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1. Introduction

Let M’ be a separable, infinite dimensional complex Hilbert space, and let
(M’) denote the algebra of all bounded linear operators on M’. For n > 1
and n-tuples of operators

A (A,..., A,,) and B (B1,..., B,,),

let R R(A, B) denote the elementary operator on (:) defined by

R(X)= AXB + + AnXBn [18].

This prescription includes several special cases of interest, e.g., the inner deri-
vations 6A (X---, AX- XA) [1], the left and right multiplications La and Ra
(X---, AX, X---, XA), the generalized derivations T(A, B) (X---, AX XB) [9],
and the elementary multiplication operators $(A, B) (X--, AXB [13].

In [111, C. K. Fong and A. R. Sourour described the case when Ran (R(A,
B)), the range of the elementary operator R(A, B), is contained in either the
trivial ideal (0) or the ideal (f’) of all compact operators on :. In con-
sidering the identity R 0, Fong and Sourour reduce to the case when {B,

Bn} is linearly independent, and show that in this case R 0 if and only
if At 0 (1 < < n) [11, Theorem 1]. Analogously, they show that to study
the inclusion Ran (R(A, B))c ff(), it suffices to consider the case when
{B, B} is independent modulo (f’); in this case,
Ran (R(A, B)) c gc’() if and only if At () (1 _< < n) [11, Th. 3]. In
[2], C. Apostol and L. Fialkow studied the problem of characterizing when
the range of an elementary operator is contained in an arbitrary (two-sided)
ideal of .,’(f’). It is proved in [2, Theorem 1.11 that if {B1, B} is inde-
pendent modulo oc’(’) and is a proper two-sided ideal of ’(.Y), then
Ran (R(A, B)) if and only if At e (1 <i< n). (It is not difficult to see
that the hypothesis of independence modulo f’(:)cannot be weakened to
independence modulo [2].)
The range inclusion problem for elementary operators with arbitrary coef-

ficient sequences remains unsolved, but in the sequel we take a first step
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towards considering arbitrary coefficients by solving the problem for gener-
alized derivations and elementary multiplication operators. As we will see
below, in dealing with arbitrary coefficients, there is no analogue of the
results of [11] and [2]; indeed, our results concerning the inclusion
Ran (S(A, B)) c , will be expressed in terms of s-numbers of operators and
ideal sets. Moreover, the proofs of our results are completely different in
character from those of I-11,1 and 12], which depend on D. Voiculescu’s non-
commutative Weyl-von Neumann theorem and its consequences [26].
The generalized derivations T(A, B) have been much studied, initially in

the framework of linear operator equations [19], and many of their spectral
and metric properties are known [6], [7-1, [8], [22]. We consider some ques-
tions arising when the range of T(A, B) is contained in an ideal r. We show
in Theorem 2.4 that T maps (’) into if and only if A- 2 and B- 2
belong to for some scalar 2. In this case, if J is a norm ideal with norm

I1, then T induces an operator ’,: .’(.,’) , defined by -,,(X)= AX
XB, which is bounded since

IlaX Xnll II(A )X x(n )11 (lla 11 + liB- ll)llXll,
In Section 3 we study properties ofs that are analogous to properties of

generalized derivations studied in [6], !7], 18], [11]. We show that ;(A, B)
is compact if and only if . 0, i.e., A B 2 (Proposition 3.1). We show
that 7- is neither surjective nor bounded below (Proposition 3.3., Proposi-
tion 3.4). For a collection of ideals including the Schatten p-ideals
(1 < p < o), we prove that -,(A, B) has closed range if and only if A- 2
and B- 2 are finite rank operators for some scalar 2 (Theorem 3.5). For the
Schatten p-ideals we characterize when ’, ’c,,(A, B) has dense range
(Proposition 3.12).

Beginning in Section 4, we study the multiplication operator $(A, B). In
Theorem 5.6 we prove that the range of S is contained in a proper two-sided
ideal if and only if s(A)s(B) J, where s(.) denotes the sequence of s-
numbers of an operator and J denotes the ideal set of r (see below for the
definitions of these terms). Further, for the norm ideals C(R) of [12], we esti-
mate the norm of the induced operator 6e. (); in particular, we
prove that

IIc(a,n)ll=lls(Z)s(n)ll, (Theorem 5.7).

We also prove that 6e, 6acp is compact if and only if A and B (as above)
are compact (Theorem 6.2), and that 6e is neither surjective nor bounded
below (Proposition 6.3, Proposition 6.5). At the end of the paper we discuss
some open questions suggested by our results.
We next recall the description of the proper two sided ideals of (.’); our

account is taken from 13] and [5]. Let denote a proper two-sided ideal of
.La(’); thus -c off(’), where " denotes the ideal of all finite rank
operators in .(H). If K , then KI--(K’K)1/2 is diagonalizable; any
sequence (indexed by the positive integers) consisting of all of the eigenvalues
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of IKI, each repeated according to multiplicity, is a characteristic sequence
for K.
An ideal set J is a collection of sequences of nonnegative real numbers

(indexed by the positive integers) such that:

(i) if {a,}= e J, then a, > 0 for each n >_ 1, and lim,_.oo.a, 0;
(ii) if {a,} e J and n is any permutation of the positive integers, then

(iii) if {a.} and {b.} are in J, then {a. + b.} is in J;
(iv) if {a.} is in S, and if 0 < b. < a. for all n, then {b.} is in S.

