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BY
J. C. BECKER!

1. Introduction

The real Kervaire semi-characteristic of a closed orientable manifold of
dimension 4s + 1 is defined to be

k(M) =3 dim (H*(M, R)) mod 2.

The main purpose of this paper is to give a formula for the semi-characteristic
of a homogeneous space G/H along the lines of Hopf and Samelson’s formula
for the Euler characteristic [4].

Recall that the Weyl group of a compact Lie group G (not necessarily con-
nected) is W(G) = N4(T)/C4(T), where N4(T) and C4(T) are respectively the
normalizer and centralizer of a maximal torus T of the identity component of
G. Hopf and Samelson’s theorem states that the Euler characteristic of a con-
nected homogeneous space G/H is given by

| W(G)|/|W(H)|, rank (H)=rank (G),
0, rank (H) < rank (G).

For a connected orientable homogeneous space G/H of dimension 4s + 1 we
will show that

E(G/H) =

| W(G)|/|W(H), rank (H)=rank (G)— 1,
0, rank (H) < rank (G) — 1,

as integers mod 2 (see Corollary (5.1)).

The similarity in the statement of these two results is also present in their
method of proof which in each case involves analyzing vector fields on G/H.
The Euler characteristic arises as an obstruction to finding a non-zero vector
field on G/H, whereas Atiyah and Dupont [2] have shown that the semi-
characteristic arises as an obstruction to extending a non-zero vector field to a
field of 2-frames on G/H.

k(G/H) = {
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2. The characteristic of a k-field

It is well known that a compact smooth manifold M has an associated
“Gauss map” whose degree is the Euler characteristic of M. To be precise,
choose an embedding ¢: M — R® with normal bundle v. Let © denote the tan-
gent bundle of M and M the boundary of M. The restriction of the inclusion i:
M — M*®* to M" is null homotopic by v, - tN,@® v,,0 < t < oo, where N is
the outward normal vector field on M. Applying the homotopy extension
property we have i: (M, M)’ — M*®*, Then the degree of the map

Ssig (M, M)v — Mr@v i, Ss
is the Euler characteristic of M.
There is an interesting generalization of this construction due to E. Y. Miller
[5]. Suppose that A,, ..., Ay are linearly independent vector fields on M which

are also tangent on M. Let A: M x R* — 7 denote the associated injection. The

restriction of A @ 1: MR*®¥ _ M*®¥ to MR*®" i5 again canonically null homoto-
pic so we obtain

A@1: (M, M)R®Y 5 Mr©,
The map

—~

1Acs AD1

SKAST ——— SEA (M, MY = (M, M)R® — M@ §°

defines an element
(2.1) Xk(M’ Al, ey Ak) € nk(s°).

It depends only on the homotopy class of the k-field {A,, ..., A} and its
vanishing is a necessary condition that there exist a vector field N on M which
extends the outward normal N on M and such that A,, ..., A,, N are linearly
independent. Of course y,(M) € my(S°) = Z is the Euler characteristic E(M).

We list now some of the properties of this element. In what follows, by a
k-field on M (always assumed compact) we will mean k linearly independent
vector fields on M which are also tangent on M.

(2.2) Multiplicativity. Suppose that A,, ..., A isap-fieldon M andd,, ...,d,
is a q-field on N. Define Ajon M x N,1 <j < p,by A(x, y) =i A[x), wherei,:
M — M x N is the inclusion x — (x, y), and define &', 1 < j < q, similarly. Then

by ooy A, 0%, ..., 0y is a (p + q)-field on M x N and
TpeodM X Ny &y oy Ay, 8y 80) = 1,(M, Ay, .y AN, 3y, ..., 8,)

(M x N has the product smooth structure which involves straightening the
angle along M x N if both M and N are non empty.)
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Suppose now that M = M; U M, where M, and M, are topological n-
submanifolds of the smooth n-manifold M such that M, n M, =M, N
M =M,, say, and M,, is a smooth submanifold with boundary
M,,=M,, n M. Then M, and M, inherit a smooth structure from M by
straightening the angle along M,,. If A is a 1-field on M with the additional
property that A'?> = A|M,, is tangent on M,,, it is easy to check that A
induces a 1-field A’ on M, j = 1, 2, uniquely determined by the condition that
N|M;—M,;, =A|M; - M,,.

