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SINGULARITY AND ABSOLUTE CONTINUITY WITH
RESPECT TO STRATEGIC MEASURES

BY
TroMAS E. ARMSTRONG AND KAREL PRIKRY'

Abstract

Extending the result of Prikry and Sudderth that a reverse strategic
product measure on N X N with diffuse marginal measures is singular to
all strategic measures (i.e. purely non-strategic) we show in Section 1 that
any reverse strategic product measure an X X Y (where X and Y are
arbitrary sets) is purely non-strategic if it has purely finitely additive marginal
measures. If there are no real-valued measurable cardinals so all countably
additive measures are discrete the converse is true. In Section 2, we introduce
the language of split faces of probability measures as a convenient tool for
discussing decompositions of probability measures. In this section we char-
acterize which nearly strategic measures are absolutely continuous with
respect to a given strategic measure. In Section 3, atomicity and non-
atomicity of strategic measures are characterized. In Section 4, we deal
with k-additivity of strategic measures for an infinite cardinal x. In Section
S, k-uniformity of strategic measures is discussed. In Section 6, we give
examples of reverse strategic product measures with diffuse marginals, one
of which is countably additive, which are strategic. We also examine when
a reverse strategic product measure with diffuse marginals, one of which
is countably additive, may be purely non-strategic.

1. Introduction

Gambling Theory has as a central notion the concept of a strategy, [15].
A strategy o is, essentially, a finitely additive Markov process on a discrete
space F which is termed the fortune space (although state space is occasionally
used in analogy with the terminology of the countably additive theory of
Markov processes where F would be a locally compact Hausdorff space
with a countable base.) The strategy o describes the random movement of
a particle (or player) through F in time. There is an initial distribution oo(df)
after one step from a given fortune f;. o, is an element of P(F) the finitely
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additive probability measures defined on all subsets of F. There is, conditional
on being at f; after step 1, a distribution o(f;, df) of fortunes after step
2. Thus, o, is a Markov kernel and is a function from F into P(F). The
pair (o, o) give rise to a probability distribution o? in F X F describing
the distribution of fortunes occurring in the first two steps of the Markov
process. If s is a bounded function on F X F then

| sth ot ap = | [ [ sth et dﬁ)]aoufl).

In general one is interested not just in the distribution of the first two steps
of the Markov process but rather in the distribution of all possible sequences
or histories & = (f, f5, ..., fn, ...) Of fortunes. For this, one needs, for
any n and any (f;, ..., f,) € F", a conditional distribution o,(f;, ..., fu,
df,..) of f,., given that the first n fortunes occurring were (f;, ..., f).
Thus, o, maps F” into P(F) and (o, oy, ..., 0,) gives rise to a probability
distribution on F"*! given by the inductively defined integration formula

J’ s(.fl, ey fn’ f;(+l)o-"+l(d.f‘l’ ooy dfn’ dfn+l)
~[|[ sttt oot )|l .

The entire sequence (o, ..., 0,, ...) is termed a strategy and is denoted
by o. The strategy o gives rise to a probability distribution defined on the
clopen algebra of the history space

H=1{%h=,. . . 2fi€Fali=F.

The details appear in Dubins and Savage [15]. The measure on H is called
the strategic measure on H associated with the strategy o and is also
denoted by o.

Of central importance to the construction of strategic measures on H is
the situation where one has two discrete spaces X and Y. One has an initial
distribution o, € P(X), which may be thought of as the distribution, of the
initial step in X of a finitely additive Markov process. Conditional on x €
X one has a probability distribution o{(x, dy) € P(Y) which may be thought
of as the distribution of the second step in Y. As before the pair o =
(oo, 0y) gives rise to a probability distribution on X X Y again denoted by
o. We call the pair o a strategy (actually a two step strategy) and the
measure o a strategic measure on X X Y. Let = denote the set of all
strategic measures on X X Y. An example is X = F" and Y = F. Here
o, describes the distribution of the first n-steps of a finitely additive Markov
process and o, describes the distribution of the (n + 1)-st step conditional
on the first n steps. More generally, Y could be F™ and o, would describe
the distribution of steps n + 1 through » + m conditional on steps 1
through n.

It is natural to ask which measures in P(X X Y) arise as strategic measures.
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If we were dealing with countably additive Markov processes and with X
and Y locally compact Hansdorff spaces with countable bases we would
have the result that all probability Radon measures on X X Y are strategic
measures corresponding to strategies (oy, o) wWhere o, is a probability
Radon measure on X and o, is a (suitably measurable) Markov kernel from
X to JM;(Y), the probability Radon measures on Y. This is a standard
consequence of the theory of disintegration of measures [16], [29].

In contrast to the situation for Radon measures it is almost never the
case that P(X x Y) = X. In fact, Dubins found in [15] that if X and Y are
countably infinite there exists a measure y € P(X X Y) so that y L X;
that is, vy is singular to all strategic measures. Such measures will be called
purely non-strategic and we will denote their totality by =*. It was shown
by Armstrong and Sudderth in [9] that every measure y € P(X X Y) may
be expressed uniquely as a convex combination Ay, + (1 — A)y, where v,
(unique if A # 0) is in 2* and vy, (unique if A # 1) is in the closure = of
< for the variation norm. Elements of T are called nearly strategic measures.
Thus, it follows that = = =**. It is also shown in [9] that = need not be
convex hence need not equal =.

Decompositions of finitely additive probabilities similar to the decomposition
into purely non-strategic and nearly strategic measures are the Hewitt-
Yosida [19] decomposition (y = ay., + By, Where vy,, is countably additive
and v, is purely finitely additive in that vy, is singular to all countably
additive probabilities); the Sobczyk-Hammer decomposition [26] (y = ay, +
BYy.. where vy, is atomic so it is a countable convex combination of {0, 1}-
valued measures and v,, is non-atomic in that for all ¢ > 0 there is a finite
partition into sets of measure at most &); the diffuse-discrete decomposition
(y = ayar + Bydaisc Where yqe is diffuse in that y assigns 0 measure to
singletons and vy, is discrete in that it is a countable convex combination
of point masses); and the Lebesque decomposition [10] (y = ay, + By,
where y, L uo and y, << u, where w, is a fixed measure). We shall discuss
these types of decompositions at length in Section 2 as split face
decompositions.

One type of strategic measure o = (0,, o;) is of special importance.
This is the strategic product measure where oy = a € P(X) and for all
(or a almost all) x € X, oy(x, -) = B where B is a fixed element of P(Y).
This measure o has the property that a(A X B) = a(4)B(B) if A C X and
B C y. This measure o will be denoted by o(a, 8) and is an extension of
the product measure a ® B from the product algebra 2* ® 2Y to 2¥*¥,

When the roles of X and Y are interchanged, one obtains reverse strategies
7 = (79, 7;) Where 7, € P(Y) and, fory € Y, 7,(y, *) € P(X). Corresponding
to a reverse strategy 7 is a reverse strategic measure, also denoted by 7,
in P(X X Y) defined by the integration formula

f fle, y)dr = f [ ff(x, yIm(y, dx)]'ro(dy).
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Corresponding to an (a, 8) € P(X) x P(Y) there is a reverse strategic
product measure v(a, B) = (1y, 1) With 7, = 8 and 7,(y, dx) = « for all
y €Y.

If w is an element of P(X X Y) then the X-margin of u, uy € P(X) is
defined by ux(A) = w(A X Y) for A C X and the Y-margin pu* € P(Y) is
defined by u'(B) = w(X X B) for B C X. Thus, strategic and reverse
strategic product measures o(a, 8) and 7(«, B) are uniquely specified by
their X-margins « and their Y-margins 8. Dubins established in [14] that if
Y is finite then P(X X Y) consists entirely of reverse strategic measures.
Prikry and Sudderth noted in [25] that, in this case P(X X Y) = =. From
this it follows that if X and Y are arbitrary and if y € P(X X Y) either has
a discrete X-margin or a discrete Y-margin then vy is both nearly strategic
and nearly reverse strategic (so is approximable in variation norm by reverse
strategic measures).

In [14], Dubins established that if X = Y = N and if  and 8 are diffuse
{0, 1}-valued elements of P(X) and P(Y) respectively then 7(a, B) € =*.
This was the first example of a purely non-strategic measure.

In [25], Prikry and Sudderth showed that reverse strategic product measure
7 associated with arbitrary diffuse « and B on X = N = Y belongs to =*.
This is the present state of the question of existence of elements of *. Of
course, when X and Y are countable it is immediate that a reverse strategic
product measure 7(a, @) is in * only if both o and B are diffuse. If this
weren’t the case and & = Aagg + (1 — MNags. With A < 1 then

=M+ (1 — N7 where 7' = 7(agisc, B)

is nearly strategic. This reasoning works for general X and Y and allows
us to consider only 7(«, B) where a and B are diffuse.

We are interested in extending the known results to the cases where X
and Y are uncountable. For instance, X = Y = [0, 1] is a case of interest
to many probabilists and statisticians. Our first result is nearly a corollary
of the result of Prikry and Sudderth.

We recall from [6] that a p € P(X) is strongly finitely additive if there
is a countable partition {X, : n € w} of X so that p(X,) = 0 for all n €
o. We also recall that p € P(X) is purely finitely additive if it can be
written as a countable convex combination X;_,\,p, where each p, is
strongly finitely additive. (Actually, in [6], a bounded positive p was shown
to be purely finitely additive if it could be written as a countable sum of
strongly finitely positive measures.) Furthermore one may choose for any
e > 0 such a countable convex combination with A, > 1 — &.

THEOREM 1.1. Let a € P(X) and B € P(Y) be purely finitely additive.
Then (c, B) € =*.

Proof. If it is shown that when a and B are strongly finitely additive
then 7(a, B) € =* the theorem will follow in general. To see this, write
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a = (1 - )\)al + Aaz and ﬁ = (1 - A)B] + ABZ

where 0 < A < ¢ and where both «, and B, are strongly finitely additive.
We have

r=0-NMN7+[1-(0- NP

where 7' = 7(ay, B;) and 7° is some other element of P(X X Y). Since
7' € =* and € > 0 is arbitrary it follows that 7 is in the norm closure of
3+ which is =*.