If is an ideal, then the collection of all characteristic sequences of all oper-
ators in is an ideal set, called the ideal set of . Conversely, if J is an ideal
set, the collection of all compact operators on Xg whose characteristic
sequences are in J forms an ideal with ideal set J. This correspondence
between two-sided ideals of .(Xg) and ideal sets is bijective and respects
inclusion. Thus a compact operator K belongs to an ideal if and only if
some (equivalently, each) characteristic sequence of K belongs to the ideal set
of
We next define the sequence of s-numbers of an operator. Let

() ()/()

denote the Calkin algebra, and for T in .(acg), let " denote the image of T
in (Xg). Let Ilrll--I111, the essential norm of T; thus Ilrll--IIIrl I1,
where rl (T’T)x/. Let a(T) denote the spectrum of T. If r(I T I) and
> r ll, then is an isolated eigenvalue of ITI with finite multiplicity. If

there is no such point in r(I T I), we define s,(T)= Ilrll (n > 1). If the
sequence of all such points is nonempty but finite, say > >...> %
(with each value repeated according to multiplicity), then s,(T)=,
(1 _< n _< p) and s,(T)= Ilrll for n > p. If the sequence is infinite,

>_..., we define s,(r)= , for n _> 1. The sequence s(r)= {s,(r)}=x is
the sequence of s-numbers of T, whose properties are described in detail in
[12].
Our criterion for an operator T to belong to an ideal J is that some

characteristic sequence for T belongs to the ideal set of J. Since character-
istic sequences of T are not necessarily monotone, they are more difficult to
compute with than s-numbers, so we would like a criterion for ideal member-
ship involving s(T). Note that if T is compact, there exists an orthonormal
basis {e.}= for Jog such that ITle. s.(T)e. (n > 1) if and only if T is
injective or T is a finite rank operator. Thus for T compact, s(T) is a charac-
teristic sequence for T if and only if T is injective or has finite rank. The
following result is essentially contained in [5].

LEMMA 1.1. Let J be a proper two-sided ideal of .W(). A compact oper-
ator T belongs to if and only if s(T) belongs to the ideal set of.



558 LAWRENCE FIALKOW AND RICHARD LOEBL

Proof. Lemma 1.2 in [5] implies that if s J (the ideal set of ), then
any sequence obtained from s by inserting finitely or infinitely many zero
terms also belongs to J. For T compact, the preceding discussion shows that
a characteristic sequence for T may be so produced fr.om s(T). Thus if
s(T) J, then J contains a characteristic sequence for T, so T .

Conversely, Lemma 1.1 in [5] implies that if s J has infinitely many
positive terms, then the subsequence of s consistin of precisely these terms
also belongs to J. Suppose T is not a finite rank operator and T is not
injective. Let s J denote a characteristic sequence for T; since s(T) is a
permutation of the subsequence of s consisting of positive terms, it follows
that s(T) J. If T is injective or if T is a finite rank operator, s(T) is clearly
a characteristic sequence for T, so s(T) J.

Let (, I1) denote a (symmetric) norm ideal of () in the sense of
[12, Ch. 3, page 68]. We recall certain properties of the norm:

(i)
(ii)
(iii)
(iv)
(v)

IIRXSII < IIRII IIXIIIISII for R, S () and X ;
IIXll-- IIXll if X is a rank one operator;
x x* for X dr;
IIx -< IIx II for x ;
IIuxvIl IIxll for U, v unitary and X dr.

For 1 _< p _< o, the Schatten p-ideal C, is the ideal with ideal set lp; Cp is a
norm ideal under the norm IIKII IIs(K)llp. Note that Ct Cn and IlXllp-<
IIXII1 for p > 1 and X

2. Generalized derivations mapping into ideals of

We begin by describing the case when the range of a generalized deriva-
tion is contained in an ideal of .(). To this end, note that the operator
T(A, B) determines A and B up to a scalar translation: that is, if A and B
are operators such that AX- XB AxX- XBx for each X in .’(), then
there exists a (unique) scalar 2 such that A A + 2 and B B + 2 [11,
Example 1]. Recall also that every derivation on () is inner, i.e., if 6 is a
derivation, then there exists B (ff) such that 6(X) BX- XB
(X (’)) [16]. The following lemmas appear in [15] and are included
here for completeness.

LEMMA 2.1. An operator T" .q’(f’)--} .(f’) is a generalized derivation if
and only if there exists an operator M in .q() and a derivation
such that T LM + .

Proofi If T T(A, B), let M A- B and 6 fin. The converse follows
from the above mentioned characterization of derivations on (t).

LEMMA 2.2. Let d be a two-sided ideal of .() and let T Lu + 6n. If
Ran (T) c , then Ran (6n) .
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Proof. If Ran(T) cd then M=T(1), so Ran (diB) Ran (T

LEMMA 2.3. If B and Ran (T(A, B)) c , then A .
Proof. Since A B T(1) o, then A (A B) + B J.

THEOREM 2.4. Let denote a proper two-sided ideal of .q’(;;). Then
Ran (T(A, B)) if and only if there exists a (unique) scalar 2 such that
A 2 and B- 2 belong to

Proof. Suppose Ran (T(A, B)) . Since T LA-B + fiB, Lemma 2.2
implies that Ran (fiB) . Thus /, the image of B in ."(t)/, is in the
center of ()/, so Theorem 2.9 in [5] implies that there exists a (unique)
scalar 2 such that /) 2, i.e., B- 2 . Since T(A, B) T(A 2, B- 2),
Lemma 2.3 implies that A 2 . The converse is obvious.