(2.3) Excision. Suppose that A,, ..., A, is a k-field on M such that
Al* = A;|M,, is tangent on M,, 1 < i < k. Then A, ..., A} is a k-field on M,
j=1,2, and

XM, Ay, oo AY)
= My, AL, oy A) + 1M, AL, L A) — (M 15, AT L AL2),
The proofs of (2.2) and (2.3) are routine and will be omitted.
(2.4) THEOREM. Let M be closed, orientable, and odd dimensional. Let A be a
1-field on M. Then x;(M, A) € n,(S°) = Z, is independent of A and is given by

k(M), dim (M)=1 mod 4,

M, A) =
M A) =170 im (M) = 3 mod 4,

where k(M) is the real Kervaire semi-characteristic of M.

This is implicit in the work of Atiyah and Dupont [2]. It is simply a matter of
relating x,(M, A) with the index defined there. Since the Hurewicz map

n,(8°) = 7°(S') > KO°(S")

is an isomorphism we can work with the image of x,(M, A) in KO°(S*) which
we again denote by x,(M, A). Now Atiyah and Dupont define an element

Ind oy , € KO(P,, /P;,_,),

where 0 < s < 3 and dim (M) + s = 0 (4). We have an exact sequence
j*

K0°(S') = KO*(P,, /P,) » KO*(P,, , /P,-,) > KO*(P,/P,_,) = Z

and, on comparing definitions, it can be shown that j*(x (M, A)) = Ind o’y ,.
From the calculation of KOs(Ps+ 1/Ps— 1) given in [2, Section 3] we see that j* is
injective and therefore y;(M, A) is independent of A. The main theorem of [2]
then gives the stated value for (M, A).

Suppose now that p: E — B is a vector bundle over a closed manifold B. Let
D(E) and S(E) denote the unit disk and sphere bundles (relative to some
metric).
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(2.5) LEMMA.  Suppose that 8, ..., 0, is a k-field on D(E) and A, ..., A is a
k'ﬁeld on B Such that p* 51 = Aip’ 1 < i < k- Then Xk(D(E), 51, ceey 6’() = Xk(B’
Al, ooy Ak)‘

Proof. There is the natural inclusion p*(E) — t(D(E)) and we have
©(D(E)) ~ p*(z(B)) @ p*(E).

Write d,(e) = di(e) ® J1(e), where Ji(e) € p*(z(B)) and 6 (e) € p*(E). Since 6; is
homotopic to d; and J(e) = (e, Ap(e)), we may assume that d;(e) = (e, Ap(e)),
I1<i<k

Let s: B— D(E) denote the zero section and observe that if 6 is any vector
bundle over B the following is homotopy commutative:

—~

@1
(D(E)), S(E)R®r® N D(E)PEN@P®) — D(E)rc®BOESH)

S* N

AD1
BR kEDO , Bt(B)@E&)O

In fact we may take
1
S(A @ I)S#(Ub, X, Wb) = (0b7 A(b, X), T:’l—v—l‘ Uy, Wb),
b

v, € D(E), x € R*, w, € 0. And since the outward normal on S(E) is given by
vy = (vp, vy) € p*(E), we may take

T — 1
0@ 1(vp, X, wp) = (vp, A(b, X), ————7 Uy Wp)-
1— v
It is clear now that 5@1 ~ S(AD 1)sy.
Now choose an embedding ¢': E — R*® with normal bundle v'. Let
c=cs:B—>R° and v=s*V).