For the remainder of the proof we assume that both « and B are strongly
finitely additive. We first note that Prikry and Sudderth in the proof of the
Theorem of [25] actually give a proof that when Y = N and X is arbitrary
then 7(a, B) € =*. The only modification necessary in their proof is in the
demonstration that if ¢ = (o,, o) is a strategic measure with o(x, *)
diffuse for all X then 7(a, B) L o. To establish this use the strong finite
additivity of « to find a decreasing sequence {X,: n € N} of subsets of X
with empty intersection with a(X,) = 1 for all n € N. Set

S =X, x{nh) CX X N.

Note that for all x € X, S, is finite so o(S) = 0 by diffusivity of o, and
that (e, B)(S) = 1. Thus, o L 7(a, B).

It only remains to establish the result when Y is uncountable. Since 8
is strongly finitely additive there is a ® : Y — N so that the image 8' of
B under @ (defined by B'(A) = B(@ '(4)) for A C N or equivalently by
InfdB' = [ f(®(y))B(dy) for bounded f on N), is diffuse. Define

mXXY—>XXN

by 7(x, y) = (x, ®(¥)). If ¢ = (0y, 0,) is a strategic measure on X X Y
the image o’ of o under 7 is the strategic measure (oy, 0';) on X X N
where o{(x, ‘) is the image of oy(x, *) on N for all x € X. To see this,
calculate as follows for a bounded fon X X N:

f fdo' = J [ j S, &(y))oy(x, dy)]oo(dx)

= f[ff(x, n)oi(x, dn)](ro(dx).

A similar verification shows that the image of 7(«, 8) under 7 is the reverse
strategic product measure (o, 8') on X X N where B’ is the image of 8
under ®. Since « and B’ are strongly finitely additive 7(c, 8') is purely non-
strategic on X X N. If o is a strategic measure on X X Y let ¢’ be the

image of o on X X N under 7. For any € > 0 there is an A; C X X N so
that

o'(A))<e and 7(a, B')A)>1— &
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If A, = 77'(A!) then o(A,) < € and (e, B)A4,) > 1 — &. Since € and o
are arbitrary 7 is purely non-strategic. H

CoroLrary 1.1.1. Let (o, B) € P(X) X P(Y) be such that v(a, B) &
S*. One of a or B fails to be purely finitely additive.

In effect, the question now facing us is whether 7(a, 8) may be in =* if
a or B is countably additive and diffuse. The existence of such an « or 8
is equivalent to the cardinality of X or Y being real-valued measurable. It
is consistent with the axioms, ZFC, of set theory that no real-valued mea-
surable cardinals exist and it is consistent that 2% = ¢ = card[0, 1] be
real-valued measurable [6], [28]. If real-valued measurable cardinals don’t
exist then 7(a, B) is in =* if @ and B are diffuse. Further investigations of
the question will, of necessity, be more set theoretic and be based in large
part upon material in [6]. Although only partial results will be obtained
these give considerable insight into the problem.

To facilitate discussion in later sections we introduce in the next section
the notion of split faces of the simplex of probability measures on a set.
This notion deals with convex direct sum decompositions. In particular the
notation =+, which should denote the ideal in the Banach lattice of finitely
additive signed measures of bounded variation on 2¥*¥ which are singular
to elements of X, will be replaced by =’ = =* N P(X X Y), the split face
of P(X X Y) complementary to the split face =.

2. Split faces of

A subset A of a convex set F is said to be a split face [1] of F if A is
convex and there exists another convex set B so that F is the convex direct
sum A @ B so every f € F is representable uniquely as a convex combination
AMa + (1 — N)fp with f, € A and f; € B. Here, \ is unique, f, is unique
if A # 0 and f3 is unique if 1 — N # 0. If A is a split face of F it is a face
[1], so that if {f;, f;} C Fand 0 < A < 1is such that A\f; + (1 — \)f, €
A then {f}, f} C F. If A is a split face of F then B consists of those points
fE€Fsothatif f/ € Fand 0 < A < lissuchthat f = Aa + (1 — N)f’
for some a € A then A = 0 and ' = f. B is uniquely determined by the
requirement that F = A @ B and is a split face of F called the complementary
split face to A and is denoted by A’. When A is a split face then A =
(A")'. The intersection of two split faces of F is again a split face of F as
is the convex hull of the union of two split faces or a split face of a split
face of F. Split faces form a Boolean algebra with F as supremum, and @
as infimum. The infimum of a finite family of split faces is their intersection
and the supremum the convex hull of their union, [1].

In the simplex P(X) of finitely additive probabilities on X (or for Choquet
simplexes, or K-simplexes as in [2], [5], in general) the Boolean algebra of
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split faces is a complete Boolean algebra. The infimum of an arbitrary family
of split faces is a split face and the supremum of an arbitrary family is the
o-convex hull, o conv(E), of the union E where for a o-convex hull one
allows countable convex combinations [2], [5], [18]. Given any E C P(X),
there is a smallest split face of P(X) containing E which will be denoted
by sface(E). If E is the singleton {u} then sface(E) will be denoted by
sface(u). One has

sface(u) = {v € PX) : v << u}

and

[sface(w)]’ = {v € P(X) : v L u} = {u}* N PX) [2], [5], [10], [18], [24].
For any E C P(X),

sface(E) = U {sface(n) : u € o conv(E)} and [sface(E)]' = E* N P(X).

If E C P(X) we will denote [sface(E)]' by E'.

There are several characterizations of which convex sets A C P(X) are
split faces due to Lima [24], and Goodearl [18]. If A is a face then is a
split face iff it is o-convex [18], iff it is norm closed [18]. A convex set
A C P(X) is a face if v € A whenever » < \u for some u € A and A €
0, =].

A face F of P(X) is split iff its linear span S in BA(X) (the signed finitely
additive measures of bounded variation on 2*) is a norm-closed ideal in the
Banach lattice BA(X). In this case F’' has linear span F* = $* and
St+ = S so F = F** N P(X). Furthermore, BA(X) is the ['-direct sum
S @ S* so that if ur € S and ur € S* then

e + mell = luel + Nl (11, (21, (3], (5]

Most decomposition theorems for measures are split face decompositions
in that they assert the existence of complementary pairs of split faces of
the simplex P(X). The Lebesque decomposition is the prime example. The
Hewitt-Yosida decomposition states that purely finitely additive probability
measures form a split face complementary to the countably additive probability
measures. The Sobczyk-Hammer decomposition theorem says that atomic
and non-atomic probability measures form complementary split faces. The
diffuse and discrete probability measures form complementary split faces.

The main content of [9] is that the nearly strategic measures = form a
split face of P(X X Y) whose complementary split face is the purely non-
strategic measures =’ (= =* N P(X)). It is of interest to see how split
faces of P(X) and P(Y) give rise to split faces of = (hence of P(X X Y)).

I

Lemma 2.1. Let 0 = (oy, 0y) be a strategy, and, for each x € X, let

Ax)o(x, ) + (1 = Mx))oplx, )

0'1(x, ')
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be a convex combination of probabilities. Let

A= f A(x)oo(dx),
[ix) = MoN o = filx)oy,
Hx) =1 = M) = N7, o = f(x)ao,

o' be the strategy (o, 01;) and o be the strategy (o, 012). As strategic
measures, o = Ao! + (1 — No?.

Proof. For any bounded g(x, y) we calculate as follows.

f g(x, y)do = f [ f 8(x, y)o(x, dy)]oo(dx)
= f [ f g(x, y)ou(x, dy)]h(x)cro(dx)
+ f[ I glx, y)op(x, dy)][l = Mx)]o(dx)
=\ J [ f g(x, y)ou(x, dy)]fl(x)ao(dx)
+ (1 - A f [ I 8(x, y)orplx, dy)]fz(x)oo(dx)

= Afg(x,y)da‘ +1 - A)fg(x, y)da*. 1

Remark (1) Strictly speaking Lemma 2.1 is valid only if 0 < A < 1.

(2) This lemma will be used extensively not only in this section but
throughout.

(3) If we were dealing with countably additive Markov kernels on a
measurable space care would have to be taken in this lemma to ensure the
measurability of x — A(x) and x — oy,(x, ). See [21].

ProPOSITION 2.2. Let Sy be a split face of P(X), and, for all x € X, let
Sy(x) be a split face of P(Y). Let & be all strategic measures o with the
strategy o = (0, 0,) satisfying oy € Sy, and o(x, *) € Sy(x) for all x €
X. The norm closure of € is a split face of X.

Proof. It is necessary to show that if v << u € & then v € Z. It may
be assumed that u € &. To see this let {u,: n € w} C & converge to u.
For n € w, let v, be the part of » absolutely continuous with respect to
.. It is easily seen that {v,: n € w} converges to ». If it is known that
{v,: n € w} C & then it follows that » € &.
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Since v << u € T it follows that » € 2. Let {v,: n € w} C = converge
to v. If, for n € w, v" is the part of », absolutely continuous with respect
to u then {»": n € w} converges to v. For n € w, let (15, »]) be a strategy
with strategic measure »". Decompose »i(x, ‘) as

MOV ) + (1 = M) vz (X )

with v,(x, ) € S3x) and vi,(x, *) € SHx) for all n. If A, = fA,(x) vi(dx)
= 1 for infinitely many n then v is the limit of a subsequence of (vg, v};).
If this is not the case, A\, # 1 if n is large. We assume that A, # 1 for all
n. Write v" as \,(v3;, 1)) + (1 — N5, v1), using Lemma 2.1. Let (u,,
i,) be a strategy corresponding to u with uy € Sy and u,(x, -) € Sy(x) for
all x. For each x € X with \,(x) # 1, n € w and € > 0, let A(n, &, x) C
Y have u,(x, A(n, &, x)) < e and vi)(x, A(n, €, x)). If

An, &) = U {x} X A(n, &, x)
XEX
then
w(A(n, ) < & and (vg,, V)An, €)) > 1 — 6.
Letting ¢ > 0 vary it follows that u + (vg,, v1,). Thus,
v = lim (vgy, Viy).
A similar argument using the decomposition of »g, into a part vg; in Sy and
a part in Sx shows that

v = lim (V83’ V;ll) € -g- L
n

CorOLLARY 2.2.1. If o = (0, 01), set oy = yao, + (1 — y)og where
oo € Sy and oy, € S%. For all x € X, set

o106, ) = Aoyl ) + [1 = Aol )
with
oulx, ) € Sy(x) and opx, ©) € Syx).
Then o € € iff v+ f Mx)og(x)dx = 0.
Proof. Set
o' = (001, o1y), 72 = (00, 012), ' = (02, 0) and
a2 = (00, O12)-
If A = [ AMx)og(x)dx then
o' = yxo' + y1' = N + (A - y))\a'21 + 1A -y - Mo,
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Since {o'?, o', 0} are all in € and o' € € it follows that o € & iff
0 = v [ Mx)og(dx). 1

COROLLARY 2.2.2. Let €% be the split face which is the norm closure of
those strategic measures o with oy € Sy and let €Yy be the split face which
is the norm closure of those strategic measures with o,(x, *) € Sy(x) for
all x € X. Then &' is the convex hull of €x U &y%.