COROLLARY 2.5 I-5, Theorem 2.9], !3, Theorem 4.3]. Ran (fiB) = dr /f and
only if there exists a scalar 2 such that B-

Remark. M. Hoffman [14], working in the context of multiplier ideals
and essential commutants, has obtained several refinements of Corollary 2.5
as follows:

(i) If Ran (6rlC2) Cx, then there exists a scalar 2 such that
T- 2 C2 [14, Corollary 5.8].

(ii) If Ran (6rl()) C for some p > 1, then there is a scalar 2 such
that T- 2 C, [14, Corollary 5.9].

(iii) If is an ideal properly containing " and Ran (6rl )= -, then
there exists a scalar 2 such that T 2 - [14, Corollary 5.4].

A consequence of the last result, or of Corollary 2.5, is that if Ran (fir) c
for every ideal properly containing ’, then there exists a scalar 2 such
that T- 2 -. This is because the intersection of all such ideals is preci-
sely " [4, Corollary 4.7].

3. Properties of the induced operator -/

We again consider the case when Ran (T(A,. B)) (a proper ideal of
(’)). By virtue of Theorem 2.4 we may assume (as we shall do in the
sequel) that A and B belong to . We now proceed to study properties of
the induced operator 7-. (,) in the case when is a norm ideal
with norm I1. In [11, Theorem 2], Fong and Sourour characterized the
compact elementary operators; in particular, they showed that T(A, B) is
compact if and only if T(A, B) 0 [11, Example 1].

PROPOSITION 3.1. ’,(A, B) is compact if and only if A B O.
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Proofi The inclusion mapping P" (o, y)-*-W(J’) is continuous since
the oa-norm dominates the operator norm. If ’y is compact, it follows that
T(A, B) #’.(A, B) is also compact, and thus A B 0. The converse is
trivial.

COROLLARY 3.2. o-.. is compact if and only if’; O.

Proof The result follows from Proposition 3.1 and I-11, Example 1].

For operators A and B in Ae(’), let a,(A)= {2 : A- 2 is not right
invertible (surjective)} and let a(B)= {2 " B-2 is not left invertible
(bounded below)}. 3t i frtotort that (a’, ) is surjective if and only if a,(A)
o(B) b and that this condition is equivalent to the right invertibility of
T(A, B) in .W(.W(’)) [6, Theorem 3.2].

PROPOSITION 3.3. - is not surjective.

Proof Suppose to the contrary that ’, is surjective; then

#" = oa Ran () Ran (T(A, B)).

It follows from !6, Theorem 2.1] that T(A, B) is surjective, which is clearly
impossible.
An extension of this result to arbitrary elementary operators is given in

Proposition 6.3.
T(A, B) is bounded below if and only if a(A) c a,(B)= dp and this condi-

tion is equivalent to the left invertibility of T(A, B) in .W(.W(ct)) [6, Theorem,
3.5].

PROPOSITION 3.4. ’.(A, B) is not bounded below.

Proof Let {e}__ denote an orthonormal basis for o’; since A and B are
compact, Ae,--, 0 and B*e--, O. For n >_ 1, define the operator X Aa(oa’)
by X,(v) (v, e)e.; X, is a rank one projection. Since

(AX X B)(v) (v, en)Ae (v, B*e)e,

IIAX, X, nll IlaXll + IIX, BII I1(’, e,)ae, ll + II(’, n*e,)e, ll
---Ilhe, + IIB*e, 0.

Since tlX, = 1, it follows that a-, is not bounded below.
In [1], C. Apostol proved that an inner derivation diB has closed range in

Aa(oe’) if and only if B is similar to a Jordan model. Some results are known
concerning the case when T(A, B) has closed range (beyond the general
results cited above for the cases when T is surjective or bounded below). In
[8, Theorem 4.6] it is proved that if A and B are compact, then T(A, B) has
closed range if and only if A and B are finite rank operators. We next

then
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provide an analogue for the operator ’: the proof of the following result is
modeled on that of [8].

Trmomra 3.5.
operators in . Let be a norm ideal of .’(.ff) and let A and B denote

(i) If A and B are finite rank operators, then ,.’,(A, B) has closed ranoe
in ..,.

(ii) Suppose Cx and IIX I1 < X I1,- for X Cx. ’;(A, B) has closed
range in if and only if A and B are finite rank operators.

COROLLARY 3.6. ’,
operators (1 <_ p <_

has closed ran#e if and only if A and B are finite rank

Proof. Cp satisfies the hypothesis of Theorem 3.5 (ii).

Before proving Theorem 3.5 we require some additional notation. Let 5f
and denote Banach spaces and let R: --, denote a bounded linear
operator. Let y(R) inf { IIRxll x Ar, dist (x, ker (R)) > 1 }. It is known that
R has closed range if and only if (R) > 0 [17, Chapter IV, Theorem 5.2]. In
the sequel we consider the case when Ar .L’(P’); J (a norm ideal), and
R -)(A, B), where A, B ,’. Let

//(g) {U e (f’): U is unitary}.

The proof of Theorem 3.5 will be given via a sequence of lemmas.
The referee observed the following: If R .La(Sfl, 5f2) and St is a linear or

conjugate-linear isometry of Art onto itself, then ?(R) v(S2RSI). The proof is
elementary.

LEMMA 3.7. /f U e 0//,(f,), then y(’;(U*AU, B)) (’,,(A, B)).

Proof Apply the referee’s observation with S Lu, $2 Lu,.

