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PREDICTION FROM PART OF THE PAST OF A STATIONARY
PROCESS

BY
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1. Introduction

Let w be the spectral density of a stationary process X(t) (-o < t <
o). It will be assumed that (log w)/(1 + x2) is integrable on R with respect
to Lebesgue measure. Thus w(x) [h(x)[ where h is an outer function in
H2, the Hardy space for the upper half-plane. Let Z denote the space of
measurable functions which are square-integrable against the measure w(x)dx,
and let Z(a, b) denote the closed subspace of Z generated by {et:a < t < b}
(e,(x) =- eitX). The obvious meanings will be ascribed if a or b is +_. The
problem studied here is that of approximating orthogonal projection on
Z(-a, a). In [5], Dym and McKean worked out a recipe for projection on
Z(-a, a), but their solution is difficult to apply. A less general approach
was adopted by Segier [10] to work out a projection formula in the case
w IPIZ/inl2 where P is a polynomial and B is an entire function of finite
exponential type. The latter approach will be followed here: under mild
assumptions, Z(- a, a) Z(-a, ) N Z(-, a), so the desired projection
may be approximated by "projecting back and forth" on Z(-a, ) and
Z(-, a); projection onto these last subspaces is straightforward. How
good this scheme, is depends upon structural properties of the weight w.
This is discussed in Sections 3 and 4; a .connection between these approx-
imations and strong mixing is given in Section 5.

2. Preliminaries

Let L2 denote the Hilbert space of functions on R which are square-
summable with respect to Lebesgue measure. Then the map S :f--> hf is
an isometry of Z into L2. Moreover, since h is outer, S is surjective (See
[5], p. 97) and maps Z(-oo, a) and Z(a, ) respectively onto (eah/-)2 and
eaH2 (where the bar denotes complex conjugation). The following notation
will be used:

(1)
(2)

P, is projection onto eaH2 in L2;
Qa is projection onto (eah/-)2;
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(3) Ma e-aH2 N (eah/-)2;
(4) T/" is projection onto Ma;
(5) H is the space of essentially bounded functions on R whose Poisson

extensions to the upper half-plane are analytic.

Then S-zraS is the projection from Z onto Z(-oo, a) Z(-a, oo). This is
the projection which will be studied in light of the following theorem due
to Dym [3].

THEOREM. If 1/w is locally integrable and Ile2sh/’ FIl < 1 for some
s > 0 and F H, then Z(-a, a) Z(-, a) fq Z(-a, oo)for every
a>s.

For a fixed outer function h and a real number T let r(T) and r,(T) be
the numbers defined by

r(T) dist(er-/h, H) inf{ller-/h gll g n}

and

r,(T) dist(erh/’, H).

A well-known duality argument of Helson-Szego [7] shows that

r(2a) COSz(Z(-oo, -a), Z(a,

and

r,(2a) cosL2(e_a2, (eah/)H2)

where costA, B) denotes the cosine of the angle between the subspaces
A and B of H.

3. Approximation of

The operator studied here is QaP_a The number r,(2a) gives an estimate
of II(ae_a) ’l’l’al I.

THEOREM 1. Let w
equivalent:

(i)
(ii)
(iii)

- be locally integrable. Then the following are

r*(2a) < 1;
(Qae_a) --’) "l’i" exponentially fast in operator norm;
w may be written in the form

w(x) IB(x)l -- exp[u(x) + (x)] (-oo < x <

where B is entire of exponential type at most a, and where u and o are
real functions in L with IIo11 < r/2 ( denotes the harmonic conjugate of
o).
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Proof. First, note (as in [4]) that

M [e_a2 + (eah/-)H2] ".
If (i) is true, then the bracketed summands above are at a positive angle
so their sum is closed. Thus,

L2 Ma [e-a2 + (eah/-)n2].
Next note that the bracketed summands may also be identified with
(e_H2/Ma)x and [(eah/-)2/Ma] +/-, respectively, in L2/M. Hence,

1 > r,(2a) cos((e_aH2/Ma)+/-, [(eah/-)2/Ma]1)

cos (e_an2/Ma, (eah/-)B2/Ma)

