# THE REAL SEMI-CHARACTERISTIC OF A HOMOGENEOUS SPACE

BY

# J. C. Becker<sup>1</sup>

#### 1. Introduction

The real Kervaire semi-characteristic of a closed orientable manifold of dimension 4s + 1 is defined to be

$$k(M) = \sum_{i} \dim (H^{2i}(M, R)) \mod 2.$$

The main purpose of this paper is to give a formula for the semi-characteristic of a homogeneous space G/H along the lines of Hopf and Samelson's formula for the Euler characteristic [4].

Recall that the Weyl group of a compact Lie group G (not necessarily connected) is  $W(G) = N_G(T)/C_G(T)$ , where  $N_G(T)$  and  $C_G(T)$  are respectively the normalizer and centralizer of a maximal torus T of the identity component of G. Hopf and Samelson's theorem states that the Euler characteristic of a connected homogeneous space G/H is given by

$$E(G/H) = \begin{cases} |W(G)|/|W(H)|, & \text{rank } (H) = \text{rank } (G), \\ 0, & \text{rank } (H) < \text{rank } (G). \end{cases}$$

For a connected orientable homogeneous space G/H of dimension 4s + 1 we will show that

$$k(G/H) = \begin{cases} |W(G)|/|W(H), & \text{rank } (H) = \text{rank } (G) - 1, \\ 0, & \text{rank } (H) < \text{rank } (G) - 1, \end{cases}$$

as integers mod 2 (see Corollary (5.1)).

The similarity in the statement of these two results is also present in their method of proof which in each case involves analyzing vector fields on G/H. The Euler characteristic arises as an obstruction to finding a non-zero vector field on G/H, whereas Atiyah and Dupont [2] have shown that the semi-characteristic arises as an obstruction to extending a non-zero vector field to a field of 2-frames on G/H.

Received November 6, 1979.

<sup>&</sup>lt;sup>1</sup> Partially supported by a National Science Foundation grant.

It is a pleasure to thank R. Schultz for several helpful conversations during the course of this work.

## 2. The characteristic of a k-field

It is well known that a compact smooth manifold M has an associated "Gauss map" whose degree is the Euler characteristic of M. To be precise, choose an embedding  $c\colon M\to R^s$  with normal bundle v. Let  $\tau$  denote the tangent bundle of M and  $\dot{M}$  the boundary of M. The restriction of the inclusion  $i\colon M^v\to M^{\tau\oplus v}$  to  $\dot{M}^v$  is null homotopic by  $v_x\to tN_x\oplus v_x, 0\le t\le \infty$ , where N is the outward normal vector field on  $\dot{M}$ . Applying the homotopy extension property we have  $\tilde{i}\colon (M,\dot{M})^v\to M^{\tau\oplus v}$ . Then the degree of the map

$$S^s \stackrel{c_*}{\to} (M, \dot{M})^{\nu} \to M^{\tau \oplus \nu} \stackrel{\tilde{\iota}}{\to} S^s$$

is the Euler characteristic of M.

There is an interesting generalization of this construction due to E. Y. Miller [5]. Suppose that  $\Delta_1, \ldots, \Delta_k$  are linearly independent vector fields on M which are also tangent on  $\dot{M}$ . Let  $\Delta \colon M \times R^k \to \tau$  denote the associated injection. The restriction of  $\Delta \oplus 1 \colon M^{R^k \oplus \nu} \to M^{\tau \oplus \nu}$  to  $\dot{M}^{R^k \oplus \nu}$  is again canonically null homotopic so we obtain

$$\widetilde{\Delta \otimes 1}$$
:  $(M, \dot{M})^{R^k \oplus \nu} \to M^{\tau \oplus \nu}$ .

The map

$$S^k \wedge S^s \xrightarrow{1 \wedge c_\#} S^k \wedge (M, \dot{M})^{\vee} = (M, \dot{M})^{R + \oplus \vee} \xrightarrow{\widetilde{\Delta \oplus 1}} M^{\tau \oplus \vee} \to S^s$$

defines an element

$$(2.1) \chi_k(M, \Delta_1, \ldots, \Delta_k) \in \pi_k(S^\circ).$$

It depends only on the homotopy class of the k-field  $\{\Delta_1, \ldots, \Delta_k\}$  and its vanishing is a necessary condition that there exist a vector field  $\bar{N}$  on M which extends the outward normal N on  $\dot{M}$  and such that  $\Delta_1, \ldots, \Delta_k, \bar{N}$  are linearly independent. Of course  $\chi_0(M) \in \pi_0(S^\circ) = Z$  is the Euler characteristic E(M).