LEMMA 3.8. (’.(A, B)) (’.(B*, A*)).

Proof Apply the referee’s observation with
X-,X*.

S S2 conjugation,

LEMMA 3.9. If there exists {U,,} g(M’) and A’ o such that
IIU*au A’ll,,--, 0, then (gT",.(A’, B))-- (gT",.(A, B)).

Proof For > 0, let Aa {R .’(.L’(.g’), o): (R) > }. By a straightfor-
ward modification of [1, Lemma 1.9], it can be seen that is norm-closed
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in Ae(Aa(’), J). Let y=y(57-,(A, B)); from Lemma 3.7 we see that
y(-(U*AU,, B)) y for n > 1. For X e (),

II,,(a’, n)(s)- -(U*AU,, n)(S)ll II(a’ U*AU)XII
_< IIa’- U*AUIIIIXII,

and thus -,(U*AU,, B) -,(A’, B) in (.(), J). Since r is closed, it
follows that (-(A’, B)) > ), (7"(A, B)). Observe that

IIU.A’U*. all. IIh’- U*.AU.II..--,O;
the above argument thus implies that (Y’(A, B)) > ,(7-.(A’, B)), completing
the proof.

LEMMA 3.10.
closed range.

If A and B are finite rank operators, then oq-,(A, B) has

Proof Suppose {Xn} c Aa(ag’), K o, and IIAX- XnB- KII---’ 0.
Since the -norm dominates the usual operator norm, K is in the closure of
the range of T(A, B). Since A and B are finite rank operators, Corollary 4.3
of [8-1 implies that T(A, B) has closed range. Thus there exists X (e’)
such that AX- XB K, and it follows that 7-;(A, B) has closed range.

LEMMA 3.11. (i) If ker (B)n ker (B*) {0} and the ran#e of A is not
closed, then the ranoe of ’(A, B) is not closed.

(ii) If ker (A) n ker (A*) #: }0} and the ranoe of B* is not closed, then the
ranoe of ’;(A, B) is not closed.

Proof Observe that (ii) follows from (i) via an application of Lemma 3.8
and the above mentioned fact that - has closed range if and only if
),() > 0. To prove (i), we rely on the proof of Lemma 4.4 in [8]. Under the
hypothesis of (i), this proof exhibits a sequence {V} of rank one operators,
and a rank one operator W, such that IIAV V B W[[ -- 0,
W Ran (T(A, B)), and such that AV- VB- W is a rank one operator.
Thus

II-(V)- Wll, IIAV- VB- Wll 0,

and it follows that - does not have closed range.

Proof of Theorem 3.5. The proof of (i) is the content of Lemma 3.10, and
Lemma 3.10 also yields one direction of (ii).
For the converse direction of (ii), suppose first that A is not a finite rank

operator. Since A e J, A is compact and thus A does not have closed range.
Since B is also compact, 0 Re(B) (the set of reducing essential eigenvalues of
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B [20]), and so Theorem 4.6 in [20] implies that there exists {U.} c (t)
and there exists a unitary operator V" f’---, such that

U*BU.- V*(B O)V C: for n > 1,

and such that

U*BU. V*(B 0)VII --. 0.

Hence U*BU.- V*(B O)V and

II[U*.BU. v*(n O)V]*ll IIU*.BU. v*(n O)Vll;
-< U*,BU. V*(B B 0)Vllx ---, 0.

Lemmas 3.8 and 3.9 now imply that

?(Y-.(A, B)) ?(’.(B*, A*)) ?(oj-.(V,(B, O) V, A*)).

Since B 0 has an infinite dimensional reducing kernel

(ker (B 0) c ker (e* 0)),

so does V*(B* O)V, and since the range of A is not closed, Lemma 3.11(ii)
implies that the range of q-.(V*(B*O)V, A*) is not closed. Thus
,(,(A, B))= 0 and it follows that ’,,(A, B) does not have closed range. In
the case when B is not a finite rank operator, apply the preceding case and
Lemma 3.8 to ’.(B*, A*).

Let a,,(. and al,(" denote right and left essential spectra. In [7, Theorem
1.1] it was shown that T(A, B) has norm dense range La(acg’) if and only if
are(A t ale(B and there exists no nonzero trace class operator K such
that BK KA. (A corresponding result for arbitrary elementary operators
was recently obtained in [10].) Here we consider the case when -, has
dense range.

PROPOSITION 3.12. For 1 <_ p <_ , let A, B Cv.

(i) If 1 < p < c, 7-p(A, B) has dense range if and only if there is no
nonzero operator K C (lip + 1/q 1) such that BK KA.

(ii) If p , gT-p (A, B) has dense range if and only if there is no nonzero
operator K C such that BK KA.

(iii) If p 1, -I(A, B) has dense range if and only if there is no nonzero
operator K .W(#f’) such that BK KA.

Proof. (i) The range of 7-, is not dense if and only if

is not injective. It is well known that C* is isometrically isomorphic to C,
where lip + I/q l [12, Chapter III, Theorem 12.3]; further, for jr C and
K C, we have JK Cl r12, page 92], and if we define fx(J)= tr (JK)
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(where tr (.) denotes the trace function), then fr e C and Itfll IIKII [12,
Theorem 12.3]. Under this identification,

(fxXX) =fx(’p(x))= tr ((AX XB)K) for each X a (W).

