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AN ALGEBRAIC CONCEPT OF SYMPLECTIC
CURVATURE STRUCTURES

HANS TILGNER

I. Introduction

Given a pseudo-riemannian manifold (//, a) Levi-Civitas unique torsionfree
connection V induces the canonical pseudo-riemannian curvature structure R
by

R(X, Y)= Vx Vy- Vy Vx- Vtx,rl
for vector fields X, Y on t’. R is skew symmetric in X and Y, fulfills the first
Bianchi identity (see (S.3) below) and defines a section R(X, Y) of the pseudo-
orthogonal Lie algebra bundle over ’. Singer and Thorpe [15] conversely
defined a curvature structure on a pseudo-orthogonal vector space, here
(Tp’, a), as a (1, 3) tensor with these three axioms. The linear space spanned
by these curvature structures can be taken as a typical fibre of a vector bundle
over ’ in which the above canonical curvature structure is a section. The
special types of pseudo-riemannian manifolds (of constant curvature, Einstein-
ian, etc.) usually are defined in terms of this section. Petrov first has given a
basis in the space of curvature structures on a 4-dimensional Minkowski space.

In the following, on a symplectic vector space (E, a) of finite dimension 2n,
an algebraic analog of such a pseudo-orthogonal curvature structure is
developed; by changing the sign in the first axiom (S.1) and inserting the
symplectic Lie algebra

sp(E, a)= {Q in end E/a(Qx, y) + a(x, Qy)= 0 for all x, y in E}
for the pseudo-orthogonal one in (S.3). In Sections 2 and 3 it is shown that most
results on pseudo-orthogonal curvature structures can be overtaken almost
literally. Especially Weyl’s conformal curvature again defines a projector and
hence a decomposition of the curvature space which is invariant under the
induced action of the symplectic group Sp(E, a) on (E, a) and its Lie algebra
sp(E, tr). Nomizu’s characterization [14] of the kernel of this projector by the
(Jordan algebra of) a-selfadjoint endomorphisms on E,

JA(E, a)= {A in end E/a(Ax, y)= a(x, Ay) for all x, y in E),
can be proved as well. The proofs are essentially those of riemannian differen-
tial geometry, as described for instance in [5], [6] and [8]. The following treat-
ment is based on the work of Kulkarni [10], [11], Kowalski [9] and Nomizu
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[14], a little different but equivalent notation is used by Gray [4], Marcus [13]
and Singer and Thorpe [15].
Those pseudo-riemannian curvature structures which fulfill Cartan’s condi-

tion, i.e., the pseudo-riemannian symmetric ones, are related to the pseudo-
orthogonal Lie triples via left multiplication. A systematic treatment of Lie
triples is given in the books of Loos [12] and Jacobson [7]. To keep this relation
we introduce another kind of triple, where only the skew symmetry of Lie
triples is changed. This kind of triple was introduced in [17] as the odd sub-
triples of a graded generalization of Lie triples, the even subtriples being exactly
the ordinary Lie triples. As in the case of Lie triples and their graded general-
izations there is a covariant functor into a category of algebras, called standard
embedding. These algebras generalize a special type of graded Lie algebras
which Djokovic and Hochschild [3] called symplectic sequence. Generalities on
these graded Lie algebras are given in [2], [3] and [17]. A special symplectic
triple of this new category occured first in the quantization of Bosons, i.e., in the
Weyl algebras over a symplectic vector space [16].

Finally pseudo-unitary curvature-like-structures are considered where the
Bianchi identity is dropped, and the pseudo-unitary subalgebra is inserted for
the whole symplectic algebra. Note that the pseudo-riemannian curvature
structures in [4], [13] and [15] are defined without the Bianchi identity.

2. Symplectic curvature structures

Let E be a (necessarily even dimensional) real vector space and a a non-
degenerate skew bilinear form on E, dim E 2n. A symplectic curvature struc-
ture on (E, tr) is a bilinear mapping

S:E xE endE

subject to

(s.1)
(s.:)
(s.3)

S(x, y)= S(y, x) (Symmetry),
o(S(, y)z, w)+ (z, S(, y)w)= 0,
S(, y)z + S(z, )y + S(y, z) 0

i.e., S(x, y) sp(E,
(Bianchi identity),

for x, y, z, w in E. Using these axioms one has

(S.4) a(S(x, y)z, w)= a(S(z, w)x, y).