(see [6]). The last quantity is just the norm of the operator

(aa *ra)(e-a *ra).
Thus,

I[(Oae-a) *rail I](Oae-a *ra)nff

II[(aa J’l’a)(e-a q’fa)]nll

< r,(2a)n,

so (ii) follows. If, on the other hand, II(Qae_a) ,rail < 1 for some n, so
is the norm of the positive operator (e-aQae-a ,ra)n, SO

IlQae-a *rll Ile-aQae-a 7rll1/2< 1

and (i) is true.
The equivalence of (i) and (iii) relies on a standard analytic continuation

argument. If (i) holds, it is possible to write h/h e-2a b exp[i(ff v)]
where b is an inner function and where u and o are real functions in L
with IIoIL < ,r/2 (see [7]). It then follows that

F e_2a b exp [(u + ) + i( o)]/h2 > 0 a.e.

on R and extends analytically into the upper half-plane. Since 1/h2 is locally
integrable on R, and the other factor is essentially in H, it is possible to
continue F analytically into the lower half-plane (see [8]). Furthermore, F
is of bounded type <2a in both half-planes, so by a theorem of Krein, F
has exponential type <2a. (See [1, p. 38] for a discussion of this). Also,
F may be factored: F(x)= IB(x)I2 (-oo < x < oo) where B is entire and of
exponential type < a. Thus, w Ih[2 IB1-2 exp(u + ) as desired.
Conversely, if (iii) holds, then

h/- e_E,b exp[i( v)]
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where - < a and b is a Blaschke product whose zeroes arise from the
zeroes of B. Then

e2h/- e2(a-z)b exp[i( o)]

whose distance to/ff is less than unity so p,(2a) < 1, and the theorem is
proved.

4. The Compactness of QP_ a
The result of this section relies on properties of Toeplitz operators and

functions on the unit circle T. If 4 is an essentially bounded function on
R, let W(b) denote the Wiener-Hopf operator on H2 defined by W(4)f
P(4f) where P is the orthogonal projection from L2 onto H2. For each
function f on R let Vf denote the function on T given by

Vf(ei) f[i(1 + ei)/(1 el)].

Then V induces an isometry from L(R) --, L(T) which maps /-(R) +
Co(R) onto H(T) + C(T), where Co(R) denotes the continuous functions
on R which vanish at , and C(T) denotes the continuous functions on T.
Devinatz [2, p. 83] showed that W(b) is unitarily equivalent to the Toeplitz
operator on H2(T) with symbol V(b). Thus, properties of Toeplitz operators
can be carried over to Wiener-Hopf operators. The following facts will be
needed: Let 4 be a unimodular function on R.

(4.1) (Nehari’s Theorem) III w()w()ll/ dist (b, H).
(4.2) (Hartman) I W(-)W(dp) is compact if and only if b /-ff + Co.
(4.3) W(b) is left invertible if and only if dist(b, H) < 1.
(4.4) W(b) is left Fredholm if and only if dist(b, H + Co) < 1.
(4.5) (Wolff) b H + Co if and only if b can be written as

49 [(x + i)/(x- i)]n" b. exp[i(v- )]

where b is an inner function, and u, v are real functions in Co (n
a positive integer).

(4.6) (Coburn) W(tk) and W(b) cannot both have nontrivial kernels.
(4.7) A function of the form exp(u + ) with u and v in Co is locally

in L" for every finite p.

Wolff’s factorization can be found in [11]; a nice discussion including the
rest of the results can be found in [9].

THEOREM 2. A necessary and sufficient condition for QaP-a
compact is that W can be written in the form

"ff to be

(4.8) w(x) IB(x)1-2 exp (u + ) (- < x < )

where B is entire of exponential type < a and where u and v are real
functions in Co(R).



PREDICTION FROM PART OF THE PAST 575

Proof. Let e2ah/- and suppose that QaP_ ql" is compact. If
[IQae-a 7rail 1, then there is a function f in Max with unit norm such
that IlOaP-afll 1. Since Q and P-a are projections, f e_aH2
(eah/-)2 Ma. This is absurd, so it follows that [[QaP-a ql’al[ and hence
p.(2a) are less than unity so by 4.3, W(b) is left invertible. Because (eh/-)H2
is contained in the kernel of Zra, e-aQae-a (eah/-)H2 is compact. For a
function f in L, let the symbol f also denote the multiplication operator
g --> fg on 12. Then we have

e_aOaP_a (eah/-)H2 e_aeea(eah/’)(I e)(e_a-/h)e_aeea (eah/’)H2

so that Ptb(I P)- P dlHz is compact. This last operator equals

w()[ w()w()];