Hence the range of 7-, is not dense in Cp if and only if there exists a
nonzero operator K Cq such that tr((AX-XB)K)=O for every
X (r’). Since AX and XB are in Cp and K is in Cq, then AXK and
XBK are trace class operators; moreover, since A is in C and XK is in C,
then Theorem 8.2 in [12] implies that tr (AXK) tr (XKA). Thus

0 tr (AXK XBK) tr (AXK)- tr (XBK)= tr (XKA)- tr (XBK)

tr (X(KA BK))= tr ((KA BK)X) (X .o’(t)).

Now Lemma 1 in Chapter IV of [21] implies that KA BK, so the proof of
(i) is complete.
The proofs of (ii) and (iii) follow similar arguments, using the identifica-

tions C*oo C1 and C’ .’(f’) [12], [21].
The preceding result has a close analogue concerning the operators

T(A, B) T(A, B)[ C,: C,--, C, (1 p < o).

PROPOSITION 3.13. Let A and B be in

(i) For 1 < p < a3, Tp has dense range if and only if there exists no
nonzero operator K C, lip + 1/q 1, such that BK KA.

(ii) T1 has dense range if and only if there is no nonzero operator
K .oq’(g) such that BK KA.

Proof. Calculations similar to those above show that

T(A, B)* -T(B, A)(1 < p < oo) and T(A, B)* -T(B, A).

Remark. It was shown in [7, Proposition 4.1] that Tt(A, B) has dense
range if and only if T(A, B) has dense range for every p, 1 < p < oo. This
result has an analogue for the operators (A, B). Indeed, it follows easily
from Proposition 3.12 that if A and B are in C:, then ’(A, B) has dense
range if and only if 7-,(A, B) has dense range for each p, 1 < p < oo. More
generally, it follows from Proposition 3.12 that if A and B are in C, p > 1,
and 7",(A, B) has dense range, then 7-,(A, B) has dense range for every
p’>p.

For the norm ideals Cg) of [12,1, results analogous to Proposition
3.12 can be obtained using the description of the dual space of d given in
[12, Chapter III, Theorem 12.2]; we leave the formulation of such results to
the interested reader. For arbitrary norm ideals we have the following
observation.
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COROLLARY 3.14. Let be a norm ideal and let A and B be in . If
7",(A, B) has dense tahoe, then oq-oo has dense tahoe (equivalently, there exists
no nonzero trace class operator K such that BK KA).

Proof. Let C e (g), and let {K,} be a sequence of finite rank operators
such that K- C I10. Since has dense range and {K,} = -= ,
there exists a sequence {X,} c &a(.) such that

and thus

AX. X. B K.II--+ 0,

AX. X. B CII < IIAX. X. B K,,II + ILK,, CII
< AX. X. B K,,II + IlK. C 0.

Thus Yoo has dense range and the result follows from Proposition 3.12 (ii).
We remark that Proposition 3.12 (i) readily implies that the converse of

Corollary 3.14 is false.

4. s-numbers of bounded operators

Let J denote a proper two-sided ideal of .L(). If A and B are in ()
and Ran (S(A, B)) .g, we define the linear mapping Y’(A, B): .a(cg) .
by 6e(X)= AXB (X &a()). In the case when J is a norm ideal with
norm I1, the boundedness of 6e., considered as an operator from .a()
to (J, I1), follows from the Closed Graph Theorem, and we will compute
the norm of Sec (1 < p < ). Our first result, which sets the stage for the
sequel, is a special case of the Fong-Sourour characterization of the inclusion
Ran (R(A, B)) c oCF() [11, Theorem 3].

PROPOSITION 4.1.
ar(ae).

Ran (S(A, B)) = 3F(’) if and only if A 3f(:gg) or

Proof. Suppose neither A nor B is compact;’ then there exist closed infin-
ite dimensional subspaces ’ and in the ranges of A and B respectively.
Let V be a partial isometry with initial space and final space g; clearly
AVB is not compact, since its range contains t’. The converse is trivial.

It is perhaps natural to conjecture that Ran (S(A, B)) is contained in an
ideal .g if and only if A or B belongs to .g. This supposition is false, however,
for if AeC, and BCq, where 1/p+l/q=l, then Ran(S(A,B))cC1
without A or B necessarily belonging to C1 [12, page 92]. We intend to show
that this example truely represents the general situation.

In order to establish our results, we must introduce some facts about the
s-numbers of bounded (noncompact) operators, which were defined in the
introduction. Most of the following results are modifications of results in
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[12] concerning s-numbers of compact operators; as suggested in [12, page
64], these results are probably in the literature, but we could not find a
reference. We refer the reader to [12, Chapter II] for the basic facts about
the s-numbers of bounded operators; in particular we note that the s-
numbers of A and A* coincide, and the s-numbers of A coincide with the
s-numbers of IAI. In the sequel s(A) denotes the nth s-number of an oper-
ator A (1 _< n < o) and soo(A) lim_(R) s(A); thus soo(A) IlAlle.

LEMMA 4.2. Let A be in q’() and let e > O. There exists an operator
B e.’() and an orthonormal sequence {e,}%1 c such that (i)
liB- All-< e; (ii) B*B is diagonalizable; (iii) s,(B)= s(A)for each n >_ 1; and
(iv) B*Be s(B)2e, for all n.

Proof If A is compact, let B A; the existence of {e.} satisfying (iv)
follows from the diagonalizability of [A[. If A is not compact, then soo(A)
soo([A[) > 0. Let A U IA[ denote the polar decomposition of A, and let
E(.) denote the spectral measure of [A[. Let

0 O < O2 <’’" < O soo(A)

define a partition of [0, soo(A)] such that +
set aff E([, +1)), for 1 < < n- 2;
e g((., ))a.