We list now some of the properties of this element. In what follows, by a k-field on M (always assumed compact) we will mean k linearly independent vector fields on M which are also tangent on M.

(2.2) Multiplicativity. Suppose that  $\Delta_1, \ldots, \Delta_p$  is a p-field on M and  $\delta_1, \ldots, \delta_q$  is a q-field on N. Define  $\Delta'_j$  on  $M \times N$ ,  $1 \le j \le p$ , by  $\Delta'_j(x, y) = i_{y^*} \Delta_j(x)$ , where  $i_y$ :  $M \to M \times N$  is the inclusion  $x \to (x, y)$ , and define  $\delta'_j$ ,  $1 \le j \le q$ , similarly. Then  $\Delta'_1, \ldots, \Delta'_p, \delta'_1, \ldots, \delta'_q$  is a (p+q)-field on  $M \times N$  and

$$\chi_{p+q}(M\times N,\,\Delta_1',\,\ldots,\,\Delta_p',\,\delta_1',\,\ldots,\,\delta_q')=\chi_p(M,\,\Delta_1,\,\ldots,\,\Delta_p)\chi_q(N,\,\delta_1,\,\ldots,\,\delta_q).$$

 $(M \times N)$  has the product smooth structure which involves straightening the angle along  $\dot{M} \times \dot{N}$  if both  $\dot{M}$  and  $\dot{N}$  are non empty.)

Suppose now that  $M=M_1\cup M_2$  where  $M_1$  and  $M_2$  are topological n-submanifolds of the smooth n-manifold M such that  $M_1\cap M_2=\dot{M}_1\cap\dot{M}=M_{12}$  say, and  $M_{12}$  is a smooth submanifold with boundary  $\dot{M}_{12}=M_{12}\cap\dot{M}$ . Then  $M_1$  and  $M_2$  inherit a smooth structure from M by straightening the angle along  $\dot{M}_{12}$ . If  $\Delta$  is a 1-field on M with the additional property that  $\Delta^{12}=\Delta |M_{12}|$  is tangent on  $M_{12}$ , it is easy to check that  $\Delta$  induces a 1-field  $\Delta^j$  on  $M_j$ , j=1,2, uniquely determined by the condition that  $\Delta^j |M_j-\dot{M}_{12}=\Delta |M_j-\dot{M}_{12}|$ .

(2.3) Excision. Suppose that  $\Delta_1, \ldots, \Delta_k$  is a k-field on M such that  $\Delta_i^{12} = \Delta_i | M_{12}$  is tangent on  $M_{12}, 1 \le i \le k$ . Then  $\Delta_1^j, \ldots, \Delta_k^j$  is a k-field on  $M_j$ , j = 1, 2, and

$$\chi_k(M, \Delta_1, \ldots, \Delta_k)$$

$$=\chi_k(M_1, \Delta_1^1, \ldots, \Delta_k^1) + \chi_k(M_2, \Delta_1^2, \ldots, \Delta_k^2) - \chi_k(M_{12}, \Delta_1^{12}, \ldots, \Delta_k^{12}).$$

The proofs of (2.2) and (2.3) are routine and will be omitted.

(2.4) THEOREM. Let M be closed, orientable, and odd dimensional. Let  $\Delta$  be a 1-field on M. Then  $\chi_1(M, \Delta) \in \pi_1(S^\circ) = Z_2$  is independent of  $\Delta$  and is given by

$$\chi_1(M, \Delta) = \begin{cases} k(M), & \dim(M) \equiv 1 \mod 4, \\ 0, & \dim(M) \equiv 3 \mod 4, \end{cases}$$

where k(M) is the real Kervaire semi-characteristic of M.

This is implicit in the work of Atiyah and Dupont [2]. It is simply a matter of relating  $\chi_1(M, \Delta)$  with the index defined there. Since the Hurewicz map

$$\pi_1(S^\circ) = \pi^\circ(S^1) \to \widetilde{KO}^\circ(S^1)$$

is an isomorphism we can work with the image of  $\chi_1(M, \Delta)$  in  $\widetilde{KO}^{\circ}(S^1)$  which we again denote by  $\chi_1(M, \Delta)$ . Now Atiyah and Dupont define an element

Ind 
$$\alpha_{M,2}^s \in \widetilde{KO}^s(P_{s+1}/P_{s-1}),$$

where  $0 \le s \le 3$  and dim  $(M) + s \equiv 0$  (4). We have an exact sequence

$$\widetilde{KO}^{\circ}(S^{1}) = \widetilde{KO}^{s}(P_{s+1}/P_{s}) \xrightarrow{j^{*}} \widetilde{KO}^{s}(P_{s+1}/P_{s-1}) \to \widetilde{KO}^{s}(P_{s}/P_{s-1}) = Z,$$

and, on comparing definitions, it can be shown that  $j^*(\chi_1(M, \Delta)) = \operatorname{Ind} \alpha^s_{M,2}$ . From the calculation of  $\widetilde{KO}^s(P_{s+1}/P_{s-1})$  given in [2, Section 3] we see that  $j^*$  is injective and therefore  $\chi_1(M, \Delta)$  is independent of  $\Delta$ . The main theorem of [2] then gives the stated value for  $\chi_1(M, \Delta)$ .