The linear space of such curvature structures will be denoted by curv(E, tr). It
always contains the trivial curvature structure

So(, y)z (y, z) + (, z)y.

More generally, given A, B in JA(E, a),

2S’n(x, y)= So(Ax, By)+ So(Bx, Ay)= 2s’A(x, y)
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defines a new element SAd’ in curv (E, a). The Ricciform of S

ps(x, y)= trace (z S(x, z)y)

is skew as well. The Riccitransformation Ls of S is defined by

a(Lsx, y)= ps(x, y).

It is a- and ps-selfadjoint, i.e., in JA(E, a). The curvature scalar of S is

Sc(S) trace Ls
Using trace (z-- a(x, z)y)= a(x, y)one gets

L a.= 1/2(AB + BA + A trace B + n trace A), Lso (2n + 1) idz,So
(1)

Sc (S’ n)= trace AB + trace A trace B, Sc (So)= 2n(2n + 1),

especially Pso(X, y)= (2n + 1)a(x, y). The Ricci curvature structure S’ of S is
given by Stds’ io., i.e., by

(2) Si(x, y)z 1/2{Ps(Y, z)x + ps(x, z)y + a(y, z)Lsx + a(x, z)Lsy}.

In particular, we have

(3) (S’ aft= sC0, id with C Lsa., and S (2n + 1)So.

In general, one has

2p,,(, y)= (2 + 2)p(, y)+ S(S)(, y)

(4) 2Ls,, (2n + 2)Ls + Sc(S)id
Sc(S’*) (2n + 1)Sc(S)

The sectional curvature IIs/I is defined as

I[sIl(, y)- (s(, y)y, x)

with IIs,ll(, y)-- -a(Ax, y)a(Bx, y), hence IISoll(, Y)-- -(x, yy (which
may be called the discriminant of a) and IIs’*ll(, y)-- -(, y)(, y). It is
easy to show that Ricciform and Riccitransformation are linear in their indices,
that the Ricci map

i S-- Sc

is an endomorphism and Sc a linear form on curv(E, a). In the following we
use the injective linear mapping

n" A-S’ ia, n" JA(E, a) - curv(E, a).

Obviously f(Ls)= I(S).
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3. The Weyl curvature structures

The Weft curvature structure of S curv(E, a) is

s (s)2
Sic + So e curv(E, a).//S S

2n + 2 (2n + 1)(2n + 2)

(5) LEMMA. (a) Prs O, Lrs 0, Sc(S)= 0, (S’) 0.
(b) //’Sg’ id 0; i.e., C f 0. In particular trSo O.
(c) is a projector on curv (E, a).
(d) (trS)’C 0; i.e., io f 0.
The proof of (a) and (b)is elementary. Part (c) is a consequence of the

linearity of and Sc. Part (d) follows from (c): consider the complementary
projector C+/- of onto Kern //", given by

/’+/-S (id )S
1 {2S, Sc(S) So}"2n + 2 2n + 1

Using (a)we get

1
2n+2

Sc((id C)S)So
2n+ 1

(6) LEMMA. (a)

hence

implies

f(2nl+ 2 {2Ls 2n+ 1

Kern / = Im f.

(b) f L /-= i.
(c) L f is injective, hence bijectiv.
(d) f is surjective onto Kern and L is bijeetiv.

The proof is technical. Summarizing we have the commutative diagram of
short exact sequences [9]

;;
ImKern c,._, curv (E, a) .- .

L- L i 0

JA(E, a) > curv (E, a) ; Im
fl-i
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which shows how L and i are related to each other via f and C. Obviously

1 traceA
L- 1. A

2n + 2 2Sa’ id So2n+ 1

so(s)1
2Ls ida.,-1. S--

2n +--------- 2n + 1

L- 1: JA(E, o’) Kern //’,

Kern - JA(E, a),

with f f- C+/- and L- L C+/-. f- is called deviation map in [9].
JA(E, or) can be decomposed uniquely in the space of multiples of id and the
(n(2n-1)-1)-dimensional space of traceless endomorphisms. Hence
Kern C can be decomposed directly into RSo and the f-image L of these
traceless matrices, altogether

(8) eurv(E, a) RSo Lz Im

(9) THEOREM. (a) S is in RSo if and only if the sectional curvature of S is
constant.