Then v' = p*(v) and by the remarks above,

—~

1acs i1
Sk+s (D(E), S(E))Rkep*(v) - D(E)r(D(E))er*(v) —_— S
1rcs
Sy s
A®1
BRYOE®Y -, BBBE®Y

is homotopy commutative. The lemma follows.
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3. G-manifolds

We shall eventually be dealing with both left and right G-spaces so we will
adopt the standard notation for the orbit space: G\X if X is a left G-space and
X/G if X is a right G-space.

Suppose that M is a smooth G-manifold having no isotropy subgroup of
maximal rank. Let T be a maximal torus of G. A choice of a generator ¢t of T
determines a I-field A, on M as follows: t defines a 1-parameter subgroup
R < T and we have 14(R) < 7,(T). Let v € 7,(T) denote the image of the canon-
ical generator of 7y(R) and define A(x) = w,.(v), where w,: T —> M is the
evaluation map s > sx, se T.

If H is a subgroup of G let (H) denote its conjugacy class, let M, denote the
set of points of M having isotropy subgroup in (H) and let M, denote the
one-point compactification of M y,.

(3.1) THEOREM. If M is a G-manifold having no isotropy subgroup of maximal
rank then

1M, A) = Z E(G\M(H)’ o)x1(G/H, A,),

the sum taken over all conjugacy classes of isotropy subgroups of M.

Proof (Cf. [3, Theorem (4.2)].) We proceed by induction on the dimension
of M and on the number of handles in an equivariant handle decomposition of
M as in [7]. The theorem holds vacuously for 0-dimensional manifolds.

Consider first the case of the unit disk bundle D(V) of a Riemannian G-
vector bundle V over an orbit G/H with rank (H) < rank (G). By Lemma (2.5),

(3'2) Xl(D(V)’ Al) = Xl(G/H, At)’

If K is an isotropy subgroup of D(V) then some conjugate of K lies in H.
Consider the case (K) = (H). Then V,;,is a subbundle W of V, hence D(V) ) =
D(W). Since p: D(W)— G/H is a G-homotopy equivalence, E(G\D(W),
o0) = E(G\D(W)) = 1.

If K is a proper subgroup of H then

D(V)w, = S(V)u, % [0, 1)
since v € D(V),g, implies that v € D(V) ), 4 # 0. Therefore
G\D(V)w) = G\S(V)) x [0, 1)
and it follows that E(G\D(V),) = 0. Therefore
(33) 2 EG\D(V)), ©)11(G/K, A) = 1:(G/H, A))

The result for D(V) now follows from (3.2) and (3.3).
Suppose now that M is obtained from N by attaching a G-handle; M = N
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\Ur o where # = D(V) x ¢,y D(W), V and W Riemannian G-vector bundles
over an orbit G/H. By (2.3),

XI(M’ A)= x1(N, A) + x1 (5, At) - XI(N nH, At)‘

We may assume by induction on the number of handles that the result holds
for N and by induction on dimension that the result holds for N n #. Since
# = D(V @ W) is a smooth manifold we have from above that the theorem
holds for s#. It is now easy to check that the theorem also holds for M.

Given an action of a torus T on M, define the circle point set of M to be

(34) (M) ={x e M|dim (T/T,) = 1}.
(3.5) CoroLLARY. If T acts on M without fixed points then
x1(M, A) = E(T\X(M)) mod 2.
Proof. First observe that
1, dim(T)=1,
0, dim (T)> 1.

If T' is a subgroup of T let t' € T/T' denote the image of t. Since T/T" is again a
torus

(T, A) = {

1, dim (T/T) =1,

L(T/T, A) = 1(T/T' A) = {0 dim (T/T) > 1.

Hence we have

1M, A) =Y E(T\M;, 00) mod 2

where the sum is taken over all isotropy subgroups T' such that
dim (T/T’) = 1. It is easy to see that this sum is equal to E(T\Z(M)).

4. Homogeneous spaces

In this section we evaluate y,(G/H, A,). We assume that G is connected but H
need not be connected.

If rank (H) =rank (G)— 1 let I(H) = C4(T')/T" where T' is a maximal
torus of the identity component of H. Since I ;(H) is a connected compact Lie
group of rank 1 it is either S*, SO(3), or S>.