-<efor l<i<n-l. We
arg._ E([._ , .]); and

Define an operator P on a’ by PlCg’l=0; Pla’=0q+lle, for
2<i<n-1; and P lgoo=lAllrgoo. Let B=UP; since +l-<efor
each i, it follows that IIa nil U(IAI e)ll < IIIal ell -< . By the
construction, we have U’UP P, and B*B p2 is diagonalizable since
AII oo is diagonalizable by definition of s(R)(IA I). It now follows easily that

s.(n) s.(Inl)-- s.(Ial)= s.(a) for each n > 1.
If dim (arg’oo)= oo, then there exists an infinite orthonormal sequence {e.}

in arg(R) such that IAle. s.(A)e., and thus

Pe. Ale. s.(A)e. s.(B)e.,

so B’Be. p2e. s.(B)2e. (n > 1). If dim (oo) < c, then dim (vg._ 1) oz;
choosing {e.} to be an orthonormal basis of a’._ , then

Pe. soo(A)e. s.(A)e.

for all sufficiently large n, and the result follows.

LEMMA 4.3. Let A .q’() and let xl, x, be vectors in . Then

det [[(Axj, Ax)llx,. _< Sl(A)2 sn(A)2 det [[(xj, Xk)lll,k..

Proof For A compact, this is [12, Chapter II, Lemma 3.1], originally due
to H. Weyl [25]. However, the keys to the proof given in [12] are that (i)
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AI is diagonalizable, and that (ii) there exists an orthonormal basis {e} of
f’, consisting of eigenvectors of AI, such that Ale s(A)e (1 < < n).

By Lemma 4.2, we can find operators Bk (k > 1), such that

IlBk All O, si(Bk) st(a) for 1 < < n and k 1,

and such that each Bk satisfies (i) and (ii) above. Hence, for each i,

det II(nxj, nXk)ll < sI(A)2"’" sn(A)2 det II(xj, Xk)ll,

and the result follows from the continuity of the determinant.

LEMMA 4.4. Let A ’(’) and let e > O. There exists an orthonormal
sequence {ei}=t c such that IIA*Aei- s(A)2ell <_ e for each i>_ 1.

Proof. We retain the notation used in the proof of Lemma 4.2. Thus E(.
denotes the spectral measure of AI. If dim (f’oo)= , then there is an
orthonormal sequence {e}__t f’oo such that Ale= s(A)e and hence
A*Ae A IZe s(A)e for > 1.

If dim (f’oo) m < o, let e:, em be an orthonormal basis for f(R) such
that A*Ae A 12e--- s(A)2e for 1 < < m. For any 6 > 0,

e _= ([s(A)- ,, s(A)])
is infiuite dimensional. Let {era+,, e.+,, ...} be au orthouormal basis for g.
Theu IAlem+i- s,,,+(A)e,,,+,]l < , aud thus

[IA*Ae,,,+i Sm+(A)2em+[] =[][A ]*em+, s,,,+(A)*e,,,+]]
<__ IlIA 12em+i A sm+(A)em+ill

/ IIIAIs+,(A)e+i Sm+i(A)2em+iH
< IAI Ildi / Sm+i(A)t <- 211AIIdi <

for all > 1 if di is sufficiently small.

LEMMA 4.5. Let A, B .ge(jrg) and let n > 1. Then

j=l j=l j=l

Proof For A and B compact, this is [12, Chapter II, Lemma 4.2]. If

{e, e}
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is an orthonormal sequence of n vectors in f, then by Lemma 4.3 we obtain

det II(ABej, ABek)ll < sl(a)2"’" sn(a)2 det II(Bej, Bek)tl

< [st(A)2... s,(A)2]s(B)2... s,(B)2 det II(e,ek)ll

j=l j=l

To complete the proof, it suffices to show that if e > 0, then there exists an
orthonormal sequence {el, en} such that

fi s(AB)2 e, <_ det II(ABe, ABek)ll.

Let T denote the n x n diagonal matrix diag(sl(AB)2, sn(AB)2),
thought of as an operator on C. Given e > 0, let gi > 0 be such that if S is
an n x n matrix and IIS- TII < gi, then det (T)- e < det (S). By Lemma 4.4,
there is an orthonormal sequence el, e such that

II(AB)*(AB)ej- s(aB)2ejll < /n2 for 1 < j < n.

Let S be the matrix whose row j, column k entry is ((AB)*(AB)ej, ek). A
straightforward calculation shows that T- SII < , and thus

fi sj(AB)2 e det (T)- e < det (S) det II(aBe, Anek)ll.

The proof is now complete.

PROPOSITION 4.6.

Proof For A and B compact, this is a special case of [12, Theorem 4.2],
and for p 1 the general case (A and B bounded) appears in [12, page 63].

From Lemma 4.5 we have 1-17=1 s(AB)< rIT=l s(A)s(B), and hence

log (s(AB)) < log (s(A)s(B)) for n 1.
j=l j=l

We now apply to this inequality and to the convex function $(x)= (e)
Lemma 3.4 of [12, Chapter Ill to conclude that

s/AB)p s/A)Ps/B)p (n 1),
j=l

so the result follows.
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5. A Characterization of the inclusion Ran (S(A, B))

We now study conditions for the range of S(A, B) to be contained in a
proper two-sided ideal of .’(Jf). In this case, if is a norm ideal with
norm Ily, then Y’y is bounded. For suppose {(Xn, AXnB)} is norm con-
vergent in L(J6) / to an element (X, Y); thus

IlXn X --’ 0 and AXn B YII o.
Since IIAXnB- YII < [IAXnB- YII; for each n, it follows that Y AXB,
and the Closed Graph Theorem implies that 6ay(A, B) is bounded. Our first
result refines Proposition 4.1.

