi) = (a_{\chi})$ where $a_{\chi} \equiv 1 \pmod{(\lambda^{l-1})}$, then $\phi_{\zeta}(\mathbf{m}) = (1)$. We will generalize this useful fact below. Let δ in Δ = Aut G act on \mathbf{n} in Map (G, I_{ζ}) by $\delta(\mathbf{n})(\chi) = \mathbf{n}(\chi \cdot \delta)$. With this action the bottom line of (*) is a Δ -sequence [7, (2.3.1)]; it is straightforward to verify that the top sequence of (*) is also a Δ -sequence. The above description of Cl(OG) is in terms of ideals. The rings of integers we study are naturally presented as modules. Here is the translation into ideal classes. Let P be a rank one projective OG-module. Since O_lG is semi-local, $P_l = O_lGv$ for some v in P_l , hence $P_{\zeta,l} = O_{\zeta,l}Gv$, where $P_{\zeta} = O_{\zeta} \otimes_O P$. Then for each χ in \hat{G} , $e_{\chi}P_{\zeta} \subseteq e_{\chi}K_{\zeta}Gv = K_{\zeta}e_{\chi}v$; so $e_{\chi}P_{\zeta} = \mathbf{n}(\chi)e_{\zeta}v$ for some fractional ideal $\mathbf{n}(\chi)$. Since $P_l = O_lGv$, $\mathbf{n}(\chi)$ is prime to l, so is in I_{ζ} . To show \mathbf{n} is a Γ -map we note that Γ acts on $P_{\zeta} = O_{\zeta} \otimes P$ by acting on the left factor; hence $\gamma(e_{\chi}P_{\zeta}) = \gamma(e_{\chi})P_{\zeta} = e_{\gamma(\chi)}P_{\zeta}$. Then $\gamma(e_{\chi}P_{\zeta}) = \gamma\mathbf{n}(\chi)\gamma e_{\chi}v = \gamma\mathbf{n}(\chi)e_{\gamma(\chi)}v$, whereas $e_{\zeta(\chi)}P_{\zeta} = \mathbf{n}(\gamma\chi)e_{\gamma(\chi)}v$, and so $\mathbf{n}(\gamma\chi) = \gamma\mathbf{n}(\chi)$ for all γ in Γ . Hence \mathbf{n} is in $\mathrm{Map}_{\Gamma}(G, I_{\zeta})$. The class cl (P) of P is then $\phi(\mathbf{n})$ in CL (OG). #### 2. The theorem As above, G is cyclic of prime order l, K is a number field with ring of integers O. Define $Cl^0(OG) = \ker Cl(\chi_0)$, χ_0 the trivial character on G. Define R(OG) to be those classes in Cl(OG) which are represented by rings of integers of tame extensions of K with Galois group G. By [7, (1.2.1)], $R(OG) \subseteq Cl^0(OG)$. We wish to identify R(OG) inside Cl^0 (OG). Recall that $\Delta = \operatorname{Aut}(G)$, and σ is a fixed generator of G. For $\delta \in \Delta$, let $\delta(\sigma) = \sigma^{t(\delta)}$ with $0 < t(\delta) < l$. Let $\theta = \sum_{\delta \in \Delta} t(\delta)\delta^{-1}$. Let $J = [(l^{-1}\theta)\mathbb{Z}\Delta] \cap \mathbb{Z}\Delta$, the Stickelberger ideal. Let A be the **Z**-submodule of **Z** Δ with basis consisting of l and the elements $\delta - t(\delta)$ for $\delta \neq 1$ in Δ . Then [7, (4.1.3)] $(l^{-1}\theta)A = J$. Now Δ , hence $\mathbb{Z}\Delta$, acts on $\mathbb{C}l^0$ (OG) by functoriality. Let $\mathbb{C}l^0$ (OG)^J be the subgroup of $\mathbb{C}l^0$ (OG) generated by c^{α} , α in J. Our