(4.1) THEOREM. If rank (H) < rank (G) — 1,
x1(G/H, A,) = 0.
If rank (H) = rank (G) — 1,
1(G/H, A) = |W(G)|/|W(H)| mod 2.
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Moreover, if 1;(H) is SO(3) or S* then |W(G)|/| W(H)| = 0 mod 2, hence
x1(G/H, A) =0.

Proof. Fix a maximal torus T of the identity component of H and a maxi-
mal torus T of G such that T' = T. By Corollary (3.5),
4.2) x1(G/H, A,) = E(T\X(G/H)) mod 2,

where Z(G/H) is the circle point set of G/H relative to the left action of T. If
rank (H) < rank (G) — 1, the circle point set is empty and we are done. Assume
then, from now on, that rank (H) = rank (G) — 1. Let

(4.3) No(T, T)={g € G|gTg ' = T}
and define
(44) ¢: Ng(T', T) - Z(G/H)

by ¢(g9) = gH. To see that ¢ is well defined note that the T-isotropy subgroup
of gH is T n gHg™'. Then g € Ng(T, T) implies that gT'g~' = T n gHg ™!
and therefore dim (T/T n gHg™ ') = 1.

Since ¢ is T-equivariant we have
4.5) Y =T\¢: T\Ny(T', T)— T\Z(G/H).

Now U(H) = Ny4(T')/T acts on the right of T\N (T, T) by

(Tg)(hT') = Tgh.

This action is well defined since hT' = T'h and gT' <= Tg.

(4.6) v is U(H)-invariant and induces a homeomorphism

T\Ng(T', T)/U(H) - T\E(G/H)
To prove (4.6) we first show that
¢: Ng(T', T) > Z(G/H)

is onto. If gH € £(G/H) its isotropy subgroup T n gHg ™! has maximal rank in
gHg~*. Hence g~ 'Tg n H has maximal rank in H. Let T" = g 'Tg n Hbea
maximal torus of the identity component H, of H and let h € H, be such that
hTh™'=T". Then hTh™! = g~ 'Tg and we have ghT'h"*g~! = T. Therefore
ghe Ng(T', T) and ¢(gh) = gH.

It follows that the orbit map

y: T\NG(T', T)~ T\E(G/H)

is onto. Obviously y is U(H)-invariant so it remains to show that if Y(Tg) =
Y(Tg) there is h € N,(T’) such that Tg = Tgh. Since Y(Tg) = Y(Tg) we have

Tgh = TgH, hence there is h € H such that Tg = Tgh. We will show that
he Ny(T). h =g 'sg for some s e T so

h"'Th=g s 'gTg 'sgcg 'Ty,
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since gT'g~* = T. Hence
h"Thcg 'Tg n H,.

Now g 'Tg n Hy= T sincegT'g™! = Timplies that T' = g~ 'Tg n H. This
completes the proof of (4.6).
By (4.2) and (4.6) we have

@.7) 21(G/H, A) = E(T\N&(T', T)/U(H)) mod 2.

In order to compute this Euler characteristic we first determine the U(H)-
isotropy subgroups of T\N4(T', T).

(4.8) The U(H)-isotropy subgroup of Tg is g~ 'Tg n H/T'.

Suppose Tgh = Tg. Then h € g~ 'Tg and therefore he g~ 'Tg n H. Con-
versely, if h € g~ *Tg n H then Tgh = Tg. Write h = g~ 'sg, s € T. Then, since
gTg™' < T,

hTh™ =g 'sgT'g 's lg=g 'Tyg
and therefore hT'h™* = g™ 'Tg n Hy = T'. So he Ny(T).

Let I(H) = Cy(T')/T'". Then I(H) is a finite subgroup of I ;(H) = C((T')/T".
From (4.8) the U(H)-isotropy subgroups of T\N o(T", T) are precisely the sub-
groups of I(H) of the form T” ~ H/T' where T" is a maximal torus of G such
that T" = T". Note that T" n H/T' is cyclic since it is a subgroup of T"/T". Itis
easy to see that the situation may be rephrased as follows.