Suppose now that  $p: E \to B$  is a vector bundle over a closed manifold B. Let D(E) and S(E) denote the unit disk and sphere bundles (relative to some metric).

(2.5) LEMMA. Suppose that  $\delta_1, \ldots, \delta_k$  is a k-field on D(E) and  $\Delta_1, \ldots, \Delta_k$  is a k-field on B such that  $p_*\delta_1 = \Delta_i p$ ,  $1 \le i \le k$ . Then  $\chi_k(D(E), \delta_1, \ldots, \delta_k) = \chi_k(B, \Delta_1, \ldots, \Delta_k)$ .

*Proof.* There is the natural inclusion  $p^*(E) \to \tau(D(E))$  and we have

$$\tau(D(E)) \simeq p^*(\tau(B)) \oplus p^*(E).$$

Write  $\delta_i(e) = \delta_i'(e) \oplus \delta_1''(e)$ , where  $\delta_i'(e) \in p^*(\tau(B))$  and  $\delta_i''(e) \in p^*(E)$ . Since  $\delta_i$  is homotopic to  $\delta_i'$  and  $\delta_i'(e) = (e, \Delta p(e))$ , we may assume that  $\delta_i(e) = (e, \Delta p(e))$ ,  $1 \le i \le k$ .

Let  $s: B \to D(E)$  denote the zero section and observe that if  $\theta$  is any vector bundle over B the following is homotopy commutative:

$$(D(E)), S(E)^{R^k \oplus p^*(\theta)} \xrightarrow{\widetilde{\delta \oplus 1}} D(E)^{\tau(D(E)) \oplus p^*(\theta)} = D(E)^{p^*(\tau(B) \oplus E \oplus \theta)}$$

$$\downarrow^{S_*} \qquad \uparrow^{s}$$

$$B^{R^k \oplus E \oplus \theta} \xrightarrow{\Delta \oplus 1} B^{\tau(B) \oplus E \oplus \theta}$$

In fact we may take

$$s(\Delta \oplus 1)s_{\#}(v_b, x, w_b) = (\theta_b, \Delta(b, x), \frac{1}{1 - |v_b|} v_b, w_b),$$

 $v_b \in D(E)$ ,  $x \in R^k$ ,  $w_b \in \theta$ . And since the outward normal on S(E) is given by  $v_b \to (v_b, v_b) \in p^*(E)$ , we may take

$$\widetilde{\delta \oplus 1}(v_b, x, w_b) = (v_b, \Delta(b, x), \frac{1}{1 - |v_b|} v_b, w_b).$$

It is clear now that  $\delta \oplus 1 \simeq s(\Delta \oplus 1)s_{\#}$ .

Now choose an embedding  $c': E \to R^s$  with normal bundle v'. Let

$$c = c's \colon B \to R^s$$
 and  $v = s^*(v')$ .

Then  $v' = p^*(v)$  and by the remarks above,

$$S^{k+s} \xrightarrow{1 \land c'_{\#}} (D(E), S(E))^{R^{k} \oplus p^{*}(v)} \xrightarrow{\widetilde{\delta \oplus 1}} D(E)^{\tau(D(E)) \oplus p^{*}(v)} \xrightarrow{S^{s}} S^{s}$$

$$\downarrow^{1 \land c_{\#}} \downarrow^{s_{\#}} B^{R^{k} \oplus E \oplus v} \xrightarrow{\Delta \oplus 1} B^{\tau(B) \oplus E \oplus v}$$

is homotopy commutative. The lemma follows.

#### 3. G-manifolds

We shall eventually be dealing with both left and right G-spaces so we will adopt the standard notation for the orbit space:  $G \setminus X$  if X is a left G-space and X/G if X is a right G-space.