(b) S is in Im C if and only if the Ricciform ofS is zero.
(c) S is in RSo Im if and only if the Riccitransformation of S is a

multiple of idE (Einsteinian curvature structures).
(d) S is in L2 9 Im F if and only if the scalar curvature of S vanishes.

Proof (a) (S.1), (S.2) and (S.4)imply that a(S(x, z)z, y)is symmetric in x
and y. From

(S(x, z)z, y)= 1/2{11Sll(x / y, z)- S I[(x, z)- all(Y,
and

S(x, y)z S(x, y + z)(y + z)+ S(x + z, y)(x + z)- S(x, y)y

st ,, Slz, y)z,

a(S(x, y)z, w)can be-written as a linear combination of some IISI[(...). There-
fore IISII 0 is equivalent to S 0. More generally, IIsll 211Soll implies
S 2So 0, hence S 2So. Part (b)is clear from prs 0 and the fact that

this implies S s Kern L =Im C. Parts (e) and (d) are simple consequences of
the above results.
The finestructure of Im /" seems to be more complicated than that of

Kern #. We give a class of Weyl curvature structures for n > 1: let M be a
skew n n matrix:

0 :))A=(: 4) (resp. A=(M
are traceless nilpotent matrices in JA(E, a)such that S’a /"Sao’a q: 0.
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4. The action of Sp(E, a) on curv(E, a)
Let S be in curv(E, a). For G in Sp(E, a)(resp. Q in sp(E, a)), define

(10) a. y) as(a-
(resp. Q. S(x, y)= [Q, S(x, y)]- S(Qx, y)- S(x, Qy)).

This makes curv(E, a)a Sp(E, a)-module (resp. a sp(E, a)-module). Writing
GAG-X= G. A (resp. [Q, A] Q.A) (these are elements of JA(E, a) for
A JA(E, a))we get

(11) G. Sg’B= s’a’G’B(resp. Q" S’n= So "a’n + S’Q’n),
and as a special case of this

(12)
G’f(A)= f(G" A)and G. So So

(resp. Q.f(A)= f(Q. A) and Q. So 0).
It is easy to see that

(resp. -ps(Qx, y)- ps(x, Qy)= pQ. s(x, y)) from which

(13)
G Ls L.s and Sc (G S)= Sc(S)

(resp. Q Ls Lo..s and Sc (Q S)= O)
results. With the aid of these equations one proves that multiplication with G
(resp. Q) commutes with and C. Hence the decomposition (8) is invariant
under the action of the symplectic group and its Lie algebra. More general
given two symplectic vector spaces (E’, a’) and (E, a) and a symplectic
isomorphism : E’ E,

defines a new curvature structure. Whence curv is a covariant functor from the
category of symplectic vector spaces onto the category of curvature spaces
whose morphisms are the curvature preserving mappings. For S in curv (E, a)
define int S as the linear span of the elements $(x, y) in sp(E, a). From (10) we
see that int S is a Lie subalgebra of sp(E, r) if int $ leaves $ invariant, i.e., if
S(x; y). S 0 for all x, y in E. Let us call such S selfinvariant. Now it is easy to
see that S selfinvariant implies that G. S is selfinvariant for all G in Sp(E, a).
Consequently, selfinvariant curvature structures lie in selfinvariant Sp(E, a)-
orbits in curv (E, a). From (12)and the injectivity of f we see that
f(A) S’ ia is selfinvariant if and only if S’ ia(x, y). A 0 for all x, y if and
only if A2 2 idz. This shows that the elements in RSo are selfinvariant. The
Sp(E, a)-orbits in RSo are exactly the points. The above examples in Im C are
selfinvariant as well. A complex structure J in Sp(E, a) induces an involutive
transformation in curv(E, a), i.e., J. J. S S for all S. Then L and Im W"
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split into the eigenspaces of J of eigenvalues 1 and -1. The subgroup of
Sp(E, tr) commuting with J is a pseudo-unitary group whose signature depends
on J, and orbits of Sp(E, tr)split into pseudo-unitary ones.

