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THE REAL SEMI-CHARACTERISTIC
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BY

J. C. BECKER

1. Introduction

The real Kervaire semi-characteristic of a closed orientable manifold of
dimension 4s + 1 is defined to be

k(M) E dim (HZi(M, R)) mod 2.

The main purpose of this paper is to give a formula for the semi-characteristic
of a homogeneous space G/H along the lines of Hopf and Samelson’s formula
for the Euler characteristic [4].

Recall that the Weyl group of a compact Lie group G (not necessarily con-
nected) is W(G)= NG(T)/C c,( T), where NG(T)and C(T)are respectively the
normalizer and centralizer of a maximal torus T of the identity component of
G. Hopf and Samelson’s theorem states that the Euler characteristic of a con-
nected homogeneous space G/H is given by

E(G/H) W(G)I/[ W(H)[, rank (H) rank (G),
0, rank (H)< rank (G).

For a connected orientable homogeneous space G/H of dimension 4s + 1 we
will show that

w(G)I/I W(H), rank (H) rank (G) 1,
k(G/H)

0, rank (H)< rank (G)- 1,

as integers mod 2 (see Corollary (5.1)).
The similarity in the statement of these two results is also present in their

method of proof which in each case involves analyzing vector fields on G/H.
The Euler characteristic arises as an obstruction to finding a non-zero vector
field on G/H, whereas Atiyah and Dupont [2] have shown that the semi-
characteristic arises as an obstruction to extending a non-zero vector field to a
field of 2-frames on G/H.
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2. The characteristic of a k-field

It is well known that a compact smooth manifold M has an associated
"Gauss map" whose degree is the Euler characteristic of M. To be precise,
choose an embedding c" M R with normal bundle v. Let z denote the tan-
gent bundle of M and ]f/the boundary of M. The restriction of the inclusion i"
M ---, Mv to _A)F is null homotopic by vx tNx O) v, 0 < <_ oo, where N is
the outward normal vector field on /f/. Applying the homotopy extension
property we have " (M, .A)/) M. Then the degree of the map

S (M,/f/)v
_
M. S

is the Euler characteristic of M.
There is an interesting generalization of this construction due to E. Y. Miller

[5]. Suppose that A t, Ak are linearly independent vector fields on M which
are also tangent on ]f/. Let A. M Rk --, r denote the associated injection. The
restriction of A 1" MR* --, M* to ]f/R, is again canonically null homoto-
pic so we obtain

A (R) 1" (M, h/)g* - M.The map
AC#

s ,, s s (i, (i,

defines an element

(2.1) zk(M, A1,..., mk) 7Ek(S)
It depends only on the homotopy class of the k-field {At, Ak} and its
vanishing is a necessary condition that there exist a vector ficld N on M which
extends the outward normal N on h;/and such that At,..., Ak, / are linearly
independent. Of course Zo(M) s0(S) Z is the Euler characteristic E(M).
We list now some of the properties of this element. In what follows, by a

k-field on M (always assumed compact) we will mean k linearly independent
vector fields on M which are also tangent on /.

(2.2) Multiplicativity. Suppose that At,...,Apisap-fieldon M andft, ...,6q
is a q-field on N. Define A) on M x N, < j < p, by A’j(x, y) iv.Ajax), where iv:
M M x N is the inclusion x (x, y), and define fi’i, 1 < j < q, similarly. Then
A’, Ap, fit,..., fiq is a (p + q)-field on M x N and

Zp+q(m x N, A’, Ap, 5, 3’q)= zp(M, At, Ap)zq(N, fit,

(M x N has the product smooth structure which involves straightening the
angle along/f/ x/ if both/f/and/ are non empty.)
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Suppose now that M M w M2 where M and M2 are topological n-
submanifolds of the smooth n-manifold M such that M M2 --/r
/r __M12 say, and M12 is a smooth submanifold with boundary
]r12 Mx 2 (-3 ]. Then M and ME inherit a smooth structure from M by
straightening the angle along h)/ 2. If A is a 1-field on M with the additional
property that A2 A M2 is tangent on M2, it is easy to check that A
induces a 1-field A on M, j 1, 2, uniquely determined by the condition that
AJIM- M12 AIM M12.

(2.3) Excision. Suppose that A, Ak is a k-field on M such that
A] 2 AIMx2 is tangent on M2, 1 < <_ k. Then A, A{ is a k-field on Mj,
j 1, 2, and

;tk(M, A,..., Ak)

The proofs of (2.2)and (2.3)are routine and will be omitted.