Suppose that M is a smooth G-manifold having no isotropy subgroup of maximal rank. Let T be a maximal torus of G. A choice of a generator t of T determines a I-field  $\Delta_t$  on M as follows: t defines a I-parameter subgroup  $R \subset T$  and we have  $\tau_0(R) \subset \tau_1(T)$ . Let  $v \in \tau_1(T)$  denote the image of the canonical generator of  $\tau_0(R)$  and define  $\Delta_t(x) = \omega_{x^*}(v)$ , where  $\omega_x \colon T \to M$  is the evaluation map  $s \to sx$ ,  $s \in T$ .

If H is a subgroup of G let (H) denote its conjugacy class, let  $M_{(H)}$  denote the set of points of M having isotropy subgroup in (H) and let  $\mathring{M}_{(H)}$  denote the one-point compactification of  $M_{(H)}$ .

(3.1) Theorem. If M is a G-manifold having no isotropy subgroup of maximal rank then

$$\chi_1(M, \Delta_t) = \sum E(G \backslash \mathring{M}_{(H)}, \infty) \chi_1(G/H, \Delta_t),$$

the sum taken over all conjugacy classes of isotropy subgroups of M.

*Proof* (Cf. [3, Theorem (4.2)].) We proceed by induction on the dimension of M and on the number of handles in an equivariant handle decomposition of M as in [7]. The theorem holds vacuously for 0-dimensional manifolds.

Consider first the case of the unit disk bundle D(V) of a Riemannian G-vector bundle V over an orbit G/H with rank (H) < rank (G). By Lemma (2.5),

(3.2) 
$$\chi_1(D(V), \Delta_t) = \chi_1(G/H, \Delta_t).$$

If K is an isotropy subgroup of D(V) then some conjugate of K lies in H. Consider the case (K) = (H). Then  $V_{(H)}$  is a subbundle W of V, hence  $D(V)_{(H)} = D(W)$ . Since  $p: D(W) \to G/H$  is a G-homotopy equivalence,  $E(G \setminus \mathring{D}(W), \infty) = E(G \setminus D(W)) = 1$ .

If K is a proper subgroup of H then

$$D(V)_{(K)} = S(V)_{(K)} \times [0, 1)$$

since  $v \in D(V)_{(K)}$  implies that  $\lambda v \in D(V)_{(K)}$ ,  $\lambda \neq 0$ . Therefore

$$G\backslash D(V)_{(K)}=G\backslash S(V)_{(K)}\times [0, 1)$$

and it follows that  $E(G \setminus \mathring{D}(V)_{(K)}) = 0$ . Therefore

(3.3) 
$$\sum E(G \backslash \mathring{D}(V)_{(K)}, \ \infty) \chi_1(G/K, \ \Delta_t) = \chi_1(G/H, \ \Delta_t)$$

The result for D(V) now follows from (3.2) and (3.3). Suppose now that M is obtained from N by attaching a G-handle; M = N

 $\bigcup_F \mathcal{H}$  where  $\mathcal{H} = D(V) \times_{G/H} D(W)$ , V and W Riemannian G-vector bundles over an orbit G/H. By (2.3),

$$\chi_1(M, \Delta_t) = \chi_1(N, \Delta_t) + \chi_1(\mathcal{H}, \Delta_t) - \chi_1(N \cap \mathcal{H}, \Delta_t).$$

We may assume by induction on the number of handles that the result holds for N and by induction on dimension that the result holds for  $N \cap \mathcal{H}$ . Since  $\mathcal{H} = D(V \oplus W)$  is a smooth manifold we have from above that the theorem holds for  $\mathcal{H}$ . It is now easy to check that the theorem also holds for M.

Given an action of a torus T on M, define the circle point set of M to be

(3.4) 
$$\Sigma(M) = \{x \in M \mid \dim(T/T_x) = 1\}.$$

(3.5) COROLLARY. If T acts on M without fixed points then

$$\chi_1(M, \Delta_t) \equiv E(T \setminus \Sigma(M)) \mod 2.$$

Proof. First observe that

$$\chi_1(T, \Lambda_t) = \begin{cases} 1, & \dim(T) = 1, \\ 0, & \dim(T) > 1. \end{cases}$$

If T' is a subgroup of T let  $t' \in T/T'$  denote the image of t. Since T/T' is again a torus

$$\chi_1(T/T', \Delta_t) = \chi_1(T/T', \Delta_{t'}) = \begin{cases} 1, & \dim(T/T') = 1, \\ 0, & \dim(T/T') > 1. \end{cases}$$

Hence we have

$$\chi_1(M, \Delta_t) \equiv \sum E(T \backslash \mathring{M}_{(T')}, \infty) \mod 2$$

where the sum is taken over all isotropy subgroups T' such that dim (T/T') = 1. It is easy to see that this sum is equal to  $E(T \setminus \Sigma(M))$ .