result is: THEOREM. Let G be cyclic of prime order l, and K be a number field with ring of integers O. Then $Cl^0(OG)^J \subseteq R(OG)$. McCulloh's Theorem [7] is: If in addition K contains a primitive lth root of unity ζ , then $Cl^0(OG)^J = R(OG)$. Now let J' be the image of J in $\mathbb{Z}\Omega$, $\Omega = \operatorname{Gal}(\mathbb{Z}[\zeta]/\mathbb{Z})$, under the isomorphism $\mathbb{Z}\Delta \cong \mathbb{Z}\Omega$ given by $\delta \leftrightarrow \gamma$ if $t(\delta) = t(\gamma)$. COROLLARY. Cl $(\mathbf{Z}[\zeta])^{J'} = (1)$. This gives the classical Kummer-Stickelberger relations on Cl ($\mathbb{Z}[\zeta]$) [5, Satz 136]. Proof of Corollary. We specialize to K = Q, $O = \mathbb{Z}$. Then $R(\mathbb{Z}G) = (1)$, by the Hilbert-Speiser theorem [5, Satz 132]. Hence $Cl^0(\mathbb{Z}G)^J = (1)$. But $Cl^0(\mathbb{Z}G) = Cl(\mathbb{Z}G)$; and $Cl(\mathbb{Z}G) \cong Cl(\mathbb{Z}[\zeta])$ under the map induced by sending $\sigma \to \zeta$, by Rim's theorem [8]. Since this isomorphism is evidently compatible with the isomorphism of $\mathbb{Z}\Delta$ with $\mathbb{Z}\Omega$, the corollary is immediate. The rest of the paper is devoted to the proof of the theorem. ## 3. Proof of the theorem Denote by $\operatorname{Map}_{\Gamma}^{0}(\widehat{G}, I_{\zeta})$ the set of maps \mathbf{m} in $\operatorname{Map}_{\Gamma}(\widehat{G}, I_{\zeta})$ such that $\mathbf{m}(\chi_{0}) = (1)$, and $\operatorname{Map}_{\Gamma}^{0}(\widehat{G}, I_{\zeta})^{J}$ the subgroup generated by \mathbf{m}^{α} , α in J. (Recall α is in $\mathbf{Z}[\Delta]$, and δ in Δ acts on \mathbf{m} by $\delta(\mathbf{m})(\chi) = \mathbf{m}(\chi \circ \delta)$.) Let M be a class in $Cl^0(OG)^J$, represented by \mathbf{m}' in $Map_{\Gamma}^0(\hat{G}, I_{\zeta})^J$. By [7, Lemma (4.1.5)], there exists \mathbf{a}' in $Map_{\Gamma}^0(\hat{G}, I_{\zeta})$ such that for all α in A, $$\mathbf{a}^{\prime\theta\alpha/l}=\mathbf{m}^{\prime\alpha}.$$ We follow the proof of [7, (4.2.1)], to construct a tame extension L of K_{ζ} , but we do it in such a way that L will descend to a tame extension N of K with $cl(O_N) = M$. Let $R(\lambda^l)$ be the group of principal fractional ideals (a) with $a \equiv 1 \pmod{\lambda^l}$, a in $O_{L\zeta}$. Observe that $\Gamma = \operatorname{Gal}(K_{\zeta}/K)$ maps 1-1 by restriction into $\Omega = \operatorname{Gal}(Q(\zeta)/Q)$. For each coset representative δ of Ω mod Γ , let $\mathbf{a}(\delta\chi_1)$ be a prime of K_{ζ} in the same class in $I_{\zeta}/R(\lambda^l)$ as $\mathbf{a}'(\delta\chi_1)$, such that $\mathbf{a}(\delta\chi_1)$ splits completely from K. (Recall that χ_1 in \hat{G} satisfies $\chi_1(\sigma) = \zeta$.) Choose the $\mathbf{a}(\delta\chi_1)$ also so that for