LEMMA 5.1.
then A . If B is not compact and the range of S(A, B) is contained in

Proof Since B is not compact, there exists an infinite dimensional sub-
space A/" such that B IV" is bounded below. Let V: B(Y’)--, denote a
partial isometry which maps B(A/’) onto f’. Clearly VB is surjective, hence
right invertible, and since A(VB) , it follows that A .
COROLLARY 5.2.

in , then B . If A is not compact and the range of S(A, B) is contained

Proof Apply Lemma 5.1 to $(B*, A*).

In the sequel, J denotes the ideal set of . We next recall the norm ideals
C(R) of [12]. Let Co denote the real space of all sequences of real numbers
converging to 0 and let t: denote the subspace of all sequences with a finite
number of nonzero terms. Let denote a symmetric norminf function on t: in
the sense of [12, Chapter III, page 71]. Let c(R) denote the natural domain of, i.e.,

ca} {a {an} Co: supn q)((al, a2,..., an, 0, 0,...)) < };
for a c(R), we set tb(a) sup tb((a, a, 0, 0,...)). Let C(R) denote the set of
all compact operators X in (.) for which s(X) c(R), and for each such
operator, define IIxIl(R) s(X)), Then (C(R), I1(R)) is a (symmetric) norm
ideal [12, Chapter III, Theorem 4.1]; the Schatten p-ideals Cn correspond to
the case a) Ilalln (1 _< p < ). We shall now see how the s-numbers of A
and B are related to the range of S(A, B).

LEMMA 5.3. Suppose there exist orthonormal sequences {e,,}__.l and {fn}__x
in such that Ale s.(A)e and Blf. s.(B)f, for each n > 1. If the
range of S(A, B) is contained in , then s(A)s(B) J; moreover, if C(R),
then IlY’c(R)II > s(h)s(n)).
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Proof. Let A U IAI and B V IBI denote the polar decompositions of
A and B respectively. Let P denote, the orthogonal projection onto span {ft,
f2, ...}; and let W be a partial isometry such that Wf, e. (and W*e. =f.)
for each n.

Since the range of S(A, B) is contained in , then

T W*U*(AWV*B)P a;
further, for n > 1,

Tf W*U*AW(V*B)f.

W*(U*A)WIBIL

W*lal Ws,(B)L

W*lals(B)e

W*s.(A)s.(B)e.

s.(a)s.(n)L.

Also, since T(1- P)= 0, it follows that s.(T)= s.(A)s,(B) (n > 1), and so
s(A)s(B) s(T) J (Lemma 1.1).

In the case d C(R),

dp(s(A)s(B)) (s(T))= IITII(R)-< IIW*U*II IIAWV*BII(R) IlPll-< IIA(WV*)BII(R).

Since IIWV*ll _< , it follows that II’c(R)ll >- IIa(WV*)Bll(R) >_

LEMMA 5.4. Let A and B be in .(,ug). If Ran (S(A, B))
s(A)s(B) J. Moreover, if C(R), then ll6ec(R)ll _> (s(A)s(B)).

then

Proof. If A and B are compact, the result follows from Lemma 5.3.
Suppose that A is not compact; Corollary 5.2 implies that B e . Lemma 4.2
implies that there exists a sequence {A}% Aa(Y?’) such that (i)IIa

All 0, (ii) s(A) s.(A) for all n, k > 1, (iii) for each k > 1, there exists an
orthonormal sequence {e)}_ such that

ale s.(A)e (n > 1).

Since B e of, the range of S(Ak, B) is contained in , and Lemma 5.3 implies
that s(A)s(B)= S(Ak)s(B) J.

For the case when C(R), we have

IlY’c(R)(A, B)- c(R)(a, n)ll < IIA All Ilnll(R)--’ 0;

since ll6ec(R)(a, B)II > (s(A)s(B)) for each k (Lemma 5.3), it follows that
116ec(R)(a, B)II > s(a)s(n)). The proof for the case when B is not compact is
similar, using Lemma 5.1.
We now would like to establish a converse to Lemma 5.4.
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LEMMA 5.5. If s(A)s(B) J, then Ran (S(A, B)) c . Moreover, if C(R),
then [[ff’c(R)(A, B)[[ 2P(s(A)s(B)).

Proof To prove that the range of S(A, B) is contained in , it suffices to
show that for each X in .’(), s(AXB) J (Lemma 1.1).

Corollary 2.2 in Chapter 2 of [12] and the remarks of [12, page 62] imply
that for A, X, B A(),

$2n I(AXB) sn(a)sn(XB)

and

s2,,(AXB) < s,,+ t(A)s,,(XB) < s,,(A)s,,(XB) (n > 1).

Further, from [12, pages 27 and 61], s,,(XB)< IIXlls(B)(n > 1), so it follows
that

(i) s2-x(aXB) < s,,(a)s,,(B)[lXl[ (n > 1),
(ii) s2(AXB) < s,(a)s,(B)liXll (n >_ 1).