(4.9) The U(H)-isotropy subgroups of T\N4(T', T) are the cyclic subgroups
of 1(H) having the form S n I(H) where S is a maximal torus (circle) of 1;(H).

(4.10) If A is a U(H)-isotropy subgroup then E(Fix (4)) = |W(G)|.

Let A=T" ~n H/T’' as above. Then T” n H is an abelian extension of the
torus T’ by the cyclic group and therefore A4 is topologically cyclic [1, P.80].
Let s be a generator of T” n H. We will now apply a standard argument.

For x e G define 6,: T\G—- T\G by 6,(Tg) = Tgx. In particular for 6;:
T\G - T\G we see that

Fix (0,) = T\N(T', T) and Fix (0,) = Fix (A).

Since 6, is an isometry relative to a G-invariant metric, the Lefschetz number
A(0,) of 0, is equal to E(Fix (6,)). We now have

E(Fix (4)) = E(Fix (0,)) = A(0) = A(0.) = E(T\G) = | W(G)].
where e € G is the identity. This proves (4.10).

(4.11) Let A be a U(H)-isotropy subgroup and h € N(T'). If A + hAh™!
then Fix (4) n Fix (h4Ah™ 1) = ®.

Suppose x € Fix (4) n Fix (hAh™'). If B is the isotropy subgroup of x then
A < Band h4Ah™! < B. Since B is cyclic, 4 = hAh™ .
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To cut down on notation write Z = T\N ((T’, T). Let Z , denote the set of
points having isotropy subgroup A4 and, as before, let Z 4, denote the set of
points having isotropy subgroup a conjugate of A. Now

E(Z/UH Z | l Z(A)’ )

and from (4.11), Z(4y = \/ Z ., A’ € (A). Therefore

(412)  (G/H. 8) = EZ/UMH) = i T 1A|EZy, o),

the sum taken over subgroups A < I(H) of the form S n I(H), S a circle of  5(H).
To compute this sum we consider the three possibilities for I ;(H) separately.

Case 1. I4(H) = S'. Then the only subgroup of I(H) that meets the require-
ment is I(H) itself. We then have E(Z,,, )= E(Fix (I(H))) = | W(G)|, and

G/, 8) = g 11N W@ = (7

Case 2. 14;(H)= SO(3). Then I(H) is a finite group of rotations of R*. Since
each rotation fixes a line and a rotation that fixes two distinct lines is the
identity, we easily deduce:

(a) A subgroup of I(H) of the form I(H) n S, S a circle of SO(3), is either
maximal cyclic or the trivial subgroup {1}.
(b) If A and A’ are distinct maximal cyclic subgroups then 4 N A" = {1}.

Now let 4, ..., A, denote the maximal cyclic subgroups of I(H). Then
E(ZOA.» o) = E(Fix (4;)) = | W(G)|

and
E(Zyy,, 00) = E(Fix ({1}) U Fix (4))
= E(Fix (1) ~ 3. E(Fix (4)
— |W(G)|(1 = n).
Hence

x(G/H, A,) = ||_VJ(_(I%)_||_ (2:: 'Ai|) +(1 - ")J
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Since each element of I(H) lies in some A4; and A; N A; = {1}, i #j,

> 14 = [1E)] + (1= 1)
Therefore

12(G/H, &) = ',—”JT‘,‘,%,' 1(H)| =

W@
|W(H)|

Case 3. 15(H)= S>. Using the double cover n: $* - SO(3) we deduce that
I(H) is either cyclic of odd order or I(H) = n~ *(I') where I" = SO(3) [8; P.88].

If I(H) is cyclic of odd order the subgroups of the form S n I(H), S a circle of
S3, are I(H) and {1}. Then

E(ZOI(H)a o) = E(Fix (I(H))) = | W(G)]
and
E(Z1,, D) = E(Fix ({1})) — E(Fix (I(H)) =0.