Remark. The split faces of = which arise in Proposition 2.2 are ubiquitous
but not all encompassing. If ¢ = (05, 0y) is a strategic measure, the smallest
split face & of X with o € & of the form described in Proposition 2.2 has

Sy = sface(op,) and Sy(x) = sface(oy(x, *))

for all x € X, yet it will be seen that the resulting split face € of = may
contain measures in {o}* so & # sface(o).

If # is a property of measures in P(Y) we say that a strategy o =
(o9, 0y) is conditionally P iff o(x, ) has property ? for all x € X. If
oy(x, -) has property % except on a oy-negligible set then o is essentially
conditionally ?. Usually 2 will be the property that a measure lies in a
certain face or split face of P(Y). For instance we will use the terms
conditionally diffuse, conditionally discrete, conditionally countably additive,
and conditionally non-atomic. We will say o is marginally ? where P is
a property on P(X) to denote the fact that o7, has property 2. This terminology
extends to the strategic measures induced by the strategies. It is important
to note that a strategic measure is conditionally 2 iff it is essentially con-
ditionally 2.

CoROLLARY 2.2.3. Let Sy be a split face of P(X) and Sy be a split face
of P(Y). The norm closure of those strategic measures which are marginally
Sx and conditionally Sy form a split face of 2. The complementary split
face is the convex hull of the split faces generated in a like manner by
(a) the marginally S strategic measures and (b) the conditionally Sy strategic
measures.

Remark. Although it is true that if y is a limit in norm of marginally
Sx strategic measures then yy € Sy it is not to be expected that if y is a
limit of conditionally Sy measures then yy € Sy. In fact, even if y is a
conditionally Sy strategic measure, y, need not be in Sy. For instance one
may readily construct conditionally discrete strategic measures whose Y-
margin is diffuse and in fact non-atomic.

COROLLARY 2.2.4. Lety € P(X X Y) have X marginal yx.
(@) y is nearly strategic iff for all € > 0 there is a strategy (oo, 0y) =
o with oy = yy and |lo — vy < e.
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(b) v is purely non-strategic iff for any strategy o = (0,, o) with
oy = yxy one has y L o.

Proof. (b) If vy is singular with respect to all strategic measures ¢ with
oy = 7Yyx then vy is singular with respect to all strategic measures with
oo = f(x)yx with f a simple function with [ f(x)dyy = 1. To see this let
b = max(f) and write
b—-1b - f(x)

b b-1'%

For any choice of o(x, ‘), as strategic measures,

1
yx = 5fGvx +

1 b-1(b-
(‘)’X,O'x)'—"l;(f(x)’)’x,oﬁ)"‘ b <b_f(f)')'x,0'1)

$0 yL(f(x)yx, o). If oy << vy there exists a sequence {f,} of simple
functions so that lim,_,.||f,(x)yx — ool = 0. It is easily checked that

lim||( f.(x)yx, o1) — (09, o)l = 0.

Since y L (f,(x)yx, oy) it follows that vy L (oy, o). Since (o, o) is an
arbitrary strategy marginally absolutely continuous with respect to yy and,
since y must be singular with respect to any strategy marginally singular
with respect to yy, vy is purely non-strategic.

(a) There is a sequence of strategic measures 0" = (o3, o7) so that
lim,flog — yxl = 0

hence the part u, of oy absolutely continuous with respect to yy must
satisfy lim,_,.Jju, — yx|l = 0. As a result, if

~ ”’n
" = , O
(Ilunll ')

then lim,_,.[|6" — || = 0. Thus, it may be assumed that oy << vy for all
n. Furthermore, use of Bochner’s finitely additive Radon-Nikodym Theorem

allows us to suppose that o = f,(x)yx for a simple function f,. From the
fact that

limn—boo"fn(x)’YX - yX" =0
it follows that we may replace f,(x)yx by vy which establishes (a). 1

COROLLARY 2.2.5. Ify € = there is, for £ > 0, a strategy o = (0¢, 0y)
with yx = 0o, ¥y << o and o — y|| < e.

Proof. Find strategies 0" = (yx, a7) so that |o" — y| < e - 2". Let

o= ('yX, 2 2'"0”{).

n=1
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It is immediate that, as strategic measures, o = 2, 2 "0" s0 o — || <
e. Since lim,_,,0" = vy in variation norm it is well known that y << =7_,
277", B

Let o = (o0, oy) be a strategy. Let v = (v, v;) be another strategy
with vy << g and »,(x, *) << o4(x, *) for x € X. For r € [0, =) let
vilx, ) = [roy(x, )1 A wn(x, -) and  wilx, ©) = vy(x, ) — ¥i(x, ).

Define {+", u'} C P(X X Y) by setting, for bounded f,

f flx, y)dv' = f [ j S, yilx, dy)? vo(dx)

and

f S, y)du' = f [ f S, yIuilx, dy)?v()(dx).

For each r, v" < r(v,, o,) where (v,, o) is considered as a strategic measure.
Since (vy, 0y) << 0, V' << 0. As r = «, V' increases to »* < v and
=]

V° << 0.

ProrosiTION 2.3. ™ is the part of v absolutely continuous with respect
to o and v — v” is the part of v singular to o.

Proof. 1t is only necessary to show that (» — v°) L o.

It is convenient to work in the Stonian setting. 2¥ is considered as the
clopen algebra of BY. For any u € BA(2"), i denotes the corresponding
Radon measure on BY. For each x € X let h(x, -) be a Radon-Nikodym
derivative of 7,(x, -) with respect to &,(x, -). For any r € [0, «),

7i(x, ) = [A(x, ) A\ rlay(x, ©) and
wix, ) = [h(x, ) = h(x, ) A\ rl4(x, ).
For r € [0, ) let
Ax, r) ={zeBY : h(x,2) < r}.
Since ra,(x, A(x, r)) < 7,(x, A(x, r)) < 1,
Fx, A, 1) =1 - r L,
Also,
Ki(x, ACx, r)) = |luj| for x € X.
For ¢ > 0 find A(x, r, &) C Y so that, considered as a clopen set in BY,
ai(x, Ax, r, e)AA(x, r)) < & and mi(x, A°(x, r, e)AA°(x, 1)) < &.
Set A(r, &) C X X Y equal to U {{x} X A(x, r, &) : x € X}. We have
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o(A(r, €)) = f oy(x, A(x, r, £))ay(dx)
= f [oi(x, A(x, r)) — elog(dx)

BJ[I —r ' —glogdx) =1 -r'—¢.

We also have
W(A(r, e) = f uilx, A(x, r, €))vy(dx)

> [l - owitax) = i - e.
Select r so that r~! < ¢ and so that |u” — (v — »”)| < &. Then,
o(A(r,e)) =1 — 2¢ and
v — VA, €)) = w(A(r,e)) — e = ull — 26 =[v — V7| — 2e.
Since ¢ is arbitrary (# — v°) 1 o. 1

Let v and o be as above. For any r let f(x) = |pi(x, *)Il. The norm of

v is [ f(x)vy(dx). If r > 0 then fi(x) > 0 for all r and x. If v L o then
J f(x)dx = 0 for all r.

Lemma 2.4. w € P(X) is strongly finitely additive iff there is a strictly
positive f on X such that [ f(x)u(dx) = 0.

Proof. Let such an f exist. If

1 1 1
A, = {m>f?;;} for nEN<'0'—-°°>,

then {A, : n € N} is a partition of X into u-negligible sets so u is strongly
finitely additive. Conversely, if u is strongly finitely additive and {A, : n €
N} is a partition of X into u-negligible sets one may set f = 1/n on A, to
obtain a strictly positive f with [ f(x)dx = 0.1

CoRroLLARY 2.3.1. (a) If, in Proposition 2.3, v L o then v, is strongly
finitely additive
(b) If oy is countably additive then v << ¢.

Proof. (a) f, is strictly positive for r > 0 and [ f,(x)vo(dx) = 0.

(b) If o, is countably additive so is »,. As a result, since lim,_..f, = 1
the monotone convergence theorem implies that ™| = 1 so v™ = v. §

We call a 4 € P(X) molecular iff it is a finite convex combination of
{0, 1}-valued measures. A u € P(X) fails to be molecular iff it has an
infinite range iff inf{u(A) : u(4) > 0} = 0 [18].
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CoROLLARY 2.3.2. If oy is strongly finitely additive and o is conditionally

non-molecular there is a v = (0y, v,) conditionally absolutely continuous
with respect to o so that v 1 o.

Proof. Let f be a function strictly positive on X so that

j fx)oo(dx) = 0.
For each x let A(x) C Y satisfy 0 < o,(x, A(x)) < f(x). Let
A=U{x} x Ax) : x € X}
50 0 < 0(A) = [ oy(x, Ax))ao(dx) < [ f(x)oo(dx) = 0. Let
(X, ) = xawloilx, A oy(x, ) << oy(x, ).
Then v(A) = [ vi(x, Ax))oo(dx) = [ 1 oo(dx) = 1. Thus, v L o. 1

CoroLLARY 2.3.3. If oy isn’t countably additive and o is conditionally
non-molecular there is a v = (vy, v,) marginally absolutely continuous with

respect to o, and conditionally absolutely continuous with respect to o so
that v 1 o.