# 4. Homogeneous spaces

In this section we evaluate  $\chi_1(G/H, \Delta_t)$ . We assume that G is connected but H need not be connected.

If rank (H) = rank (G) - 1 let  $I_G(H) = C_G(T')/T'$  where T' is a maximal torus of the identity component of H. Since  $I_G(H)$  is a connected compact Lie group of rank 1 it is either  $S^1$ , SO(3), or  $S^3$ .

(4.1) THEOREM. If rank 
$$(H) < \text{rank } (G) - 1$$
,

$$\chi_1(G/H, \Delta_t) = 0.$$

If rank  $(H) = \operatorname{rank}(G) - 1$ ,

$$\chi_1(G/H, \Delta_t) \equiv |W(G)|/|W(H)| \mod 2.$$

Moreover, if  $I_G(H)$  is SO(3) or  $S^3$  then  $|W(G)|/|W(H)| \equiv 0 \mod 2$ , hence  $\chi_1(G/H, \Delta_t) = 0$ .

*Proof.* Fix a maximal torus T' of the identity component of H and a maximal torus T of G such that  $T' \subset T$ . By Corollary (3.5),

(4.2) 
$$\chi_1(G/H, \Delta_t) \equiv E(T \setminus \Sigma(G/H)) \mod 2,$$

where  $\Sigma(G/H)$  is the circle point set of G/H relative to the left action of T. If rank (H) < rank (G) - 1, the circle point set is empty and we are done. Assume then, from now on, that rank (H) = rank (G) - 1. Let

$$(4.3) N_G(T', T) = \{ q \in G \mid qT'q^{-1} \subset T \}$$

and define

$$\phi: N_G(T', T) \to \Sigma(G/H)$$

by  $\phi(g) = gH$ . To see that  $\phi$  is well defined note that the *T*-isotropy subgroup of gH is  $T \cap gHg^{-1}$ . Then  $g \in N_G(T', T)$  implies that  $gT'g^{-1} \subset T \cap gHg^{-1}$  and therefore dim  $(T/T \cap gHg^{-1}) = 1$ .

Since  $\phi$  is T-equivariant we have

$$\psi = T \backslash \phi \colon T \backslash N_G(T', T) \to T \backslash \Sigma(G/H).$$

Now  $U(H) = N_H(T')/T'$  acts on the right of  $T \setminus N_G(T', T)$  by

$$(Tg)(hT') = Tgh.$$

This action is well defined since hT' = T'h and  $gT' \subset Tg$ .

(4.6)  $\psi$  is U(H)-invariant and induces a homeomorphism

$$T \setminus N_G(T', T)/U(H) \to T \setminus \Sigma(G/H)$$

To prove (4.6) we first show that

$$\phi: N_G(T', T) \to \Sigma(G/H)$$

is onto. If  $gH \in \Sigma(G/H)$  its isotropy subgroup  $T \cap gHg^{-1}$  has maximal rank in  $gHg^{-1}$ . Hence  $g^{-1}Tg \cap H$  has maximal rank in H. Let  $T'' \subset g^{-1}Tg \cap H$  be a maximal torus of the identity component  $H_0$  of H and let  $h \in H_0$  be such that  $hT'h^{-1} = T''$ . Then  $hT'h^{-1} \subset g^{-1}Tg$  and we have  $ghT'h^{-1}g^{-1} \subset T$ . Therefore  $gh \in N_G(T', T)$  and  $\phi(gh) = gH$ .

It follows that the orbit map

$$\psi: T \backslash N_G(T', T) \to T \backslash \Sigma(G/H)$$

is onto. Obviously  $\psi$  is U(H)-invariant so it remains to show that if  $\psi(Tg) = \psi(T\bar{g})$  there is  $h \in N_H(T')$  such that  $Tg = T\bar{g}h$ . Since  $\psi(Tg) = \psi(T\bar{g})$  we have  $Tgh = T\bar{g}H$ , hence there is  $h \in H$  such that  $Tg = T\bar{g}h$ . We will show that  $h \in N_H(T')$ .  $h = g^{-1}sg$  for some  $s \in T$  so

$$h^{-1}T'h = \bar{g}^{-1}s^{-1}\bar{g}T'\bar{g}^{-1}sg \subset g^{-1}T'g,$$

since  $\bar{g}T'\bar{g}^{-1} \subset T$ . Hence

$$h^{-1}T'h \subset g^{-1}Tg \cap H_0$$
.