(2.4) THEOREM. Let M be closed, orientable, and odd dimensional. Let A be a

i-field on M. Then z(M, A) (S) Z is independent of A and is #iven by

z,(M,A)=Ik(M)’ dim(M)= 1 moO 4,
0 dim (M)_= 3 mod 4,

where k(M) is the real Kervaire semi-characteristic of M.

This is implicit in the work of Atiyah and Dupont [2]. It is simply a matter of
relating ;t(M, A) with the index defined there. Since the Hurewicz map

z, (S) (S’) KO(S’)
is an isomorphism we can work with the image of z,(M, A)in KO(S’)which
we again denote by z(M, A). Now Atiyah and Dupont define an element

Ind a,2 KO(P+,/n-,),
where 0 < s < 3 and dim (M) + s =- 0 (4). We have an exact sequence

j*

K’-(S’) "(P+ ,/P) - K’(P+ ,/P_ ,) - K’-(P/P_ ,) Z,

and, on comparing definitions, it can be shown that j*(z(M, A))= Ind e,2.
From the calculation of K’-Os(Vs+ /Ps_ 1) given in [2, Section 3] we see thatj* is
injective and therefore Zl (M, A) is independent of A. The main theorem of [2]
then gives the stated value for ZI(M, A).
Suppose now that p: E B is a vector bundle over a closed manifold B. Let

D(E) and S(E) denote the unit disk and sphere bundles (relative to some
metric).
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(2.5) LEMMA. Suppose that 6, 6k is a k-field on D(E) and A, Ak is a

k-field on B such that p. Aip, 1 <_ < k. Then h(D(E), , )- z(B,
A, A).

Proof. There is the natural inclusion p*(E) z(D(E))and we have

z(D(E)) - p*(z(B)) ( p*(E).

Write 5,(e)= 5(e) 5(e), where 5(e) p*(’c(B)) and 57(e) p*(E). Since 5, is
homotopic to di and 5(e)= (e, Ap(e)), we may assume that 5,(e)= (e, Ap(e)),
l<i<k.

Let s: B D(E) denote the zero section and observe that if 0 is any vector
bundle over B the following is homotopy commutative:

s( V

A(

BRk(R)E(R)O Br(B) (R)EO)O

In fact we may take

1
s(h@ 1)S(Vb, X, Wb)--(OU, A(b, x),

1 I’Ve’ v,

Vb D(E), x Rk, Wb O. And since the outward normal on S(E) is given by
Vb (Vb, Vb) p*(E), we may take

5( I(vb, X, Wb)-- (Vb, A(b, x),
1-- I’Vb’ Vb, Wb).

It is clear now that 6 (R) 1
_

s(A (R) 1)s.
Now choose an embedding c" E ---, R with normal bundle v’. Let

c=c’s’BR and v=s*(v’).

Then v’= p*(v) and by the remarks above,

A’#

S+ (D(E), S(E))

A(I

S

B

is homotopy commutative. The lemma follows.
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3. G-manifolds

We shall eventually be dealing with both left and right G-spaces so we will
adopt the standard notation for the orbit space: GIX if X is a left G-space and
X/G if X is a right G-space.

Suppose that M is a smooth G-manifold having no isotropy subgroup of
maximal rank. Let T be a maximal torus of G. A choice of a generator of T
determines a /-field At on M as follows: defines a 1-parameter subgroup
R T and we have zo(R) Z l(T). Let v r l( T) denote the image of the canon-
ical generator of to(R)and define At(x)= o,,(v), where oox: T M is the
evaluation map s sx, s T.

If H is a subgroup of G let (H) denote its conjugacy class, let M(m denote the
set of points of M having isotropy subgroup in (H) and let )V/(m denote the
one-point compactification of Me/).

(3.1) THEOREM.
rank then

IfM is a G-manifold having no isotropy subgroup ofmaximal

zI(M, At)= E(G\II{m, )zI(G/H,

the sum taken over all conjugacy classes of isotropy subgroups of M.

Proof (Cf. [3, Theorem (4.2)].) We proceed by induction on the dimension
ofM and on the number of handles in an equivariant handle decomposition of
M as in [7]. The theorem holds vacuously for 0-dimensional manifolds.

Consider first the case of the unit disk bundle D(V)of a Riemannian G-
vector bundle V over an orbit G/H with rank (H) < rank (G). By Lemma (2.5),

(3.2) zI(D(V), At)= ZI(G/H, At).