Proof. There is a vy, << o, which is strongly finitely additive. Apply
Corollary 2.3.2 to (¥, oy).

If o isn’t conditionally non-molecular there is a set A C X so that
o(A) > 0 and o(x, *) is molecular for all x € A. Let

f&x) = inf{oy(x, E) : oy(x, E) >0} ifxEA
and set f(x) = 0 otherwise. Let

1 1
={—>f=-
I i 0l

so {A, : n € N} partitions A.

COROLLARY 2.3.4. Suppose that o, is purely finitely additive.

@ If3,_, ooA,) < oy(A) then there is av = (vy, v,) marginally absolutely
continuous with respect to oy and conditionally absolutely continuous with
respect to o, with v L o.

) If3:_, 0A,) = oo(A) = 1 then any v = (v,, v,) marginally absolutely
continuous with respect to o, and conditionally absolutely continuous with
respect to o, satisfies v << o.

Proof. (a) Let w, = Z,.1(x4,00) and let u, = x400 — ;. Since py(A°)
= 0 and uy(A) # 0 we may normalize u, to get v, = u, * [u(A)]7' €
P(X). Since u,(A,) = 0 for all n it follows that [ f(x)dv, = 0. Since
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a,(x, *) is molecular for x € A there exists an A(x) C Y with oy(x, A(x)) =
f(x) > 0. Let

= U {{x} X A(x) : x € A}

and let vy(x, ) = Xal f(x)1 'oy(x, ). As in the proof of Corollary 2.3.2,
og(A) = 0 and v(A) = 1ifv = (v, ).

(b) Letx € A, and let v(x, ) << oy(x, *). Write oy(x, *) as 2L, Aixay
where each 4; is an ultrafilter and A\, = \, ... = \,, = f(x). Then »(x, )
is the convex combination =, y;xq,. If E is in %; but in no other %; then

Vl(xa ) = 71 1 = nal(xa E)

As a consequence, v,(x, F) < noy(x, F) for any F C Y. As a result, if
B C A, X Y then »(B) =< no(B). That is, on A, X Y, v << o, hence,
on (U7, A,) X Y, v << o. Fix € > 0. Pick m so that v(X\U;-4,) < &.
Pick 8 < em™"! so that §,(E) < & implies vo(E) < €. Let B C X X Y with

o(B) < §. We have
O'(Bﬂ (U A, X Y)) <38
n=1

SO

(U A, X Y>> <=md<e.
n=1

o
( (C’A g Y))S"*’(X\QIA,,)Q

Thus v(B) < ¢ + € = 2e. Thatis, v << . 1

We also have

Remark. If v = (v,, v,) is a strategy marginally absolutely continuous
with respect to the strategy o = (oy, o) it is possible that as strategic
measures v << o with »,(x, *) not absolutely continuous with respect to
oix, *) for any x. If vi(x, ) is the part of »,(x, ) singular to o(x, -) we
must have, in this case, [ |vi(x, )|vo(dx) =

3. Atomic and non-atomic elements of 3

In Corollary 2.2.5 it was shown that any y € 2 is absolutely continuous
with respect to some o = (o4, o) With oy = yx. When vyy is molecular
we show that vy is strategic in Corollary 3.4.2. In fact if & is any {0, 1}-
valued element of P(X X Y) either § is strategic or it is purely non-strategic
(Corollary 3.4.1). These results have been obtained for X = N by Schervish,
Seidenfeld and Kadane [22]. Along the way we characterize which o =
(o, 01) are non-atomic.

The results of this section dealing with strategic measures o which are
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conditionally {0, 1}-valued and marginally {0, 1}-valued are essentially dealing
with the construction of ultrafilters on the product X X Y from an ultrafilter
on X and a family of ultrafilters on Y, hence is closely related to certain
constructions in Comfort and Negrepontis [12]. These constructions may
be of some interest to logical model theorists in the study of ultrapowers
or others whose main interests are ultrafilters rather than measures.

ProposiTioN 3.1. If o = (0, 0y) is a marginally non-atomic strategic
measure or is a conditionally non-atomic strategic measure, then o is a
non-atomic measure.

Proof. We only establish the proposition in the harder case where o is
conditionally non-atomic. Fix & > 0. It is easy to see that if n > 2/¢ and
i is non-atomic there is a partition {A;(x), ..., A,(x)} of Y so that
oy(x, Aj(x)) < ¢ for all j and each x. Set A; C X X Y equal to U {{x} X

Aj(x), x € X} for all j. It is easily verified that o(4;) < ¢ for all j. Since
€ > 0 is arbitrary, o is non-atomic. I

Via Lemma 2.1, any strategic measure decomposes into a marginally
non-atomic part, a marginally atomic and conditionally non-atomic part,
and a marginally atomic and conditionally atomic part. Can the marginally
atomic and conditionally atomic part be a non-atomic measure? The answer
is yes. We let o = (o, o) be such a measure and let oy(x, ©) = =,
Ni(x)oi(x, -) where each oi(x, ) is a {0, 1}-valued measure, A\ (x) = =+ =
)\,,(x) e = O, and 2;;1 )\,-(x) = 1.

ProposITION 3.2. Let o = (0,, o) be as above. Then [ \(x)oy(dx) = 0
iff o is non-atomic.

Proof. Suppose that | \(x)ao(dx) = 0. For any n, ofx : A\(x) =
1/n} = 0. Fix n and suppose that \,(x) < 1/n for all x.

For each j, let m;(x) be the last m, possibly », so that Z_; \,(x) < j/n.
As a result,

ﬁE NG T <is<mix)} >J; - M%)
and

L= S0 m) + 1<i<m, @)

?rlz — M(x) forallx € X.

Pick a partition {A,(x), ..., A,(x)} so that

ol A,(x) =1 if m;_y(x) <i<myx)
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and
oix, A;(x)) =0 if mP <i<m(x) and j#I<n
We have
oy, A;(0) = D (x) 2 my_(x) < i < my(x)}
+ 2 )T, Aj(x)) : my(x) <}

< [l + )\l(x)] + A\(x)
n

<—0

=

n

Set A; = Uy {x} X A;(x) forj = 1, ..., n. We have o(4;) < 3/n. Since n
is arbitrary, o is non-atomic.

Conversely, if A, = [ M(x)oo(dx) > 0 let v be the strategy (v,, v,) With
v(x, ) = olx, *) for all x and v, = Aj'\(x)op. By Lemma 2.1, o =
Ay + (1 — A)y for some strategic measure y. v is conditionally {0, 1}-
valued and v, is atomic since o is atomic. Since v, is a countable convex
combination of {0, 1}-valued measures, so is ». Thus, if [ \{(x)oo(dx) # 0
then o is not non-atomic. W

If a strategic measure, o = (0, o) is to be atomic then, by Lemma 2.1
and Proposition 3.1, it may be taken to be conditionally and marginally
atomic. In this case, write

oi(x, 1) = 2 M@ailx, )
i=1
where each oi(x, *) is {0, 1}-valued and {\,(x)} is a decreasing sequence in
[0, 1] summing to 1. Write \; = [ A(x)oo(dx) and A = =1 \; and, if
A # 0, let o; be the strategy (\;' \;(x)oy, o}). Each o; is atomic and we
may write

o= N+ A -Nd°

for some o° € Z. If oy is {0, 1}-valued then ;'\, (x)o = oy if \; # 0. If
A = 1 then o is atomic.

ProrosiTiON 3.3. Let o = (0, 01) be a marginally atomic, marginally
countably additive and conditionally atomic strategic measure. Then o is
atomic and equal to 7., \;o'.

Proof. Since 2., \;(x) = 1, the monotone convergence theorem guar-
antees that A = 1. W

ProposITION 3.4. Let o = (0, 0,) be a conditionally atomic and marginally
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atomic strategic measure. Then =i, N\’ is the atomic part of o and
(1 = Mo is the non-atomic part.

Proof. Assume that o is {0, 1}-valued. We need to show that ¢° is non-
atomic. If A = 1 the assertion is vacuous. If A < 1 choose an integer m
and an € > 0 so that ¢ < 1/2m and ¢ < (1 — A)/m. Choose an integer n
so that 27! \; > A — ¢ and, as a result, A\, < &. Since o, is {0, 1}-valued,

DORDWE =0 IR VIS W = B
i=n+1

and \;(x) < & for op-almost all x and all j = n. We will suppose this holds
for all x.

For each x let m(l, x) be the first integer k with

k )
> xj(x)zi > M)

J=n+1 i=n+1
Then
m(l,x) l [
2 M@ Ss= 2 M@+ AK)
j=n+1 micpni
and Z{\;(x) : m(l — 1, x) <j < m(, x)} is between

1 > N(x) = M(x) and 1 > Nx) + M),

i=n+1 i=n+1

Since A\, (x) < & < (1 — N)/m it follows that
Z{NG) cmd - 1, x) <j<md, x)}>0.

Let o'(x, ©) = SA@)oix, ) : m( - 1, x) <j < m(, x)} so

lw'Cx, )| = Z\x) s md = 1, x) <j < m(, x)}.
Set ¥i(x, ) = @'(x, )@'(x, )| ~! and let v, be the strategy (a,, v}). Set

o, = [ [loflx, logdx).
We have
1 - 1 -

—— —egs oS
m

A + ¢ foralll.