Now  $g^{-1}Tg \cap H_0 = T'$  since  $gT'g^{-1} \subset T$  implies that  $T' \subset g^{-1}Tg \cap H_0$ . This completes the proof of (4.6).

By (4.2) and (4.6) we have

(4.7) 
$$\chi_1(G/H, \Delta_t) \equiv E(T \setminus N_G(T', T)/U(H)) \mod 2.$$

In order to compute this Euler characteristic we first determine the U(H)-isotropy subgroups of  $T \setminus N_G(T', T)$ .

(4.8) The U(H)-isotropy subgroup of Tg is  $g^{-1}Tg \cap H/T'$ .

Suppose Tgh = Tg. Then  $h \in g^{-1}Tg$  and therefore  $h \in g^{-1}Tg \cap H$ . Conversely, if  $h \in g^{-1}Tg \cap H$  then Tgh = Tg. Write  $h = g^{-1}sg$ ,  $s \in T$ . Then, since  $gTg^{-1} \subset T$ ,

$$hT'h^{-1} = g^{-1}sgT'g^{-1}s^{-1}g = g^{-1}Tg$$

and therefore  $hT'h^{-1} \subset g^{-1}Tg \cap H_0 = T'$ . So  $h \in N_H(T')$ .

Let  $I(H) = C_H(T')/T'$ . Then I(H) is a finite subgroup of  $I_G(H) = C_G(T')/T'$ . From (4.8) the U(H)-isotropy subgroups of  $T \setminus N_G(T', T)$  are precisely the subgroups of I(H) of the form  $T'' \cap H/T'$  where T'' is a maximal torus of G such that  $T' \subset T''$ . Note that  $T'' \cap H/T'$  is cyclic since it is a subgroup of T''/T'. It is easy to see that the situation may be rephrased as follows.

(4.9) The U(H)-isotropy subgroups of  $T \setminus N_G(T', T)$  are the cyclic subgroups of I(H) having the form  $S \cap I(H)$  where S is a maximal torus (circle) of  $I_G(H)$ . (4.10) If A is a U(H)-isotropy subgroup then E(Fix(A)) = |W(G)|.

Let  $A = T'' \cap H/T'$  as above. Then  $T'' \cap H$  is an abelian extension of the torus T' by the cyclic group and therefore A is topologically cyclic [1, P.80]. Let s be a generator of  $T'' \cap H$ . We will now apply a standard argument. For  $x \in G$  define  $\theta_x \colon T \backslash G \to T \backslash G$  by  $\theta_x(Tg) = Tgx$ . In particular for  $\theta_s \colon T \backslash G \to T \backslash G$  we see that

Fix 
$$(\theta_s) \subset T \setminus N_G(T', T)$$
 and Fix  $(\theta_s) = \text{Fix } (A)$ .

Since  $\theta_s$  is an isometry relative to a G-invariant metric, the Lefschetz number  $\Lambda(\theta_s)$  of  $\theta_s$  is equal to  $E(\text{Fix }(\theta_s))$ . We now have

$$E(\operatorname{Fix}(A)) = E(\operatorname{Fix}(\theta_s)) = \Lambda(\theta_s) = \Lambda(\theta_e) = E(T \setminus G) = |W(G)|,$$

where  $e \in G$  is the identity. This proves (4.10).

(4.11) Let A be a U(H)-isotropy subgroup and  $h \in N_H(T')$ . If  $A \neq hAh^{-1}$  then Fix  $(A) \cap \text{Fix } (hAh^{-1}) = \Phi$ .

Suppose  $x \in \text{Fix } (A) \cap \text{Fix } (hAh^{-1})$ . If B is the isotropy subgroup of x then  $A \subset B$  and  $hAh^{-1} \subset B$ . Since B is cyclic,  $A = hAh^{-1}$ .

To cut down on notation write  $Z = T \setminus N_G(T', T)$ . Let  $Z_A$  denote the set of points having isotropy subgroup A and, as before, let  $Z_{(A)}$  denote the set of points having isotropy subgroup a conjugate of A. Now

$$E(Z/U(H)) = \sum \frac{|A|}{|U(H)|} E(\mathring{Z}_{(A)}, \infty)$$

and from (4.11),  $\mathring{Z}_{(A)} = \bigvee \mathring{Z}_{A'}, A' \in (A)$ . Therefore

(4.12) 
$$\chi_1(G/H, \Delta_t) = E(Z/U(H)) = \frac{1}{|U(H)|} \sum |A| E(\mathring{Z}_A, \infty),$$

the sum taken over subgroups  $A \subset I(H)$  of the form  $S \cap I(H)$ , S a circle of  $I_G(H)$ .