It is straightforward to prove that the above curvature representations ofthe
symplectic group has the kernel { +_ ida.}.

5. Curvature structures, triples and graded algebras

A triple is a trilinear composition [, ,]: E x E x E E. Moreover we
assume

(T.1) Ix, y, z] [y, x, z] (Symmetry),
(T.2) Ix, y, z] + [y, z, x] + [z, x, y] 0 (Jacobi identity),
(T.3) Ix, y, [u, v, z]] [[x, y, u], v, z] + [u, Ix, y, v], z] + [u, v, [x, y, z]]

for x, y, z, u, v in E. The left multiplication is defined as ad(x, y)z Ix, y, z].
(T.3) shows that ad(x, y) is a (inner) derivation of (E, [,, ]). In terms of left
multiplications (T.3) reads

(14) lad(x, y), ad(u, v)] ad(ad(x, y)u, v)+ ad(u, ad(x, y)v).
The space of inner derivations int(E, [, ,]) is an ideal in the Lie algebra of all
derivations of (E, [,,]).
An elementary example is the Bose triple, defined by [x, y, z] $ o(X, y)z on a

symplectic vector space.

(15) PROPOSITION. int(E,[,,])@ E Vo q) V1
altebra with respect to the composition

is a Z2-Lie-graded

[A x, B y] [A, B] + ad(x, y) Ay Bx.

The graded skew symmetry is obvious; one easily verifies the second axiom of a
Lie-graded algebra, the graded Jacobi identity

(- 1)k’[[Xk, y,], Z,n] + (-- 1)"[[Z,,, Xk], Y,] + (-- 1)k’[[Y,, Z,,], Xk] 0

for xk in Vk, y in V, Zm in Vm. Let us call the algebra Vo V the standard
embeddin# of (E, [,,]). Obviously [Ix, y], z] Ix, y, z] for x, y, z in
E. V0(resp. ) is the eigenspace of eigenvalue 1 (resp. 1) in this algebra for
the standard involutive automorphism A x-- A x. Given a morphism
: E --. E’ of such triples, i.e., O[x, y, z] [O(x), O(y), O(z)]’, one proves with
(T.1), (T.2)and (14)that

@*: ad(x, y)- ad’(@(x), @(y))
is a morphism of the Lie algebras of inner derivations, and that diag (*, ) is
a morphism of Z2-Lie-graded algebras which commutes with the standard
involutions. This establishes a functor between the two categories. A triple is
called symplectic if all ad(x, y) are in sp(E, tr). The Bose triple is symplectic.
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More general

(16) PROPOSITION. A triple (E, [,, ])with (T.1), (T.2)and (T.3)is symplectic if
and only if ad is in curv(E, tr) and

[Q, ad(x, y)] ad(Qx, y)+ ad(x, Qy) (Caftan condition for Q)
for all x, y in E and all Q in int(E, [,,]).

For the So-Bose case Cartan’s condition are the commutation relations of
the symplectic Lie algebra. Its standard embedding was called the "symplectic
sequence" in [3]. Proposition (16) shows that selfinvariance, (T.3) and Cartan’s
condition coincide.
The Bose triple can be realized by the canonical Weyl algebra weyl(E, tr)

ten E/((x (R) y (R) x a(x, y)l)), which occurs in the quantization of Bosons:
E is embedded in weyl(E, tr) and the space AE in weylr(E, a) generated by the
symmetrized elements of second power Axy 1/2(xy + yx)is isomorphic as a
Lie algebra to sp(E, tr) [16]. One has