If K is an isotropy subgroup of D(V) then some conjugate of K lies in H.
Consider the case (K) (H). Then V,, is a subbundle W of V, hence D(V)tm
D(W). Since p" D(W)G/H is a G-homotopy equivalence, E(G\D(W),
o)- E(G\D(W))-- 1.

If K is a proper subgroup of H then

D(V)(u,) S(V)(:) [0, 1)

since v D(V)(u,) implies that 2v D(V)(u), 4: O. Therefore

G\D(V)(u, G\S(V)(u,, x [0, 1)

and it follows that E(G\/(I/)(K))- 0. Therefore

(3.3) E(G\)(V)(K), )zI(G/K, At)= ;tl(G/H, At)

The result for D(V)now follows from (3.2)and (3.3).
Suppose now that M is obtained from N by attaching a G-handle; M N
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t where D(V) G/H D(W), V and W Riemannian G-vector bundles
over an orbit G/H. By (2.3),

We may assume by induction on the number of handles that the result holds
for N and by induction on dimension that the result holds for N c W. Since
W- D(V O)W)is a smooth manifold we have from above that the theorem
holds for 3. It is now easy to check that the theorem also holds for M.
Given an action of a torus T on M, define the circle point set of M to be

(3.4) Z(M) {x e Mldim (T/Tx)= 1}.

(3.5) COROLLARY. If T acts on M without fixed points then

;(,(M, A,)-= E(T\Z(M)) mod 2.

Proof. First observe that

1, dim (T) 1,
;t,(r,A,)=

0, dim(T)>l.
If T’ is a subgroup of T let t’ TIT’ denote the image of t. Since TIT’ is again a
torus

z,(T/T’, A,)= ;(,(T/T’, A,,)=
0,

Hence we have

dim (T/T’) 1,
dim (T/Y) > 1.

z,(M, A,)= E E(T\II(.,), oo) mod 2

where the sum is taken over all isotropy subgroups T’ such that
dim (T/T’)= 1. It is easy to see that this sum is equal to E(TIE(M)).

4. Homogeneous spaces

In this section we evaluate ;t 1(G/H, At). We assume that G is connected but H
need not be connected.

If rank (H)= rank (G)- 1 let IG(H)= CG(T’)/T’ where T’ is a maximal
torus of the identity component of H. Since I(H) is a connected compact Lie
group of rank 1 it is either S 1, SO(3), or S3.

(4.1) THEOREM. If rank (H)< rank (G)- 1,

Z,(G/H, A,)= 0.

/frank (H)= rank (G)- 1,

A,)= W(G)I/I W(H)I mod 2.
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Moreover, if I(U) is SO(3) or S3 then W(G) / W(H) 0 mod 2, hence

z,(G/H, A,)= 0.

Proof. Fix a maximal torus T’ of the identity component of H and a maxi-
mal torus T of G such that T’ c T. By Corollary (3.5),
(4.2) zx(G/H, A,) E(T\E(G/H)) mod 2,

where E(G/H) is the circle point set of G/H relative to the left action of T. If
rank (n) < rank (G) 1, the circle point set is empty and we are done. Assume
then, from now on, that rank (n)= rank (G) 1. Let

(4.3) N(T’, T)= {g e G gT’g T}
and define

(4.4) " No(T’, T) E(G/H)
by tk(g) gH. To see that b is well defined note that the T-isotropy subgroup
of gH is T c gHg-1. Then g No(T’, T) implies that gT’g-1 T c gHg-1
and therefore dim (T/T c gHg-1) 1.

Since b is T-equivariant we have

(4.5) 0 T\O" T\Na(T’, T) T\E(G/H).
Now U(H)= Nn(T’)/T’ acts on the right of T\Na(T’, T) by

(Tg)(hT’) Tgh.

This action is well defined since hT’= T’h and gT’ Tg.
(4.6) is U(H)-invariant and induces a homeomorphism

T\No(T’, T)/U(H) T\Z(G/H)
To prove (4.6) we first show that

0" N(;(T’, T) F(G/H)
is onto. If gH E(G/H) its isotropy subgroup T c gHg- has maximal rank in
gHg- 1. Hence g- 1Tg H has maximal rank in H. Let T" g- 1Tg H be a
maximal torus of the identity component Ho of H and let h e Ho be such that
hT’h- T’. Then hT’h- g- 1Tg and we have ghT’h- g- T. Therefore
gh NG(T’ T) and (gh)= gH.