We write o as 2, ;o' + =71, wp' and note that (1 — Mo® < 37, w'.
For any x let

{A](X), eeey An(x)’ Bl(x), e Bm(x)}
be a partition of Y such that
oi(x, A;(x)) =1 foralli and vi(x,B,(x))>1— ¢ foralll.
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Set A; = Ux{x} X A;(x)foralliand B, = Ux{x} X B(x) for all I. Consequently,
V(A;) < e for all i and V'(B;) < e if j # l. We have, for any i,

1 - MN'@A) < E wV'(4) <e 2 o<e< -l-
=1 I=1 2m

We have, for any j,

(1 = No’B) < D, o(B) < 2, we + wp'(B)
=1 1#j

1
Ss+wj<s+(n—1+s)

1 2
=2+ —=—<—.
m m
Since m is arbitrary, ¢° is non-atomic.
If oy is not {0, 1}-valued, let it be the countable convex combination

27 yo%h of the {0, 1}-valued {o%}. Let ¢/ = (0%, oy) and o =
(0%, o) for all i, j. Write

O'j = 2 )\j,-(rﬁ + <1 - ZXJ,)O'JO
i=1

i=1

where o/° is the non-atomic part of o/ and
Ay = j N (x)a(dx) for all i and .
We have \; = Zj_, y\; for all i. The atomic part of o is
2 Vi 2 \jio g
j=1i=1
and the non-atomic part is
> 'y;(l -2 Mi)"jo-
j=1 i=1

The norm of the non-atomic part is

2’)’;(1 -> Xﬁ) 1-2 %2 N
“ : :

i=1

]

I I
— —
| |
M s M s
kgl AU
. M 8
=
Rl
<
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The norm of the atomic part of o is =i, \;. Since Z_; \;,0’ has norm

1 A; and is atomic, it is the atomic part of o, and ¢° is the non-atomic
part. 1

CoROLLARY 3.4.1. If vy is a {0, 1}-valued element of T it is strategic.

Proof. 1If v is not in X it is absolutely continuous with respect to a
strategic measure (o, o;) which, by Lemma 2.1 and Proposition 3.1, may
be taken to be marginally and conditionally atomic, for vy is singular to all
non-atomic measures. Writing (o, o) = = N;0° + (1 — N)o?, as in Proposition
3.4, it follows that y << o' for some i, hence y = o' for some i. §

COROLLARY 3.4.2. Let y be an atomic element of T such that vy is
molecular. Then vy is strategic.

Proof. Suppose that yy is {0, 1}-valued. Write vy as 2;_; A\yy; where each
v: is {0, 1}-valued. We have (y;)x = vy for all i. Each y; € = hence is
strategic, corresponding to a strategy (yx, ¥;). 7 is the strategic measure
for the strategy (yyx, i1 Ay).

If yy = =, Ay, where each v is a distinct {0, 1}-valued measure, find
a partition {4y, ..., A,} of X so that ¥{4,) = 1.0n A, x ¥, A\ 'yisa
nearly strategic measure with (\; 'y)y = v%. It is, in fact, strategic and
corresponds to a strategy (yx, ¥)) on A; X Y. Let y,(x, ©) = ¥i(x, *) if
x € A, y is the strategic measure on X X Y for the strategy (yx, v;).

CoRrOLLARY 3.4.3. If there is a partition of X into atoms for vy (for
instance if yx is countably additive and atomic) then vy is strategic.

Proof. The proof of Corollary 3.4.2 only required the existence of a
partition {A,} so that if yx = Z;_, \,yx where each v} was {0, 1}-valued
then y3(A,) = 1 forall n. B

COROLLARY 3.4.4. If (04, o) is a conditionally discrete and marginally
atomic strategic measure then there exist a sequence {f,} of functions from
X to Y and a decreasing sequence of functions {\,(*)} of functions from X
to [0, ®) so that if N, = [ N\, (x)oo(dx) then the atomic part of a is given
by 25_, N\, 0" where

f g(x, g)da" = J g(x,ﬁ,(x))-)%f—)oo(dx) forall g.

Proof. \, is defined as before and f,(x) is the y in Y with oi(x, ) =
8,(). 1

CoroLLARY 3.4.5. If o = (00, 0) is a conditionally discrete and marginally
countably additive strategic measure then o = Z{., \;,o' where o' =
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NN oy, T, where each \; = [ M\(x)oo(dx). Each o' gives measure 1
to the graph of some function f; : X — Y.

4. k-additivity of strategic measures

We start this section with a characterization of which strategic measures
are countably additive and which are purely finitely additive.

ProrosiTiON 4.1. Let o = (04, 0,) belong to X.

(@) o is countably additive iff it is marginally countably additive and
conditionally countably additive.

(b) o is purely (strongly) finitely additive if it is either marginally purely
(strongly) finitely additive or conditionally purely (strongly) finitely additive.

Proof. (a) is nearly immediate.

(b) Suppose that o is conditionally strongly finitely additive. For each
x € X let {A,(x)} be a countable partition of Y’ into o(x, -)-negligible sets.
If A, = Ux{x} X A,(x) for n € N then {A,} is a partition of X X Y into
o-negligible sets, so o is strongly finitely additive.

If each o(x, ) is purely finitely additive let ¢ > 0 be given and let

o(x, ) = Mx)oy(x, 2) + [1 = AMx)lo(x, )

where o,(x, ) is strongly finitely additive and A(x) > 1 — &. As in Lemma
2.1, write 0 = Ao’ + (1 — No? where o' = \(x)oy, o), o = (1 —
Ax))ag, 0,) and X = [ Mx)do,. o' is strongly additive and o — o' <
e. Since ¢ is arbitrary, o is purely finitely additive. This establishes the
hardest parts of (b). The rest of the assertions are easily verified. 1

If « is an infinite cardinal number and u is a finite positive measure then
1 is said to be k-additive iff Z{u(A,) : « € T} = wW(U{4A, : a« € T}) for
any disjoint family {A, : a € T} with || < . The k-additive elements of
P(X) form a split face of P(X) [6]. The elements of the complementary split
face are called purely non-x-additive probabilities [6]. If there is a partition
of X into « or fewer u-negligible sets then the positive measure u is called
strongly non-k-additive and is purely non-k-additive.

A cardinal k is said to be Ulam real valued measurable (URVM) iff there
is a countably additive diffuse probability u on a set of cardinality «. If u
is {0, 1}-valued then « is said to be Ulam measurable (UM). If u is a diffuse
probability on x which is x-complete then « is said to be real valued
measurable (RVM), and if u is {0, 1}-valued then « is said to be measurable.
The first URVM is RVM and the first UM is measurable. Any cardinal
larger than a URVM (UM) is again a URVM (UM). It is consistent with
ZFC that no URVM exists. It is also consistent that 25° be a RVM. How-
ever, no RVM can be a successor cardinal so this violates the continuum
hypothesis. Any measurable cardinal k is inaccessible in that if A < « then
2* < k. In fact « must be preceeded by an inaccessible number of inaccessible
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cardinals. A measurable ideal cardinal (MIC) is a k so that there is a set
X with |X| = «k admitting a diffuse probability s with &, a k-complete ideal
hence, if w is countably additive, with u k-complete. Any RVM is an MIC
and any MIC larger than 2™ is a measurable ideal cardinal. Solovay [28]
shows that if existence of MIC’s is consistent then so is the existence of
measurable cardinals. Baumgartner, in unpublished notes, shows that if it
is consistent that an MIC exist then it is also consistent that they exist yet
no RVM exists. Solovay [28] shows that it is consistent that an RVM exist
yet no measurable cardinal exists.

In [6] it is shown that A,(u) is a countable sum of RVM’s or is Ry[6]. A
positive finite measure w is purely non-k-additive iff it is a sum of countably
many strongly non-k-additive positive measures iff it is a countable convex
combination of strongly non-k-additive measures iff for all £ > 0 there is
a strongly non-k-additive v, a A > 1 — g, ay,with u = Av + (1 — Ny,
[6]. Weaker than k-additivity is k-completeness. If u is a finite positive
measure then u is k-complete iff it is A-additive for all cardinals A < k.
Any finitely additive measure is X,-complete. Countably additive measures
are the R,-complete measures. In general, if k* denotes the successor to
k then w is k *complete iff it is k-additive. The k-complete w in P(X) form
a split face of P(X) which is the (decreasing) intersection of the split faces
of A-additive probabilities for A < k. The complementary split face of purely
non-k-complete probabilities is the o-convex hull of the face which is the
union of the purely non-A-additive probabilities as A ranges over the cardinals
less than k. Here, purely non-A-additive probabilities may be replaced by
strongly non-A-additive probabilities since a o-convex hull is involved.

For diffuse measures w there is a least cardinal A,(u) so that u is strongly-
non-A (u)-additive. This is the least cardinal number of a partition of X into
u-negligible sets [6]. There is a least cardinal A,(u) so that u is purely non-
A (w)-additive [6].  A,(m) < A (w) < |X|. Neither A, (u) nor A(u) are limit
cardinals [6]. There is a unique cardinal A (&) so that u is k-complete but
not k *-complete. We have A (u) < N\, (w) with A (u) = A\,(w) = « if and
only if w is purely non-k-additive but is k-complete. The set of u € P(X)
with A,(u) = A(u) = « form a split face of P(X). All such split faces are
disjoint and the o-convex hull of these faces is the split face of all diffuse
measures. Notice that the discrete measures are those which are k-additive
for all cardinals k. A.(u) = R, for any diffuse u. Of course k = \,(u) =
A(un) if w is a diffuse k-complete probability on a set of cardinality «.
Conversely, if k = A,(u) = A (u) there is a surjection ® of X onto the
pointset of k so that the image measure is k-complete. The cardinal A\,(w)
is shown in [6] to be an at most countable sum of MICs or to be X,.

It is possible, if an RVM exists, for a probability u to be non-countably
additive yet to have ', be countably additive.

Example 4.1. Let k be an RVM and let 8 be a diffuse x-complete
probability measure on Y where |Y| = k. Let a, be a discrete probability
on X = N with a;(n) > 0 for all n € N and let a, be a diffuse probability
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on X. Then

1 1
w= ia(al, B) + 'Z‘U(az, B

is not countably additive yet &, is countably additive. To see this note
that from Proposition 4.1, o(a,, B) is purely finitely additive so u isn’t
countably additive. Now suppose that {A(n) : n € N} is a sequence in N,.
We have B((A(n)),,) = 0 for all m € N since a,({m}) > 0 for all m € N.