different δ , the $\mathbf{a}(\delta\chi_1)$ contract to distinct primes of K. Such a choice is possible since the Dirichlet density of primes of K_{ζ} which split completely from Q is 1, hence in each class of $I_{\zeta}/R(\lambda^l)$ there are infinitely many such primes (see [6, p. V-3] or [4, p. 215]. For $\gamma \in \Gamma$, let $\mathbf{a}(\gamma \delta \chi_1) = \gamma \mathbf{a}(\delta \chi_1)$, and set $\mathbf{a}(\chi_0) = (1)$. Then for $\chi \neq \chi_0$ in \hat{G} , the $\mathbf{a}(\chi)$ form a collection of distinct primes. Moreover \mathbf{a} is in Map_{Γ}^0 (G, I_{ζ}) , and $\mathbf{a} = \mathbf{a}'(\mathbf{u})$ where (\mathbf{u}) is in Map_{Γ}^0 $(\hat{G}, R(\lambda^l))$. From (1) we get $(\mathbf{u})^{\theta} \mathbf{m}'^{l} = \mathbf{a}^{\theta}$. 262 L. N. CHILDS For any γ in Γ and χ in \hat{G} , $(\mathbf{u}(\gamma\chi)) = (\gamma\mathbf{u}(\chi))$, so we may alter $\mathbf{u}(\chi)$ by a global unit if necessary so that $\mathbf{u}(\gamma\chi) = \gamma\mathbf{u}(\chi)$ (see proof of the lemma below). Let $\mathbf{u}^{\theta}(\chi_1) = u_{\theta}$, and set $L = K_{\xi}[Z]/(Z^l - u_{\theta}) = K_{\xi}[z]$, where $z^l = u_{\theta}$. Because (u_{θ}) is in $R(\lambda^l)$, it follows from [7. (3.1.1)] that L/K_{ξ} is tame; moreover, since the $\mathbf{a}(\chi)$ are distinct primes, the proof of [7, (4.2.1)] goes through to show that cl $(O_L) = \phi_{\xi}(\mathbf{m}')$ where $$\phi_{\zeta} \colon \operatorname{Map}^{0}(\hat{G}, I_{\zeta}) \to \operatorname{Cl}^{0}(O_{\zeta}G)$$ is as in Section 1 above. The rest of the argument proceeds as follows. - (i) $\Gamma = \operatorname{Gal}(K_{\zeta}/K)$ extends to a group $\overline{\Gamma}$ of automorphisms of L in such a way that $\overline{\Gamma}$ and $G = \operatorname{Gal}(L/K_{\zeta})$ commute, hence the fixed filed $L^{\overline{\Gamma}} = N$ is a Galois extension of K with group G. - (ii) N/K is tame. - (iii) cl $(O_N) = \phi(\mathbf{m}')$. These arguments will complete the proof. *Proof of* (i). To define an action of $\Gamma = \operatorname{Gal}(K_{\zeta}/K)$ on L, it suffices to define the action on z. So we look at $\gamma(u_{\theta})$ for γ in Γ . Since \mathbf{u} is a Γ -map, for any γ in Γ , $$\gamma(u_{\theta}) = \prod_{\beta} \gamma(\mathbf{u}(\chi_1 \beta^{-1})^{t(\beta)}) = \prod_{\beta} \mathbf{u}(\gamma \chi_1 \beta^{-1})^{t(\beta)}$$ where β runs through $\Delta = \text{Aut } (G)$. There is an isomorphism of Γ into Δ which takes γ in Γ , acting on ζ by $\gamma(\zeta) = \zeta^{t(\gamma)}$, to γ_1 in Δ , where $\gamma_1(\sigma) = \sigma^{t(\gamma)}$. Hence $$\gamma(u_{\theta}) = \prod_{\beta} \mathbf{u}(\chi_{1} \gamma_{1} \beta^{-1})^{t(\beta)}$$ $$= \prod_{\eta \in \Delta} \mathbf{u}(\chi_{1} \eta^{-1})^{t(\eta \gamma_{1})}$$ $$= \prod_{\eta \in \Delta} \mathbf{u}(\chi_{1} \eta^{-1})^{t(\eta)t(\gamma_{1})} \cdot u(\chi_{1} \eta^{-1})^{r(\eta, \gamma_{1})l}$$ where $r(\eta, \gamma_1)l = t(\eta\gamma_1) - t(\eta)t(\gamma_1)$. Hence $$\gamma(u_{\theta}) = (u_{\theta})^{t(\gamma)} \cdot \left[\prod_{\eta \in \Delta} \mathbf{u}(\chi_1 \eta^{-1})^{r(\eta, \gamma_1)} \right]^t = (u_{\theta})^{t(\gamma)} s_{\gamma}^t.$$ where s_{γ} is the quantity inside the brackets. Since $\mathbf{u}(\chi) \equiv 1 \pmod{\lambda^{l}}$ for all $\chi \in \hat{G}$, $s_{\gamma} \equiv 1 \pmod{\lambda^{l}}$. Now in L, $z^l = u_\theta$. So for each γ in Γ , we define an extension $\bar{\gamma}$ of γ to L by $\bar{\gamma}(z) = z^{t(\gamma)} s_{\gamma}$. Then $\bar{\gamma}$ is a well-defined extension of γ to L. Let $\bar{\Gamma}$ be the set of extensions $\bar{\gamma}$. The maps $\sigma^i \bar{\gamma}$, σ in G, $\bar{\gamma}$ in $\bar{\Gamma}$, form a set of $[G:1][\Gamma:1] = [L:K]$ distinct K-automorphisms of L, for if $\sigma^i \bar{\gamma} = \sigma^j \bar{\gamma}'$, then their respective values on z are equal, namely, $$\zeta^{it(\gamma)}z^{t(\gamma)}s_{\gamma}=\zeta^{jt(\gamma')}z^{t(\gamma')}s_{\gamma}',$$ hence $t(\gamma) = t(\gamma')$, $\gamma = \gamma'$, hence i = j. So L is a Galois extension of K with Galois group $H = \{\sigma^i \bar{\gamma} \mid i = 0, ..., l-1; \bar{\gamma} \text{ in } \Gamma\}$. It is quickly checked that $\bar{\gamma}$ and σ^i commute on L. So H is abelian. Now Γ is cyclic, being a subgroup of Gal $(Q[\zeta]/Q)$. Let γ generate Γ . Then $\bar{\gamma}$ either has order $[\Gamma:1]$ in H, or, since G has index l in H, generates all of H. In the latter case, $\bar{\gamma}^l$ restricts to $\gamma^l = \gamma$ (since $[\Gamma:1]$ divides $[Q[\zeta]:Q] = l-1$) and $\bar{\gamma}^l$ has order $[\Gamma:1]$ in H. So, replacing $\bar{\gamma}$ by $\bar{\gamma}^l$ if necessary, we can assume that $\bar{\gamma}$ generates a subgroup $\bar{\Gamma}$ of H, $\bar{\Gamma}$ restricts isomorphically to Γ on K_{ζ} , and $H = \bar{\Gamma} \times G$. For future reference we note that since $\bar{\gamma}(z) = z^{t(\gamma)} s_{\gamma}$ with $s_{\gamma} \equiv 1 \pmod{\lambda^{l}}$, then $\bar{\gamma}^{i}(z) = z^{t(\gamma^{i})} s_{i}'$ with $s_{i}' \equiv 1 \pmod{\lambda^{l}}$. This is easily seen by induction. So we may assume, with or without the replacement of $\bar{\gamma}$ by $\bar{\gamma}^{l}$, that (2) $$\bar{\gamma}(z) = z^{t(\gamma)}c_{\gamma}$$ for some c_{γ} in $O_{\zeta,l}$ with $c_{\gamma} \equiv 1 \pmod{\lambda^{l}}$. We let N be the fixed field of $\overline{\Gamma}$. Then N is a Galois extension of K with group G, and $N_{\zeta} = L$. This completes part (i) of the proof. Proof of (ii). We know $L = N \cdot K_{\zeta} \cong N \otimes_K K_{\zeta}$. Since [N:K] = l, the ramification index of any prime P of K divides l, so will always be prime to the characteristic of O_K/P if P does not lie over (l). Suppose, then, that P is a prime ideal of O_K lying over (l). Then the ramification index $e_P(N/K)$ divides $e_P(K_{\zeta}/K) \cdot e_{P'}(L/K_{\zeta})$ where P' is any prime of K_{ζ} lying over P. But L/K_{ζ} is tame, so $e_P(L/K_{\zeta}) = 1$; also $e_P(K_{\zeta}/K)$ divides $[K_{\zeta}:K] < l - 1$. Since $e_P(N/K)$ divides $[K_{\zeta}:K] = 1$. Hence no P lying over (R) ramifies in R, and R is tame. *Proof of* (iii) (the class of O_N in Cl (OG) is M). Following the last paragraph of Section 1, we find the class of O_N in Cl (OG) by first finding a suitable normal basis element of $O_{N,l}$. Our candidate is $$v_0 = \frac{1}{l} \left(1 + \sum_{\delta} \sum_{\gamma \in \Gamma} \bar{\gamma}(z^{t(\delta)}) \right)$$ in L where δ runs through a set of coset representatives of Γ in $\Omega = \text{Gal }(Q[\zeta]/Q)$. Evidently v_0 is fixed by Γ , so is in N. To show that v_0 generates a normal basis, we need to show that v_0 is in $O_{N,l}$ and that the discriminant of $\{\sigma(v_0)\}_{\sigma \text{ in } G}$ is a unit of $O_{N,l}$. To show that v_0 is in $O_{N,l}$, we recall from (2) that $\gamma(z) = z^{t(\gamma)}c_{\gamma}$ with $c_{\gamma} \equiv 1 \pmod{\lambda^l}$, and $z^l = u_{\theta} \equiv 1 \pmod{\lambda^l}$. Thus in the expression for v_0 , we may write $$\bar{\gamma}(z^{t(\delta)}) = (z^{t(\gamma)}c_{\gamma})^{t(\delta)} = z^{t(\gamma)t(\delta)}c_{\gamma}^{t(\delta)} = z^{t(\gamma\delta)}z^{lr(\gamma,\delta)}c_{\gamma}^{t(\delta)}.$$ We set $d_{t(\gamma\delta)} = u_{\theta}^{r(\gamma,\delta)} c_{\gamma}^{t(\delta)}$; then $d_{t(\gamma\delta)}$ is in $O_{\zeta,l}$, $$d_{t(\gamma\delta)} \equiv 1 \pmod{\lambda^l}$$ and $\gamma(z)^{t(\delta)} = z^{t(\delta)} d_{t(\gamma\delta)}$. Since $\gamma\delta$ runs through all elements of Ω , $t(\gamma\delta)$ runs through all i, $1 \le i \le l-1$, so $$v_0 = \frac{1}{l} \sum_{i=0}^{l-1} z^i d_i = \frac{1}{l} \sum_{i=0}^{l-1} z^i + \sum_{i=0}^{l-1} \frac{(d_i - 1)}{l} z^i.$$ The first term is in $O_{L,l}$ by [7, (3.3.3)], and the second has coefficients of z^i which are in $O_{\zeta,l}$ since $d_i \equiv 1 \pmod{\lambda^l}$ and $(l) = (\lambda^{l-1})$. Hence v_0 is in $N \cap O_{L,l} = O_{N,l}$. To compute the discriminant of $\{\sigma_i(v_0)\}_{i=0,\dots,l-1}$ we note that $$\sigma^{j}(v_{0}) = \frac{1}{l} \sum_{i=0}^{l-1} \zeta^{ij} z^{i} d_{i}$$ for each $j, 0 \le j \le l-1$. So $$\begin{pmatrix} v_0 \\ \sigma(v_0) \\ \\ \sigma^{l-1}(v_0) \end{pmatrix} = \frac{1}{l} \begin{pmatrix} d_0 & d_1 & d_2 \\ d_0 & \zeta d_1 & \zeta^2 d_2 \\ d_0 & \zeta^2 d_1 & \zeta^4 d_2 \end{pmatrix} \cdots \begin{pmatrix} z^1 \\ z^2 \\ \vdots \end{pmatrix}$$ hence $$\Delta \{\sigma^{j}(v_{0})\} = \frac{(d_{0} d_{1} d_{2} \cdots)^{2}}{l^{2i}} \det (\zeta^{ij})^{2} \Delta \{z^{i}\}.