since W(b) is left invertible, it follows that ! W($)W(d) is compact. By
(4.2), b // + Co, so

eEah/- [(x + i)/(x- i)]n" b" exp[i(v- )]

where b is inner, and where u and v are real functions in Co. An application
of (4.7) allows the analytic continuation argument of Theorem 1 to be carried
out and we get

w(x) (1 + x2) e + /IBI
The factor (1 + x2) may be absorbed into the exponent with no harm at
the expense of the required number of zeroes from the denominator, IBI
must have at least n + 1 zeroes, or

(1 + x2) e + /Inl
would not be integrable.)

Suppose, conversely, that w is of the form (4.8). Then

dp e2ah/- e b exp[i(v )] where s > 0;

b is a Blaschke product whose zeroes arise from the zeroes of B. Thus,
b H + Co so W(b) is left Fredholm by (4.4) so has closed range. Note
also that h is in the kernel of W(b) so, by (4.6), W($) is one to one and
hence left invertible. Therefore, dist(b, H) < 1. This last condition implies
that

L2 M @ [(eah/’-)n2 + e_a2]

where the bracketed summands are at a positive angle. Now, Ma + e-a2
is contained in the kernel of QaP-a 7ra and

[w()- w(4,)w(4,)w(4,)]

is compact, so P-aQaP-a (eah/-)H is also compact. Thus P-aQaP-a
7ra is compact on L. This last operator is just (QaP-a 7ra)*(QaP-a
Zra), SO QaP-a Va is compact as well. This completes the proof ofTheorem
2.
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Remark.
and only if

The above proof also shows that aaP-a 71" is trace-class if

f tl(-/h)(t)[2 dt <

for some finite T (see [5, p. 135]).

Example. If w 1/(x2 + 1)3/2, then h/- (x- i)3/2/(x + 03/2. It is
not hard to see that r, (2a) e -2 but that e2,h/’ is not in H2 + Co for
any a. Thus, (QaP_a) provides a good approximation of ’r/" for all positive
a, but the remainder is never compact.

5. The relation between r, and strong mixing

The quantity r(a) measures the dependence of the "future" of the process
from time a upon the "past" of the process. If r(a) ---> 0 as a ---> , then
the process is said to be strongly mixing or completely regular (see [7]). It
was shown in [6] that if either r(a) or r,(a) tends to zero and the other is
eventually less than unity, then both quantities tend to zero. It turns out
that a quantitative relation exists between the rates of decay of r and r,.
The following lemma generalizes a result proved by Dym [5, p. 132].

LEMMA. If a, b, and c are positive real numbers, then

r(a + b + c)< r(a)r(c) + r,(b).

Proof. Let f and g belong to the unit spheres of Z(a + b + c, ) and
Z(-, 0) respectively. Let Zra,o denote the orthogonal projection on
eaH2 f"l (ea+bh/-)I2 in L2. Then if ) and ) respectively denote
the inner products in Z and L2, we hve

I(f, g)wl I(fh, gh)l

I(e,fh, Q,+ogh)l

I(fh, PaQa+ogh)l

< I(fh, (PaQa+o ra,b)gh)[ + [(fh,

< r,(b) + r (a) r (c).

Since r(a + b + c) is the supremum of all such quantities, the lemma is
proved.
As a consequence, we have the following theorem.

THEOREM 3. /flimt_= r,(t) 0 and r(a) < 1, then there exist constants
K and c such that
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r(nZa) < K(e + r,(cn))

for every positive integer n.

Proof. Let a r(a). Then from the preceding lemma,

r(3a) < a2 + r,(a),

r((3 + 2 + 1)a)< r(3a)r(a) + r,(2a)< a + ar,(a) + r,(2a),

and, inductively,

r ka < ct + ctn-2r,(a) + ct"-3r,(2a)

+ + ar,(n 2)a) + r,((n 1)a).

Since r,(t) is a non-increasing function of t,

(n2+n ) an-2 at,/21}([n/2]a){tztn/21r
2

"a <{a" + + + + r,

-+" tX[n/2]-I "+" "" 1}

< at,/2] 1
+ r,([n/2]a)1 -a

This proves the theorem with K (1 a)-1 and c 3-1 min(1, lna).
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