Thus,
0 - B(Ql (A(n))m) - B([MLZJl A(n)] )

From this it follows that

ooy, B)( L_Jl A(n)) = ol(ay, ,3)<L_)1 A(n)) = 0.
Thus, U;_; A(n) € N, which establishes countable additivity of ¥,,.

ProrosiTION 4.2.  Any diffuse uw € P(X) admits a unique decomposition
as a countable convex combination Z{\ ., : k a cardinal; where \,(u,) =
Ac(ﬂx) = K.

Proof. If N,(w) = A(u) = k set A, = 1 and u, = p. Otherwise k =
A(m) < A (w). For N < k, w is A-additive yet u isn’t k-additive. Write

r = A’KMK + (1 - )\K)#‘,

where ' is x-additive and w, is purely non k-additive. We have A, (u,) =
A(m,) = k since w, is A-additive for A < k. We have

M) = M(p') = Aw) > k= Al().

Replace u by u' and proceed by induction to obtain A,., and u,. for «’
between « and A,(w). 1

CoroLLARY 4.2.1. If u is {0, 1}-valued then N,(u) = A(m).

COROLLARY 4.2.2. If A is a cardinal number then Z{\ ., : kK < A} is the
purely non-\-additive part of w, Z{\ . : k > A} is the \-additive part of
My S{Npi : K = N} is the N-complete part of w and 3{\ ., : k < A} is the
purely non-\-complete part of u.

Degrees of additivity and of completeness are defined for ideals and for
filters analogously to the corresponding definitions for measures. For instance
an ideal (filter) is k-additive iff the union (intersection) of any subfamily of
cardinality at most equal to k is an element of the ideal (filter). An ideal
(filter) is k-complete iff it is A-additive for A < k.
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The definition of x-completeness of an ideal or filter here is that of «-
additivity in [6] and elsewhere but is now consistent with that for measures.
For countably additive probabilities u, the degree of additivity of w is that
either of its ideal &, of negligible sets or, dually, that of its filter F, of sets

of measure 1. This is a well known fact which we record as a lemma and
shall prove.

LemMA 4.3. Let u be a countably additive measure and k an infinite
cardinal number. Then p is k-additive (k-complete) iff N, is k-additive
(k-complete).

Proof. Let{A, : a € I'} be a disjoint collection in 2*. There are at most
countably many members of this collection with u(A,) > 0, say

{Aus ooy A,y oo}
LetI" = {a €T : a # o; all i}. We have

u(LrJ Aa) =D wA,) + MUA, : €T},

i=1

If ¥, is |I’| additive then

u(LrJ Aa) = > mA,) = 2 {mA,) : a €T}
i=1
This suffices to establish the lemma.

ProrosiTION 4.4. Let o = (0, 0,) be countably additive.

(@) o is marginally and conditionally k-additive iff o is k-additive.

(b) 1If o is marginally or conditionally purely (strongly) non-k-additive
it is purely (strongly) non-k-additive.

(©) If o is strongly (purely) non-k-additive and v is the normalized
k-additive part of o then (v, o) is conditionally strongly (purely) non-k-
additive.

Proof. To establish (a), it must first be shown that if o is marginally
and conditionally k-additive then &, is k-additive. Let {4, : A < k} be
a family in &, indexed by k and let A, = U {4, : A < k}. We must show
that 0(A,) = 0. For any A < k, [ oy(x, (A)):)o0o(dx) = 0 s0 oy(x,(A)),) =
0 for op-almost all x. Since oy is «-additive there is an N € N, so that if
x € X\\N then o,(x, (4,),) = 0 for all A < k. Since o,(x, ‘) is k-additive
aix, (A,),) = 0 for x € X\ N. As a result,

oA = [ e ) ad) = 0.

Thus, o is k-additive if it is marginally and conditionally k-additive.



648 THOMAS E. ARMSTRONG AND KAREL PRIKRY

Conversely, assuming (b), if o is k-additive, o, can’t have a non-trivial
purely non-«-additive part, nor, using Lemma 2.1 can it be true that o(x, *)
has a non-trivial purely non-k-additive part for a set of x with o positive
measure.

(b) Suppose that o is conditionally strongly non-x-adtlitive. For each
x € X let {A,(x) : A < «} be a partition of Y into « sets, some of which
may be @, each of which is o(x, -)-negligible. Set A, = U {{x} x A,(x)}
for all A < k to obtain a partition of X X Y into « sets in W,. Thus, o is
strongly non-k-additive if it is conditionally strongly non-x-additive. An
easier demonstration shows that o is strongly non-«-additive if it is marginally
strongly non-k-additive.

Suppose that o is conditionally purely non-«-additive. For an ¢ > 0 and
each x € X, let oy(x, ) = Mx)o,(x, ) + (1 — AMx))o2(x, -) where A(x) >
1 — e and oy,(x, *) is strongly non-«k-additive. By Lemma 2.1, the strongly
non-k-additive strategic measure (o, 0;) is within ¢ of ¢ in variation norm.
Since ¢ is arbitrary, o is purely non-x-additive. Similarly, if o is marginally
purely non-«-additive then it is purely non-k-additive.

(c) Suppose that o is purely non-k-additive. Then (v, o) is also purely
non-k-additive. Thus we may assume that v = o,. If o is purely non-«-
additive then it is impossible that, for a set of x with positive o, measure,
oi(x, *) has a non-trivial k-additive part. Thus, o is conditionally purely
non-k-additive.

Now assume that o is strongly non-x-additive. Let {4, : A < k} be a
partition of X X Y into « sets in N,. For each A\ < k,

fo'l(x, (A)),)oo(dx) =0

so oy(x, (A,),) = 0 for oy-almost all x. Since o, is k-additive we have, for
og-almost all x and for all A, o,(x, (4,),) = 0. Thus, for o-almost all x,
oy(x, ) is strongly non-«-additive. Thus, if o is strongly non-«-additive it
is conditionally strongly non-«-additive. B

CoroLLARY 4.4.1. (a) o is k-complete iff it is marginally and conditionally
Kk-complete.

(b) If o is marginally or conditionally purely non-k-complete, it is purely
non-k-complete.

(c) If o is purely non-k-complete and v is the normalized k-complete
part of oy then (v, o) is conditionally purely non-x-complete.

Let u be countably additive and diffuse. For each cardinal k = R,, let
A, be the k-complete purely non-k-additive part of w so u, € P(X) and
A # 0 for at most countably many k. There is a partition {A, : « an infinite
cardinal} with A u, equal to u on A, for all x. This is a consequence of
the Hahn decomposition theorem. We shall set A, = @ if A, = 0 and call

A, the k-complete purely non-k-additive set for u noting that it is unique
modulo ¥,,.
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ProrosiTION 4.5. Let (0, 04) = o be a countably additive strategic
measure. For an infinite cardinal \ let A°, C X (Ai(x) C Y) be the

A-complete purely non-\-additive set for o, (oi(x, *)). For an infinite cardi-
nal «,

A, ={x,y) : xE A}, y EA\x), A =k}
U{x,y): xEAY,y €EALx), A >k}

is the k-complete purely non-k-additive set for o.

Proof. 1t follows from Proposition 4.4 and Corollary 4.4.1 and their
proofs that the restriction of o to A, is k-complete and purely non-«-additive.
The complement of this set is the union of

{x,y) : x€EALN<K}=E,, {(x,y):yEAX), A<k} =E,
and
E; ={(x,y) : x EAY, M > K,y € AL(x), A\, > k).

On E; U E,, o is purely non-«-complete, and, on E;, ¢ is k-additive. Thus,
A, is the k-complete purely non-k-additive set for o. 1

5. Uniform strategic measures

A diffuse measure u on X is said to be k-uniform if it annihilates all
subsets of X of cardinality smaller than k. Denote by X=* the ideal of
subsets of X of cardinality less than x. u is k-uniform iff X~ C W,. If
k = |X| then w is said to be a uniform measure on X if it is k-uniform.
The uniform ultrafilters on X are those ultrafilters whose dual maximal
ideals contain X <! [12]. The k-uniform ultrafilters 9, are those whose dual
maximal ideals contain X <* [12]. If we regard BX as the Stone space of 2%
then %, is a closed subset of BX corresponding to the filter dual to the
ideal X=*. A measure u is k-uniform iff the measure i corresponding to it
under the Stone correspondence has supp(i) C %,.

If u is any finite diffuse measure then it is X,-uniform. There is a least
cardinal number « of a set A with u(A) > 0. This is the largest cardinal
so that u is k-uniform. For this cardinal, there is a maximal disjoint collection
of sets A with |A| = k and u(A) > 0. This collection is at most enumerable.
The union A, of this family has the property that if |A| = k then w(A\A,) =
0. Furthermore, u, when restricted to A,, is uniform and, when restricted
to X\\A,, is «* uniform. If we let k;, = k and u,, be the restruction of w
to A, we may find a smallest cardinal x, > «; of a subset of Ay, with
positive u measure and a maximal set A,, C Ay, of cardinality x, on which
@ is uniform. Proceeding by induction we obtain an increasing sequence
{k, : n € N} of cardinals, a disjoint. sequence {A,, : n € N} of sets with
|A,] = k, each of which is maximal in that u is uniform on it. On
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X\U, A,, (Where m = o is allowed and k, = sup,k,), s is k,-uniform
or k,-uniform if m = w. Set u’' = u — ;. u,, where p,, is the restriction
of uwto A,, so u' is k,-uniform. Replacing u by u', one may repeat the
preceding procedure getting a new sequence of cardinals {x,, x,.i, ...} and
a new disjoint sequence {A,,, A,..,, ...} S0 that |A,..,| = k,+,, #' is uniform
onA,,,,, and A, ,, is maximal in this regard. Furthermore A,,,, is disjoint

from {A,,, ..., Ay, .} if j = 1. Proceeding by transfinite induction, we have
this proposition.