$$ Now $\Delta \{z^i\} = \pm (u_\theta)^{l-1} l^l$, and det $(\zeta^{ij})^2 = l^l$, so we get $$\Delta\{\sigma^{j}(v_{0})\} = \pm (d_{0} d_{1} d_{2} \cdots)^{2} (u_{\theta})^{l-1},$$ a unit of $O_{\zeta,l}$. Thus $\{\sigma^i(v_0)\}$ is a normal basis of $O_{N,l}/O_l$. Following the prescription of the last paragraph of Section 1, we let **n** in Map (G, I_{ζ}) be such that for each χ in \hat{G} , $e_{\chi}O_{L} = \mathbf{n}(\chi)e_{\chi}v_{0}$. Then we find that $\mathbf{n}(\gamma\chi) = \gamma\mathbf{n}(\chi)$ for γ in Γ , just as in the last paragraph of Section 1. Hence **n** is in Map_{\Gamma} (\hat{G}, I_{ζ}) . The class of O_{N} in Cl (OG) is then $\phi(\mathbf{n})$. We need to show that $\operatorname{cl}(O_N) = \phi(\mathbf{m}')$. For this we use LEMMA (cf. [7, (2.4.1)]). If \mathbf{m} , \mathbf{n} are in $\mathrm{Map}_{\Gamma}(\hat{G}, I_{\zeta})$, and for each δ in Δ there exists (u_{δ}) in $R(\lambda^{l})$ so that $\mathbf{m}(\chi_{1} \delta) = (u_{\delta})\mathbf{n}(\chi_{1} \delta)$, then $\phi(\mathbf{m}) = \phi(\mathbf{n})$ in Cl (OG). *Proof of lemma*. Since **m** and **n** are Γ-maps, it follows that for all γ in Γ, the ideals $(\gamma(u_{\delta}))$ and $(u_{\gamma\delta})$ are equal. Hence $\gamma(u_{\delta})$ and $u_{\gamma\delta}$ differ by a unit factor in O_{ζ} which is $\equiv 1 \pmod{\lambda^{l}}$. Fix a set T of coset representatives of Ω mod Γ and replace $u_{\gamma\delta}$ by $\gamma(u_{\delta})$ for $\gamma \neq 1$, δ in T. Then $\gamma(u_{\delta}) = u_{\gamma\delta}$ for all δ in Ω , γ in Γ . Let $$\beta = e_{\chi_0} + \sum_{\delta \text{ in } \Omega} u_{\delta} e_{\chi_1 \delta}$$ where $e_{\chi} = \frac{1}{l} \sum_{\tau} \chi(\tau) \tau^{-1}$ in $K_{\zeta} G$. We show β is in $U(O_1G)$. Since $u_{\delta} \equiv 1 \pmod{\lambda^{l}}$, there exist s_{δ} in $O_{\zeta,l}$ so that $u_{\delta} = 1 + l\lambda s_{\delta}$. Hence $$\beta = e_{\chi_0} + \sum_{\delta} (1 + l\lambda s_{\delta})e_{\chi_1\delta} = 1 + \sum_{\delta} s_{\delta}\lambda (le_{\chi_1\delta})$$ which is in $O_{\zeta,l}G$. Similarly for $\beta^{-1} = e_{\chi_0} + \sum_{\delta} u_{\delta}^{-1} e_{\chi_1\delta}$. So β is in $U(O_{\zeta,l}G)$. Since $u_{\gamma\delta} = \gamma(u_{\delta})$ for γ in Γ , both β and β^{-1} are in O_lG . So β is in $U(O_lG)$. Now the image of β in Map_{Γ} (\hat{G}, I_{ζ}) is $(\mathbf{u}), \mathbf{u}(\chi_0) = 1, \mathbf{u}(\chi_1 \delta) = u_{\delta}$. So $\phi(\mathbf{u}) = (1)$ in Cl (OG), and $\phi(\mathbf{m}) = \phi(\mathbf{u})\phi(\mathbf{n}) = \phi(\mathbf{n})$. That proves the lemma. We write $\mathbf{m} \sim \mathbf{n}$ if \mathbf{m} , \mathbf{n} are in Map (\hat{G}, I_{ζ}) and $\mathbf{m}(\chi_1 \delta) = (u_{\delta})\mathbf{n}(\chi_1 \delta)$ with u_{δ} in $R(\lambda^l)$. Returning to the proof that cl $(O_N) = \phi(\mathbf{m}')$, we need to show that $\phi(\mathbf{n}) = \phi(\mathbf{m}')$. Let $v = (1/l) \sum_{i} z^{i}$. Then $e_{\chi} O_{L} = \mathbf{m}(\chi) e_{\chi} v$ and $\mathbf{m} \sim \mathbf{m}'$, by [7, proof of (4.2.1)]. We have $\mathbf{n}(\chi) e_{\chi} v_{0} = e_{\chi} O_{L} = \mathbf{m}(\chi) e_{\chi} v$. Now $$e_{\chi_1\delta}v = \frac{1}{l}z^{t(\delta)}$$ and $e_{\chi_1\delta}v_0 = \frac{1}{l}z^{t(\delta)}d_{t(\delta)}$ by the argument of [7, p. 573, line 9]. Thus $\mathbf{n}(\chi_1 \delta)(d_{t(\delta)}) = \mathbf{m}(\chi_1 \delta)$ for all δ in $\Delta = \mathrm{Aut}(G)$. But $d_{t(\delta)} \equiv 1 \pmod{\lambda^l}$, as we observed in showing v_0 was in $O_{N,l}$. So $\mathbf{n} \sim \mathbf{m}$. Thus $\mathbf{n} \sim \mathbf{m}'$. Now both **n** and **m**' are in Map_{\(\text{\Gamma}\)} (\hat{G}, I_\(\xi\)), and we have $\phi(\mathbf{m}') = M$, the class in Cl⁰ (OG)^{\(J\)} we began with, and $\phi(\mathbf{n})$ is the class of O_N . Thus, by the lemma, $M = \text{cl }(O_N)$ in Cl⁰ (OG). Since N is a tame extension of K, the proof is complete. Note. Leon McCulloh informs me that he has subsequently obtained results (forthcoming) which substantially generalize the theorem of this paper. # REFERENCES - A. Fröhlich, "Stickelberger without Gauss sums" in Algebraic number fields, Proc. Durham Symposium, Academic Press, New York, 1977, 589-608. - Locally free modules over arithmetic orders, J. für Math., vol. 274/275 (1975), pp. 112-124. 266 L. N. CHILDS - 3. —, Arithmetic and Galois module structure for tame extensions, J. für Math., vol. 286/287 (1976), pp. 380-440. - H. HEILBRONN, "Zeta-functions and L-functions" in J. W. S. Cassels and A. Fröhlich, Algebraic number theory, Academic Press, New York, 1967, pp. 204–230. - D. HILBERT, "Die Theorie der algebraischen Zahlkörper" in Ges. Abh., vol. I, Chelsea, New York, 1965, pp. 63-363. - K. Iwasawa, "Class fields" in Seminar on complex multiplication, Chapter V, Springer Lecture Notes in Math., vol. 21, Springer, New York, 1966. - 7. L. McCulloh, "A Stickelberger condition on Galois module structure for Kummer extensions of prime degree" in *Algebraic number fields*, Proc. Durham Symp., Academic Press, 1977, pp. 561-588. - 8. D. S. Rim, Modules over finite groups, Ann. of Math., vol. 69 (1959), pp. 700-712. STATE UNIVERSITY OF NEW YORK AT ALBANY ALBANY, NEW YORK