To compute this sum we consider the three possibilities for  $I_G(H)$  separately.

Case 1.  $I_G(H) = S^1$ . Then the only subgroup of I(H) that meets the requirement is I(H) itself. We then have  $E(\mathring{Z}_{I(H)}, \infty) = E(Fix(I(H))) = |W(G)|$ , and

$$\chi_1(G/H, \Delta_t) = \frac{1}{\mid U(H) \mid} \mid I(H) \mid \mid W(G) \mid = \frac{\mid W(G) \mid}{\mid W(H) \mid}.$$

- Case 2.  $I_G(H) = SO(3)$ . Then I(H) is a finite group of rotations of  $R^3$ . Since each rotation fixes a line and a rotation that fixes two distinct lines is the identity, we easily deduce:
- (a) A subgroup of I(H) of the form  $I(H) \cap S$ , S a circle of SO(3), is either maximal cyclic or the trivial subgroup  $\{1\}$ .
  - (b) If A and A' are distinct maximal cyclic subgroups then  $A \cap A' = \{1\}$ .

Now let  $A_1, \ldots, A_n$  denote the maximal cyclic subgroups of I(H). Then

$$E(\mathring{Z}_{A_i}, \infty) = E(\operatorname{Fix}(A_i)) = |W(G)|$$

and

$$E(\mathring{Z}_{\{1\}}, \infty) = E(\operatorname{Fix} (\{1\}) / \bigcup_{1}^{m} \operatorname{Fix} (A_{i}))$$

$$= E(\operatorname{Fix} (\{1\})) - \sum_{1}^{m} E(\operatorname{Fix} (A_{i}))$$

$$= |W(G)| (1 - n).$$

Hence

$$\chi_1(G/H, \Delta_t) = \frac{|W(G)|}{|U(H)|} \left[ \left( \sum_{i=1}^n |A_i| \right) + (1-n) \right].$$

Since each element of I(H) lies in some  $A_i$  and  $A_i \cap A_j = \{1\}, i \neq j$ ,

$$\sum_{i=1}^{n} |A_{i}| = |I(H)| + (n-1).$$

Therefore

$$\chi_1(G/H, \Delta_t) = \frac{|W(G)|}{|U(H)|} |I(H)| = \frac{|W(G)|}{|W(H)|}.$$

Case 3.  $I_G(H) = S^3$ . Using the double cover  $\pi: S^3 \to SO(3)$  we deduce that I(H) is either cyclic of odd order or  $I(H) = \pi^{-1}(\Gamma)$  where  $\Gamma \subset SO(3)$  [8; P.88]. If I(H) is cyclic of odd order the subgroups of the form  $S \cap I(H)$ , S a circle of  $S^3$ , are I(H) and  $\{1\}$ . Then

$$E(\mathring{Z}_{I(H)}, \infty) = E(\operatorname{Fix}(I(H))) = |W(G)|$$

and

$$E(\mathring{Z}_{\{1\}}, D) = E(\text{Fix } (\{1\})) - E(\text{Fix } (I(H)) = 0.$$

It follows that  $\chi_1(G/H, \Delta_t) = |W(G)|/|W(H)|$ .

In the case where  $I(H) = \pi^{-1}(\Gamma)$ ,  $\Gamma \subset SO(3)$ , we see that:

- (a) A subgroup of I(H) of the form  $I(H) \cap S$ , S a circle of  $S^3$ , is either maximal cyclic or the subgroup  $\{+1, -1\}$ .
- (b) If A and A' are distinct maximal cyclic subgroups then  $A \cap A' = \{+1, -1\}$ .

The calculation of the right hand side of (4.12) now proceeds as in the SO(3) case so we will omit the details. Once again we obtain  $\chi_1(G/H, \Delta_t) = |W(G)|/|W(H)|$ .

To complete the proof of Theorem (4.1) we will show that |W(G)|/|W(H)| is even if  $I_G(H)$  is SO(3) or  $S^3$ . We have a fiber bundle

$$C_G(T')/T \to G/T \to G/C_G(T').$$

Let S=T/T'. Then  $C_G(T')/T=I_G(H)/S$  so that  $E(C_G(T')/T)=I_G(H)/S$  so that  $E(C_G(T')/T)=I_G(H)/S$ 

$$W(G) = 2E(G/C_G(T')),$$

and to show that |W(G)|/|W(H)| is even we will show that |W(H)| divides  $E(G/C_G(T'))$ . Now  $W(H) = N_H(T')/C_H(T')$  may be regarded as a subgroup of  $N_G(T')/C_G(T')$  so that

(a) |W(H)| divides  $E(N_G(T')/C_G(T'))$ .