ProposITION 5.1.  Let u be a diffuse measure on X. There is a countable
ordinal ay, an increasing sequence {k, : a < ay} of cardinals, and a
corresponding sequence {u,, : a < oy} of positive measures on X so that
p =32 {u, : a < ay} and so that each p,, is k,-uniform. There is a
corresponding sequence {A,, : a < a,} of subsets of X so that

Al = Ka» Mi(Ak) = [l

for all & < ay and so that A, N A, = @ if a > B and a is a successor
ordinal (or for any a, if p is countably additive). Furthermore, w,, is the
restriction to A, of p — Z {p., : B < a} for a < ay.

Remark. We may call this proposition the ‘‘uniform decomposition
proposition” since each u,, is the k,-uniform purely non-x; -uniform part
of u. The A-uniform part of w is

2 {p Ko =N}
and the purely non-A-uniform part of u is
2 i, ¢ Ko < AL

If « is a limit ordinal less than a, and k, # sup{ks : B < a}, then A,, is
disjoint from A,, if 8 < a. In particular, if the cofinality of k, isn’t R,, or
if k, isn’t a limit cardinal, this is the case. If {A,, : a < o} is disjoint it
will be called the uniform decomposition partition for u. Notice that if u,
is the purely non-«,-uniform part of u and p, is the purely non-«; -uniform
part of w then w; — m, = m,,. Hence, to determine the uniform decomposition
of w it is only necessary to know the purely non-A-uniform parts of u for
all infinite cardinals \. It is useful to know that a measure u is purely non-
A-uniform for some A iff

w(A) = sup{u(Ad'): A' C A, |AY < A}
iff [ fdu = sup{fs fdu : |A] < A} for any bounded function f. These
suprema are maxima if the cofinality of A is not X,.

CoRrOLLARY 5.2.1. In order that w be purely non-A-uniform for some

cardinal \ it is necessary and sufficient that for any A C X with u(A) >
0 there exist an A' € A=* with uw(A") > 0.
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Proof. Suppose that there is an A with u(A) > 0 yet with w(A') = 0
when A’ C A with |A’| < \. Then u is A-uniform on A hence isn’t
purely non-A-uniform. Conversely, suppose that for all A with u(4) > 0
there is an A’ C A with u(4’) > 0 with |A’| < \. This implies that u =
S {u,, : @ < A}. Else there is «, = \ occurring in the uniform decomposition
of u. For A,, we have u(A,) > 0 yet w(A") = 0 for all A’ C A, with |[A’|
< A. This contradicts our supposition so u = = {u,, : k., < A} is purely
non-\-uniform. 1§

For o = (o9, 0,) and « an infinite cardinal let A*c§ denote the diffuse
purely non-k-uniform part of o, and, for x € X, let A (x)o{(x, -) denote
the diffuse purely non-«-uniform part of o(x, ) where o} and o'(x, *) are
diffuse purely non-«-uniform probabilities.

PRrOPOSITION 5.2. Let k be an infinite cardinal number and let o =
(09, o) be a diffuse strategic measure. The purely non-k-uniform part o
of o is the measure described in one of (a), (b), (c) or (d).

(@) If o is marginally discrete and conditionally diffuse then o is

MAGON oo, 0F)

where A, = [ M(x)oo(dx).

() If o is marginally diffuse and conditionally discrete then o* =
N(os, oy).

(©) If o is marginally diffuse and conditionally diffuse then o is the
supremum of the measures o where

0% = NN 5,05, 09)

with A, , = [ N (x)o§(dx) for a < k if k is a limit cardinal and o* is ™"
otherwise.

(d) If o is the convex combination ayy, + ayy, + azy; where v, is a
marginally discrete conditionally diffuse strategic measure, vy, is a marginally
diffuse conditionally discrete strategic measure and vy, is a marginally and
conditionally diffuse strategic measure then o* = apy + oy + azy5.

Proof. (d) is a consequence of the fact that purely non-k-uniform measures
form a split face of P(X X Y).

Of (a), (b) and (c), only the hardest, (c), will be established. Here the
difficult case is where « is a limit cardinal and this will be the case established.
Let v = sup{o™* : a < k}.

Let |A| = a < k. For any x, |A,| < aand |[{x : A, # @} < a. We have

o) = [ oitx, Aouds) = A+ [ oy(x, At

A< f Ae(x)of(x, A,)o(dx)
= o®*A) ifa<p.
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Thus, (c — v)(A) = 0 and o — v is k-uniform. Now let A C X X Y have
v(A) > 0 hence have o*“(A) > 0 for some a < k. There is an E C X so
that |E| = B < kand 0(A") > 0if A’ = A N [E x Y]. This is because
o is purely non-k-uniform as is vyx. For each x € E let E(x) C Y have
|E(x)| < @ and E(x) C A, = A, with o{(x, E(x)) = $o7(x, E(x)). Set

A" = U {{x} X E(x) : x € E} C A.

We have *“(A") = $0**(A’) > 0. Thus, ¥(4") > 0. Since |[A"| < a - B <
k, v is purely non-«-uniform by Corollary 5.2.1. Consequently, o — v is
the k-uniform part of o and v is the purely non-k-uniform part. i

CoroOLLARY 5.2.1. If o is marginally diffuse, marginally countably additive,
and conditionally diffuse then o = o"* even if k is a limit cardinal.

Proof. 1t is only necessary to show that ¢’ is purely non-«-uniform
for o — ¢*“ is k-uniform by the same argument as used in the preceding
proof. If 0**(A) > 0 for an A C X X Y we must find A” C A with |A"] <
k with ¢**(A”) > 0. There is an E C X with |E| < k so that **(4") > 0
where A’ = A N (E X Y). For each a < k let E,, be those x € E so that
there is an A(x, o) C A, = A, with o{(x, A(x, a)) = $0i(x, A,) and
|A(x, @)| =< a. Since each of(x, *) is purely non-«-uniform, E, must increase
to E as « increases. If k is of countable cofinality, o§(E,) > 0 for some
a < k. In this case, set

A" = U {{x} X Ax,a) : X € E, }

and note that, as in the preceding proof, ¢*“(A") > 0 so ¢’ is purely non-
k-uniform. If k isn’t of countable cofinality then o = ¢ for some a < k
which is either a successor cardinal or is of countable cofinality. In either
case 0% = o™% = ¢"" which establishes the corollary. 1

COROLLARY 5.2.2. Let o be marginally and conditionally diffuse and
countably additive and let k be an infinite cardinal. Let A, C X with
|Ao| =< k be such that o is purely non-k-uniform on Ay with o§(Ay) =
lotll. For each x € Ay, let A((x) C Y be such that |A(x)| < « and
oi(x, ) is purely non-k-uniform on A(x) with

oi(x, A(x)) = |loi(x, Il

Set A = U {{x} X Ai(x) : x € Ay}. Then o is purely non-x-uniform on A
and o(A) = |o".

Proof. Immediate.

Remark. 1If k is a cardinal whose cofinality is not X, then the assumption
of conditional and marginal countable additivity may be dropped.
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6. Singularity and Absolute Continuity of Reverse Strategic Product
Measures if One Margin is Diffuse and Countably Additive

We start this section with a result which indicates that reverse strategic
product measures may be nearly strategic even if both margins are diffuse.
In fact our result is much stronger. If « € P(X) and 8 € P(Y) then o ® B
denotes the usual product measure on the product algebra 2* ® 2*. Both
o(a, B) and 7(a, B) extend o ® B. The a ® B-completion of 2¥ x 27
consists of all E C X X Y for which, for all ¢ > 0, there exist {E,, E,} C
2¥ ® 2" with E, C E C E, with & ® B(E,\E,} < €. The a ® B-completion
of 2¥ ® 2% is the largest subalgebra of 2**¥ to which a ® B has a unique
extension. When we say below that 7(a, 8) = a Q) 8 we mean that 2XxY
is the @ ® B-completion of 2* ® 2*. In this case 7(a, 8) hence o(a, B) is
the unique extension of a ® B to 2***,

Note that if % is a subalgebra of 2** and {u, : n € N} are finitely
additive probabilities on % then any E in the u,-completion of & for all n
is in the w-completion of % for any u which is a countable convex combination
of {u, : n € N}. To see this, write u as Z,ey A, 1, and pick m so that =},
N, =1 — gforagiven e. Pick {E;, E,} C # with E, C E C E, and u,(E,\E,)
<gforalln =1, ..., m. Then, w(E,\E)) < «.

ProrosiTION 6.1. Let k be an infinite cardinal.

(@ Let a € P(X) be 2“-additive and B € P(Y) purely non-x *-uniform.
If a is atomic or if B is countably additive then (o, B) = a ® B.

(b) If a € P(X) is k-additive and atomic and B € P(Y) is purely non-
k " -uniform and atomic then (o, B) = a ® B.

Proof. Since B is purely non-« *-uniform iff it gives measure 1 to a set
of cardinality k we may assume that |Y| < «.

(b) If « and B are {0,1}-valued this is the content of Corollary 7.24 (b)
in[12). fa = Z;,_; \,a, and B8 = Z,._; V.8 Where a, and B,, are {0, 1}-
valued then each a,, is k-additive and a @ B = 2,1 Zoi MY @ B
Since 2**Y is the a, ® B,-completion of 2*¥ ® 27, it is also the a« ® B
completion of 2*¥ ® 2.

(a) Let EC X x Y. We may regard E as the graph of a correspondence
E: X —2Ygivenby E(x) = E,. ForAC Ylet E''A) = {x : E, = A}.
Since

X =U{E'A) :4€2
and « is 2*-additive and |Y| < k, we have
aX) = S{u(E"'A)) : A €2}
Let {A, : n € N} enumerate the A € 2" with a(E™'(A)) > 0, so
aX) = = E"'(A,)).
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Set N = X\\Ui {ET'A)}so aN) = 0. Set E' = EN [(X\N) x Y] C
E so

m(a, B)E') = (e, B)E) and o @ BE) = a ® BE).

We have E' = U;_, E"'(A,) X A,. When B is countably additive, so is
7(a, B), by Proposition 4.1. As a result, for any € > 0, there is an m so
that

o ®B( 0 B4, x An) > 1(a, BIE") ~ & = (@, BE) ~ e.
That is, there is an E, C E with

E, €2 x2Y and & + a ® B, = (e, BNE).