It follows that x,(G/H, A,) = | W(G)|/| W(H)|.
In the case where I(H) = n~ }(T"), I' = SO(3), we see that:

(a) A subgroup of I(H) of the form I(H) n S, S a circle of S3, is either
maximal cyclic or the subgroup {+1, —1}.

(b) If A and A’ are distinct maximal cyclic subgroups then
An A ={+1, -1}

The calculation of the right hand side of (4.12) now proceeds as in the SO(3)
case so we will omit the details. Once again we obtain y;(G/H,
A) = |W(G)|/| W(H)|.

To complete the proof of Theorem (4.1) we will show that | W(G)|/| W(H)|
is even if I5(H) is SO(3) or S. We have a fiber bundle

Co(T')/T = G/T - G/C4(T).

Let S=T/T. Then CqT)T=Iz(H)S so that E(CT)T)=
| W(I;(H)| = 2. Thus

W(G) = 2E(G/C4(T)),

and to show that | W(G)|/| W(H)| is even we will show that | W(H)| divides
E(G/C4(T")). Now W(H) = N ,(T')/C(T’) may be regarded as a subgroup of
Ng(T')/Ce(T') so that

(a) |W(H)|divides E(Ng(T')/Cg(T")).
We have a covering

Ng(T')/Ce(T') = G/C4(T') ~ G/Ng(T')



THE REAL SEMI-CHARACTERISTIC 587

so that
(b) E(No(T')/C4(T")) divides E(G/Co(T"))
From (a) and (b), | W(H)| divides E(G/C(T")).

5. The semi-characteristic

The previous Theorem (4.1) together with (2.4) leads to the following result
concerning the real semi-characteristic of a homogeneous space.

(5.1) CoroLLARY. Let G/H be a connected orientable homogeneous space of
dimension 4s + 1. Then, as integers mod 2,

| W(G)|/|W(H)|, rank (H)=rank (G)— 1,

0 , rank (H) <rank (G) — 1.
Moreover, if 15(H) is SO(3) or S* then |W(G)|/|W(H)| =0 mod 2, hence
k(G/H) = 0.

If dim (G/H)=4s—1 then Theorems (4.1) and (24) imply that
|W(G)|/|W(H)| =0 mod 2 when G/H is orientable and
rank (H) = rank (G) — 1. However if G/H is not orientable this is not
necessarily the case. Consider the space U,/S,_, [ T"~ ' where S,_, [ T"" ! is
the wreath product of the symmetric group S,_; with the (n — 1)-torus 7"}
embedded in the usual way. We have

IW(U,.)I/\ W(Sn-l jT”")_

dim (U"/s"~1 [ 7"*1) =n?—n+l.

k(G/H) =

=n

and

Thus when n — 1 = 2 (odd) we see that

dim (U,,/S,,_l [ T"“) = —1mod 4
and
|W(U,,)|/|W(S,,_1 [ r'-l)| =1 mod 2.

As an example of a class of homogeneous spaces having non-zero
semi-characteristic consider the spaces U, /U, x U,_,_;. We have

! -1
|W(Un)|/|W(Us X Un—s—l)l =;‘_tl— =m(n )

'(n—s—1)! s
Writtn — 1 =) a2 and s=) B2',0 < a;, f; < 1. Using the well known rule
for computing binomial coefficients mod 2 (cf. [6, P.5]) we see that

k(U,/Ug x U,_,_{)=1if (a) nis odd and (b) ; # 0 implies o; # 0, for all i.
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From Theorems (4.1) and (3.1) we obtain under certain conditions a formula
relating the semi-characteristic of a G-manifold to its orbit structure, which is
similar to the well known formula for the Euler characteristic of a G-manifold.

(5.2) CorOLLARY. Let M be an orientable G-manifold of dimension 4s + 1
having no isotropy subgroups of maximal rank. Then, as integers mod 2,

k(M) =Y. E(G\M ), )| W(G)|/| W(H)],

the sum taken over all conjugacy classes of isotropy subgroups H such that
rank (H) = rank (G) — 1.
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