We have a covering

$$N_G(T')/C_G(T') \rightarrow G/C_G(T') \rightarrow G/N_G(T')$$

so that

(b)  $E(N_G(T')/C_G(T'))$  divides  $E(G/C_G(T'))$ .

From (a) and (b), |W(H)| divides  $E(G/C_G(T'))$ .

#### 5. The semi-characteristic

The previous Theorem (4.1) together with (2.4) leads to the following result concerning the real semi-characteristic of a homogeneous space.

(5.1) COROLLARY. Let G/H be a connected orientable homogeneous space of dimension 4s + 1. Then, as integers mod 2,

$$k(G/H) = \begin{cases} |W(G)|/|W(H)|, & \text{rank } (H) = \text{rank } (G) - 1, \\ 0, & \text{rank } (H) < \text{rank } (G) - 1. \end{cases}$$

Moreover, if  $I_G(H)$  is SO(3) or  $S^3$  then  $|W(G)|/|W(H)| \equiv 0 \mod 2$ , hence k(G/H) = 0.

If dim (G/H) = 4s - 1 then Theorems (4.1) and (2.4) imply that  $|W(G)|/|W(H)| \equiv 0 \mod 2$  when G/H is orientable and rank (H) = rank (G) - 1. However if G/H is not orientable this is not necessarily the case. Consider the space  $U_n/S_{n-1} \int T^{n-1}$  where  $S_{n-1} \int T^{n-1}$  is the wreath product of the symmetric group  $S_{n-1}$  with the (n-1)-torus  $T^{n-1}$  embedded in the usual way. We have

$$|W(U_n)|/|W(S_{n-1}\int T^{n-1})|=n$$

and

dim 
$$\left(U_n/S_{n-1} \int T^{n-1}\right) = n^2 - n + 1.$$

Thus when n - 1 = 2 (odd) we see that

$$\dim\left(U_n/S_{n-1}\int T^{n-1}\right)\equiv -1 \bmod 4$$

and

$$|W(U_n)|/|W(S_{n-1}\int T^{n-1})| \equiv 1 \mod 2.$$

As an example of a class of homogeneous spaces having non-zero semi-characteristic consider the spaces  $U_n/U_s \times U_{n-s-1}$ . We have

$$|W(U_n)|/|W(U_s \times U_{n-s-1})| = \frac{n!}{s!(n-s-1)!} = m\binom{n-1}{s}$$

Write  $n-1=\sum \alpha_i 2^i$  and  $s=\sum \beta_i 2^i$ ,  $0 \le \alpha_i$ ,  $\beta_i \le 1$ . Using the well known rule for computing binomial coefficients mod 2 (cf. [6, P.5]) we see that  $k(U_n/U_s \times U_{n-s-1})=1$  if (a) n is odd and (b)  $\beta_i \ne 0$  implies  $\alpha_i \ne 0$ , for all i.

From Theorems (4.1) and (3.1) we obtain under certain conditions a formula relating the semi-characteristic of a *G*-manifold to its orbit structure, which is similar to the well known formula for the Euler characteristic of a *G*-manifold.

(5.2) COROLLARY. Let M be an orientable G-manifold of dimension 4s + 1 having no isotropy subgroups of maximal rank. Then, as integers mod 2,

$$k(M) = \sum E(G \backslash \mathring{M}_{(H)}, \infty) |W(G)| / |W(H)|,$$

the sum taken over all conjugacy classes of isotropy subgroups H such that rank (H) = rank (G) - 1.

### REFERENCES

- 1. J. F. Adams, Lectures on Lie groups, W. A. Benjamin, New York, 1969.
- 2. M. F. ATIYAH and J. L. DUPONT, Vector fields with finite singularities, Acta Math., vol. 128 (1971), pp. 1-40.
- 3. J. C. BECKER and R. E. SCHULTZ, Fixed point indices and left invariant framings, Lecture Notes in Math. vol. 657, Springer, New York, 1978, pp. 1-31.
- 4. H. HOPF and H. SAMELSON, Ein Satz über die Winkungsräume geschlossener Lie'scher Gruppen, Comment Math. Helv., vol. 13 (1940), pp. 240-251.
- 5. E. Y. MILLER, Letter to the author, 1974.
- 6. N. E. STEENROD, Cohomology operations, Princeton Univ. Press, Princeton, N. J., 1962.
- 7. A. G. WASSERMAN, Equivariant differential topology, Topology, vol. 8 (1969), pp. 127-150.
- 8. J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.

PURDUE UNIVERSITY

WEST LAFAYETTE, INDIANA