It follows that the orbit map

O" T\N(T’, T) T\E(G/H)
is onto. Obviously is U(H)-invariant so it remains to show that if (Tg)=
(TO) there is h NH(T’) such that Tg TOh. Since /(Tg)= (T)we have
Tgh TOH, hence there is h H such that Tg TOh. We will show that
h Nn(T’). h g-lsg for some s a T so

h- 1T’h - is- IT’- lsg g- 1T’g,
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since 0T’0-1 T. Hence

h-lT’h g-lTg c Ho.
Now g- 1Tg Ho T’ since gT’g- T implies that T’ 9-1Tg c Ho. This
completes the proof of (4.6).
By (4.2)and (4.6)we have

(4.7) zI(G/H, A,)= E(T\N(T’, T)/U(H)) mod 2.

In order to compute this Euler characteristic we first determine the U(H)-
isotropy subgroups of T\N(T’, T).

(4.8) The U(H)-isotropy subgroup of T9 is 9-1T9 H/T’.

Suppose Tgh Tg. Then h e 9-1Tg and therefore h g-lT9 c H. Con-
versely, if h 9-1 T9 H then Tgh Tg. Write h 9- sg, s e T. Then, since
gT’g- c T,

hT’h- 9- lsgT’g- Is- g g- 1Tg

and therefore hT’h-1 9-1T9 c Ho T’. So h Nn(T’).
Let I(H)-- Ct(T’)/T’. Then I(H)is a finite subgroup of Ic,(H)= C(T’)/T’.

From (4.8) the U(H)-isotropy subgroups of T\Na(T’, T)are precisely the sub-
groups of I(H) of the form T" c H/T’ where T" is a maximal torus of G such
that T’ T". Note that T" HIT’ is cyclic since it is a subgroup of T"/T’. It is
easy to see that the situation may be rephrased as follows.

(4.9) The U(H)-isotropy subgroups of T\Na(T’, T)are the cyclic subgroups
of I(H) having the form S I(H) where S is a maximal torus (circle)of I6(H).

(4.10) If A is a U(H)-isotropy subgroup then E(Fix (A))=
Let A T" c H/T’ as above. Then T" c H is an abelian extension of the

torus T’ by the cyclic group and therefore A is topologically cyclic [1, P.80].
Let s be a generator of T" c H. We will now apply a standard argument.
For x G define Ox: T\G--, T\G by Ox(Tg)= Tgx. In particular for 0s:
T\G T\G we see that

Fix (0s)c T\Na(T’, T) and Fix (Os)= Fix (A).
Since 0s is an isometry relative to a G-invariant metric, the Lefschetz number
A(0s) of 0 is equal to E(Fix (0)). We now have

E(Vix (A))= E(Fix (0))= A(0)= A(0)= E(TIG
where e G is the identity. This proves (4.10).

(4.11) Let A be a u(n)-isotropy subgroup and h Nn(T’). If A # hAh-1

then Fix (A) Fix (hAh-1) .
Suppose x Fix (A) c Fix (hAh-1). If B is the isotropy subgroup of x then

A c B and hAh-1 B. Since B is cyclic, A hAh-
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To cut down on notation write Z T\N(T’, T). Let ZA denote the set of
points having isotropy subgroup A and, as before, let ZtA)denote the set of
points having isotropy subgroup a conjugate of A. Now

IAIE(ZIU(H))=E U(H)I

and from (4.11), 2(a)= V 2A,, A’ e (A). Therefore

1
(4.12) z,(G/H, a,) E(Z/U(H)) U(H)I Z AIE(2, ),

the sum taken over subgroups A I(H) of theform S c I(H), S a circle ofl(H).

To compute this sum we consider the three possibilities for la(H) separately.

Case 1. I(H) S. Then the only subgroup of I(H) that meets the require-
ment is I(H)itself. We then have E(2,(,,, )= E(Fix (I(H)))= W(G)I, and

1 Iw()lz(//-/, A,)= U(H)I II(H)I W()I IW(/-/)I"
Case 2. I(H) SO(3). Then I(H)is a finite group of rotations ofR3. Since

each rotation fixes a line and a rotation that fixes two distinct lines is the
identity, we easily deduce:

(a) A subgroup of I(H) of the form I(H) S, S a circle of SO(3), is either
maximal cyclic or the trivial subgroup {1}.

(b) If A and A’ are distinct maximal cyclic subgroups then A A’- {1}.
Now let At,..., A. denote the maximal cyclic subgroups of I(H). Then

E(2A,, ) E(Fix (A,))
and

Hence

E(21a,, )= E(Fix ({1})/U Fix (A,))

E(Vix ({1}))- E(Fix (A,))

w()l( ,).

zx(G/H, A,) W(G)I
Iu(H)l (L1 IA, I)+ (1-n)
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Since each element of I(H)lies in some h and A, m Aj {1}, i@ j,

lA,l-ll(n)}+(n-1).