(17) [Axy, z] 1/2(x[y, z] + [y, z]x + y[x, z] + Ix, zly)= tr(y, z)x + tr(x, z)y
and the corresponding standard embedding Vo V is A2E E in weyl (E, tr).
In the same way Fermion quantization leads to an ordinary Lie triple in a
Clifford algebra.
Another class of generalized Bose triples are subspaces of associative

algebras which are closed under the triple composition

(18) Ix, y, z] 1/2[xy + yx, z] 1/2(xyz + yxz zxy zyx).
This allows the definition of a representation of a generalized Bose triple and of
the universal envelopping algebra

ten E/((2[x, y, z] x(R)y(R) z- y(R) x(R) z + z(R) x(R)y + z(R)y(R) x))
of (E, [,, ])in which (E, [,, ])is injectively embedded. Here ((x))means the
two-sided ideal generated by the element x. Taking traces one shows that the
Bose triple has no faithful finite-dimensional representation. I[s universal en-
velopping algebra obviously is the Weyl algebra.
The above composition [,, on an associative algebra establishes via the

standard embedding a functor of the category of associative algebras into that
of the graded Lie algebras.

Pseudo-unitary curvature-like structures

Given a complex structure J in Sp(E, a), i.e., j2 ida., (x, z) tr(Jx, z)is
a symmetric non-degenerate bilinear form and J is in the pseudo-orthogonal
group O(E, ). In addition (Jx, z)=-a(x, z), x(x, Jz)= a(x, z)and a(x,
Jz) -(x, Jz). For S in curv (E, tr), define

qlS(x, y)z (S(x, y)+ JS(x, y)J-X)z
a(y, z)x + a(x, z)y + (y, z),lx + (x, z),/y.
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q/S is a curvature-like structure which fulfills (S.1) and (S.2) but not the Bianchi
identity [even if S So). Polarizing xv--, x + y and z--, z + w in

(19) [’So(x, x), qlSo(z, z)] air(x, z)ZSo(x, z)+ 4z(x, z)PllSo(Jx, z),
we get the cartan condition for So(x, y) of So, i.e., selfinvariance for So.
Note that if we drop the Bianchi identity the Ricciform no longer is skew and
the Riccitransformation no longer in JA(E, a). The standard embedding then is
a graded skew algebra without the graded Jacobi identity.
To show that (19)are the commutation relations of a pseudo-unitary algebra

consider the n x n matrix I diag (ida, -ida) and a basis in E in which a has
the matrix

0"

J=
id

is such a complex structure and the matrix of becomes diag (I, I). Then

is an isomorphism of the pseudo-unitary Lie algebra u(p, q) onto the Lie
algebra sp(E, ) so(E, ), which is the eigenspace with eigenvalue 1 of the
Cartan decomposition of sp(E, )defined by J.

7. Remarks on classification and globalization

It remains to give the Sp(E, tr)-orbits in L2 and Im /’. The classification of
selfinvariant orbits leads to the classification of the symplectic generalized Bose
triples. The structure theory of the generalized Bose triples shmald be started as
that for Lie triples [12] by introducing the Ricciform and relating it to the
graded Killing form [2] of its standard embedding. Then semi-simple triples
should be defined as having a non-degenerate skew Ricciform and one expects
that this is equivalent to the semi-simplicity of the standard embedding [2], [3].
Semi-simple symplectic triples give rise to semi-simple orbits in the curvature
space. For a general generalized Bose triple one can try to define the radical
and to prove then a Levi-Malcev decomposition into a semi-direct sum of the
radical and a semi-simple subtriple. More general one should try to develop a
second cohomology of triples with values in arbitrary triples of the same kind.
To include the Lie triple case this should be tried for the graded generaliza-
tions of Lie triples described in [17].
A certainly more difficult problem is the globalization of the above. Is there a

category of manifolds with an internal composition such that the tangent func-
tor maps onto the category of generalized Bose triples ? This corresponds to the
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analogous relation of the categories of symmetric spaces and Lie triples. A
similar question is whether a symplectic manifold admits a canonical Levi-
Civita-type connection which induces a section in the bundle of curvature
spaces over each tangent space. And is there a combination of these two con-
cepts as for pseudo-riemannian symmetric spaces by identifying left multiplica-
tion in the triple with canonical curvature structures. In this connection it is
interesting to see that Bertram Kostant in a forthcoming work developpes a
graded generalization of differential geometry and Lie theory, in which these
concepts eventually are included as specializations to the odd substructures.

Acknowledgment. The author is indebted to C. F. von Weizs/icker for his
hospitality at the Starnberger Max-Planck-Institut.
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