Similarly, there is an E, € 2*¥ x 2¥ with E C E, and 7(a, B)(E) = a ®
B(E;) — &. Thus, a ® B(E,\E;) < 2& which shows, since ¢ is arbitrary,
that E is in the a ® B-completion of 2*¥ ® 2”. This establishes (a) in the
case B that is countably additive.

In (a), when « is atomic the proof immediately reduces to the case where
a is {0,1}-valued. Obtain E' = U;_,E"'(A,) X A, as before. In this case,

a(E~'(A,)) > 0 for only one n,

say n = 1, and E' = E"'A4,) X A, 50 a ® BE) = a ® BE) =
m(a, B)(E) which suffices to establish this case. 1

Remarks (1) « and B8 may have discrete parts. If « and B are discrete,
the equality o(a, B) = 7(a, B) is Fubini’s Theorem.

(2) If \ is a real-valued measurable cardinal we may let X be a set with
X = M and «a be a diffuse A\-complete probability on X. If Y is any set such
that k = |Y] satisfies 2 < X\ then for any 8 € P(Y), o(a, B) = 7(A, B).
Of course, if Y is infinite then A > 2™, hence is a measurable cardinal. In
this case, as soon as |¥| < |X]| (i.e., k < \) we have 2 < A.

(3) B may be countably additive and diffuse or it may be purely finitely
additive. However for this result o must be countably additive if 8 is purely
finitely additive.

@4 1(a, B) = a ® B if the assumptions on o and B are interchanged.

LEMMA 6.2. Let a € P(X) be diffuse and countably additive and let
B € P(Y) be diffuse. Then w(a, B) is singular to all conditionally discrete
strategic measures.

Proof. (o, B) is singular to any conditionally discrete ¢ = (oo, o) if
oy L a. We may, therefore, only consider o with oy, << « hence with o,
countably additive. By Corollary 3.4.5, o is a countable convex combination
of strategic measures of the form (G,, &,) where &, << oy and o,(x, dy) =
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8sx)(dy) for some function f : X — Y. Therefore we may assume that
oy = G, and &, = o,. Let F be the graph of f so o(F) = 1. For each
8 > 0 there are only finitely many y € Y so that a(F*) = a(f'(y)) > é.
Since B is diffuse it follows that, for B-almost all y, a(F”) =< §. Thus,
7(a, B)(F) = 0. This shows that 7(, 8) L o which establishes the lemma. Il

LeEMMA 6.3. Suppose that |X| = |Y| = k, o € P(X) is k-uniform and
B € P(Y). If 0 = (oy, 0y) is conditionally k-uniform then (a, B) L o.

Proof. Regard k as the set of ordinals of cardinal smaller than k. Regard
X and Y as equal to . Set

D={x,y) EXXY:y<ux}

Since D, = {y : y < x} has |D,| < k we have o,(x, D,) = 0 for all x,
hence o(D) = 0. Since X\ D’ = {x : x < y} has |[X\D’| < k, it follows
that a(D”) = 1 for y € Y. Thus, 7(a, B)(D) = 1. Consequently, r(a, B) L
o. 1

CoROLLARY 6.3.1. If o is a conditionally k-uniform strategic measure
and 7 is a conditionally k-uniform reverse strategic measure then o L 7.

Remark. These results extend Lemma 7.22 (a) of [12], which says that
o(a, B) 1 7(a, B) if « and B are uniform {0, 1}-valued measures on «.

ProposiTION 6.4. Let o € P(X) and B € P(Y) be k-complete diffuse
measures where k = |X| = |Y|. Then t(a, B) is purely non-strategic.

Proof. We must show that 7(a, B8) L o = (09, oy) for all . We may
assume that oy << a hence that o is k-complete, diffuse and, as a result
k-uniform. If o were conditionally purely non-k-complete then by Lemma
4.3 it would be purely non-k-complete hence singular to (e, 8). Thus, we
may assume that ¢ is conditionally k-complete. If o is conditionally discrete,
Lemma 6.2 shows that o L 7(a, 8). Thus, we may assume that o is
conditionally diffuse. For all x, o(x, *) is a k-complete diffuse probability
hence is k-uniform. Lemma 6.3 shows that 7(a, 8) L o which establishes
the proposition.

ProrosiTION 6.5. Let X and Y be arbitrary. Let « € P(X) and B € P(Y)
be k-complete purely non-x-additive probabilities. Then 1(a, B) is purely
non-strategic.

Proof. The case k = X, is Theorem 1. Thus we may assume that x >
Ry, hence that o and B are countably additive. We first examine the case
where Y = «.

Suppose that 7(a, B) is not singular with respect to ¢ = (0, o). By
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Corollary 2.2.4 it may be assumed that oy, = a. Decompose the strategic
measure o into a conditionally diffuse part o®® and a conditionally discrete
part o®° using Lemma 2.1. By Lemma 6.2, m(a, 8) L o¥*. Thus, r(a, B)
and 0% aren’t singular. Thus, we may assume that o is conditionally diffuse.
Decompose o into conditionally k-complete and conditionally purely non-
k-complete parts o' and o respectively. Since 7(e, B8) is k-complete and
o? (with X-margin «) is purely non-k-complete, by Corollary 4.4.1, (a, B)
must not be singular to ¢'. That is, we may assume that o = (a, oy) is
conditionally k-complete and conditionally diffuse, hence conditionally uni-
form. Since « is purely non-k-additive, it is approximable in variation norm
by a sequence {a, : n € N} of strongly non-«x-additive measures. The
sequence {r(a,, B) : n € N} approaches 7(a, () in variation norm and the
sequence {o, : n € N} of strategic measures given by o, = (a,, 0})
approaches o in variation norm. For some n, 7(,, 8) is not singular with
respect to o,. Thus, we may assume that « is strongly non-«-additive. Since
a is strongly non-k-additive there is a decreasing sequence {X, : A € k} of
subsets of X with empty intersection and with a(X,) = 1 for all A € «.
Set

S=UW X {A\)CX X«

Note that, for each x € X, |S,| < k so oy(x, 5,) = 0 and, as a result,
a(S) = 0. On the other hand, 7(a, B)(S) = [. a(X,)B(d\) = 1. Thus,
(a, B) L o. As a result, (a, B) € =*. This establishes the proposition if
Y = k.

Now let Y be arbitrary. Since 8 is approximable in variation norm by
strongly non-k-additive measures a familiar argument shows that to show
that 7(a, 8) € =* we need only establish the special case where  is strongly
non-k-additive. In this case there is a ® : Y — k so that the image B’ of
B under ® is a k-complete diffuse measure on k. A repetition of an argument
in the proof of Theorem 1.1 shows that since 7(c, 8’) is purely non-strategic
on X X k,sois7(a, B)onX X Y. &

We conclude with an example where 7(c, B) is purely non-strategic with
a purely finitely additive and 8 countably additive. For this example o and
B are both chosen {0,1}-valued so (e, B) is {0,1}-valued. By Corollary 3.4.1,
it suffices to show that 7(a, 8) # (09, 0y) = o where ¢ is marginally and
conditionally {0,1}-valued. Here |Y| may be chosen to be a measurable
cardinal A with 8 the corresponding A-complete {0,1}-valued measure on
Y. X is chosen with |X| = \ and a is chosen so that its ultrafilter of sets
of measure 1 is regular. Recall from [12] that an ultrafilter % is regular on
a set X iff there is a family {X,} of cardinality |X| in % so that the intersection
of any infinite subfamily is empty. We may imitate the definition of regularity
of ultrafilters and say that a measure w on X is regular iff there exists a
family {X,} of subsets of X which has cardinality |X| so that w(X,) = 1 for
all a, yet so that N,cp X, = @ for any infinite set D of indices. A more
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general notion of k-regularity is definable for both ultrafilters and measures
where k is a cardinal, and one requires the family {X,} to be of cardinal
k. Any k-regular measure is, of necessity, strongly finitely additive. On
any infinite set X there exist regular ultrafilters [12, Lemma 7.11.].

ProposITION 6.6. Let |X| = |Y| = \. Let B be a diffuse {0, 1}-valued
element of P(Y) and let a be a regular {0, 1}-valued element of P(X). Then
(e, B) is purely non-strategic.

Proof. Let {I(y) : y € Y} be such that a(T(y)) = 1 for all y and such
that if D C Y is infinite then N {T(y) : y € D} = @. Set

T = U T(y) X {y}h

It is immediate that (e, B)(T) = 1. Let ¢ = (o,, o) be marginally and
conditionally {0, 1}-valued with o = 7(a, B). Note that if x € X then

T, = {y : x € T(y)}

is finite. Since o(T) = 1 oy(x, T,) = 1 for o,-almost all x. That is, for
oe-almost all x, o(x, ©) = §, for a unique #(x) € T,. Thus, there is a
t : X - Ysothat [ f(x, y)do = [ f(x, t(x))o(dx), for all f. If

graph(?) = {(x, t(x)) : x € X}
then

1 = o(graph(t)) = (e, B)(graph(t)) = [ alt™'(y))B(dy).

Thus, a(t"'(y)) = 1 for B-almost all y. Since t~'(y;) N t7!(y,) = @ if
y1 = ¥,, there is only one y with a(t~'(y)) = 1. This implies that 8 is S,
for some y € Y which contradicts the fact that 8 is diffuse. W

COROLLARY 6.6.1. Let N\ be an infinite cardinal number. Let a be a \-
regular {0, 1}-valued element of P(X) and let B be a purely non-\-additive
{0, 1}-valued element of P(Y). Then 1(a, B) is purely non-strategic.

Proof. Since B is {0, 1}-valued it is strongly non-A-additive. There is a
surjection 7y : X — A so that the image of 8 under my is diffuse. Thus it
may be assumed, to start, that |X| = \ and that 8 is diffuse on X. To finish
the proof note that the cardinality of Y wasn’t important in the proof of
Proposition 6.6; we only needed the fact that @ was A-regular. 1
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