Therefore

X,(G/H, zX,) IW(G)I I (n)l IW(G)I
U(H)I IW(H)I"

Case 3. I,(H) S3. Using the double cover rt: S3 SO(3) we deduce that
I(H) is either cyclic of odd order or 1(/4) -’(r)where F SO(3)[8; P.88].

If I(H) is cyclic of odd order the subgroups of the form S m I(H), S a circle of
S3, are I(H)and {1}. Then

E(,,m, )= E(Vix (I(n))) w(a)l
and

E(2,,, D)= E(Vix ({1}))- E(Fix (I(U))= O.

It follows that z(G/H, A,) W(G)[/[ W(H)[.
In the case where I(H)= -(F), F S0(3), we see that:

(a) A subgroup of I(H) of the form I(H) S, S a circle of S3, is either
maximal cyclic or the subgroup + 1, -1}.

(b) If A and A’ are distinct maximal cyclic subgroups then
A A’={+I, -1}.
The calculation of the right hand side of (4.12)now proceeds as in the SO(3)

case so we will omit the details. Once again we obtain z x(G/H,
w(a) l/I

To complete the proof of Theorem (4.1) we will show that [W(G)[/[W(H)I
is even if I(S)is SO(3) or S. We have a fiber bundle

C(T’)/T G/T G/C(T’).
Let S=T/T’. Then C(T’)/T=I(H)/S so that E(C(T’)/T)=
IW(I(H) 2. Thus

W(G) 2E(G/C(T’)),
and to show that ]W(G)I/IW(H)I is even we will show that W(H)I divides
E(G/C(T’)). Now W(H)= Nn(T’)/Cn(T’)may be regarded as a subgroup of
N(T’)/C(T’) so that

(a) W(H)[divides E(N(T’)/C(T’)).
We have a covering

N(T’)/C(T’} G/C(T’) G/N(T’)
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so that

(b) E(N(T’)/C.(T’)) divides E(G/C(T’)).
From (a)and (b), W(H)[ divides E(G/C(T’)).

5. The semi-characteristic

The previous Theorem (4.1) together with (2.4)leads to the following result
concerning the real semi-characteristic of a homogeneous space.

(5.1) COROLLARY. Let G/H be a connected orientable homogeneous space of
dimension 4s + 1. Then, as integers mod 2,

w( )l/Ik(G/H)
0

rank (H)= rank (G)- 1,
rank (H)< rank (G)- 1.

Moreover, if I6(H) is SO(3) or S3 then W(G)I/I W(H)I _=0 mod 2, hence
k(G/H)=O.

If dim (G/U)---4s-1 then Theorems (4.1) and (2.4)imply that
W(G)[/[ W(H)[ _= 0 mod 2 when G/H is orientable and

rank (H)= rank (G)-1. However if G/H is not orientable this is not
necessarily the case. Consider the space U./S,_ T"-1 where S,_ T"-1 is
the wreath product of the symmetric group S,_ with the (n- 1)-torus 7-"-1
embedded in the usual way. We have

and
Iw(u,)l/

( )dim U,/S,_ Tn-1 nz n + 1.

Thus when n 1 2 (odd) we see that

and
( )dim U,,/S,_ Tn- 1 mod 4

w(u.)l/I W(Sn-1 j" T"-I)} =lmod 2.

As an example of a class of homogeneous spaces having non-zero
semi-characteristic consider the spaces U./U U,,__ 1. We have

w(g.)l/I w(gs go_ _ 1)1 s’ (n s 1)’
m

Write n 1 ai2 and s fli2i, 0 _< ai, fli _< 1. Using the well known rule
for computing binomial coefficients mod 2 (cf. [6, P.5]) we see that
k(U,,/U U,-s-1)= 1 if (a) n is odd and (b) fl, 4:0 implies a, 4: O, for all i.
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From Theorems (4.1) and (3.1) we obtain under certain conditions a formula
relating the semi-characteristic of a G-manifold to its orbit structure, which is
similar to the well known formula for the Euler characteristic of a G-manifold.

(5.2) COROLLARY. Let M be an orientable G-manifold of dimension 4s + 1
havin9 no isotropy subgroups of maximal rank. Then, as integers mod 2,

k(M) E(G\II(n,, )1 W(G)l/I w(n)l,
the sum taken over all conjugacy classes of isotropy suboroups H such that
rank (H)= rank (G)- 1.
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