Lemma 1.2 in I-5] implies that if (at, a2, a, ...) is in J, then so are the
sequences

(at, 0, a2, 0, a, 0,...) and (0, a, 0, a2, 0, a, 0,...);

for > 0, it follows that (al, a, a2, a2, a, a, ...) is in J. Since
s(A)s(B) a, the sequence

(lIXlls(a)s(B), liXlls(a)sx(B), IIXlls2(a)s2(B), IIXlls,.(a)s2(B), ...)

belongs to J, so (i) and (ii) imply that s(AXB) is in J, and Lcmma 1.1 implies
that AXB is in .

In the case when ) C(R) and J c(R), (i), (ii), and the properties of * 1"12,
page 71] imply that for k > 1, there exist integers m, p, r > 1 such that

tI)(sl(aXB),..., s(AXB), O, 0,...)

< (llXllsx(a)sx(B), IlXlls,(a)sx(B), IlXlls,.(a)s,n(B), O, O, ...)

IlX[l(fl)(sl(a)Sl(B), O, s2(a)s2(B), 0,..., sp(a)sp(B), O, O, ...)

d- (I)(0, $1(A)$1(B), 0, s2(A)s2(B), 0,..., s,(A)$r(B), O, 0,...))

IlXll((sx(a)sx(B), s2(a)s2(B),..., s,(a)s,(B), O, O, ...)

"Jr" (sl(a)Sl(B), s2(A)s2(B), s,(a)$r(B), O, 0,...))

< 2(s(a)s(B))ll IIXll.
Thus IIc(R)(a, B)II < 2P(s(A)s(B)) and the proof is complete.
We now present our characterization of the range inclusion

Ran (S(A, B)) ,,.
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THEOREM 5.6. Let A and B be in .Y(Jct). The ranoe of S(A, B) is contained
in the proper two-sided ideal v if and only if s(A)s(B) belonos to the ideal set of
o. In this case, if o C(R), then

Proof

(s(A)s(B)) < [[5c(R)[[ < 2(s(A)s(B)).

The result follows from Lemma 5.4 and Lemma 5.5.

For the Schatten p-ideals C, (1 _< p _< c) we are able to calculate the
norm of 5, (=5cp(A, B)) precisely.

THEOREM 5.7. Suppose 1 <_ p <_ c. The range of S(A, B) is contained in Cp
if and only if s(A)s(B) is in l,; in this case,

IISep(a, B)ll IIs(a)s(B)llp.

Proof. By using Theorem 5.6, it suffices to show that

116ep(A, n)ll < IIs(a)s(n)llp.
Suppose first that p < oo. Theorem 5.6 implies that s(A)s(B) lp. For
X Aa(Cf), Proposition 4.6 implies that

E sn(hSn)p<- E sn(a)Psn(Sn)p<- s,(h)(llXllPs,(n)p)
n=l n=l n=l

<_ IlXll s(a)s(n),
Thus IIAXBII< IIs(a)s(n)llllXII and the result follows in this case. For
p oo and X (f), we have

IlaXnlloo IIAXBII < IIAIIIIBIIIIXI[ sx(a)sx(n)llXII IIs(a)s(n)ll(R)llXII,

and the result follows.

Remark. The proof of Theorem 5.7 relies on Proposition 4.6, which in
turn relies on convexity properties of the function e’x. There are other ideals
C(R) for which the conclusion of Theorem 5.7 is valid, namely, those for which
the function has the desired functional properties. We have not as yet
determined whether Theorem 5.7 can be extended to all of the C(R) ideals.
More generally, the calculation of the norm of 6e for an arbitrary norm
ideal is an open problem.
The following example shows how the inclusion Ran (S(A, B))c may

occur in a nontrivial way.

Example 5.8. We exhibit operators A and B such that A, B C, for every
p, 1 < p < oo, but the range of S(A, B) is contained in C1. Let {an} and {bn}
denote monotone decreasing sequences in cff such that {an}, {bn} lp for
every p > 1, but {an bn} i. (A proof of the existence of such sequences was
shown to us by J. D. Nelson.) Let A and B denote operators (e.g., diagonal-
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izable operators) such that sn(A) an and sn(B) bn (n > 1). Theorem 5.7
implies that A and B satisfy our requirements. Note that A and B are
compact; Lemma 5.1 and Corollary 5.2 imply that this is necessarily the case
in an example of this type.

In the last example, the fact that Ran (S(A, B)) was contained in every C,
ideal did not impose on A or B membership in any C, class. In contrast, we
have the following complements to Proposition 4.1.

COROLLARY 5.9. If Ran (S(A, B)) ’, then A or B is in .
Proof. Theorem 5.6 implies that s(A)s(B) has only a finite number of

nonzero terms, so the same must be true for s(A) or s(B). (A simple proof
independent of Theorem 5.6 is also easy to construct.)

COROLLARY 5.10. If Ran (S(A, B)) for every ideal properly containin#, then A or B is in .
Proof. Apply !-4, Corollary 4.7] and Corollary 5.9.

We conjecture that the property, Ran (S(A, B)) c a if and only if A or B is
in , holds only for the ideals (0), ’, and f’(J6). Example 5.8 shows that
this conjecture is valid for the Cp ideals (1 < p < ).

6. Properties of the induced operator

The Fong-Sourour characterization of the compact elementary operators
[11] includes the result of K. Vala [24] that $(A, B) is compact if and only if
A and B are compact. Thus the operator ff’o(A, B) (which is defined if and
only if A or B is compact) is a compact operator if and only if both A and B
are compact. Our first goal is to obtain an analogous result for the operators
Y’,(A, B) for 1 < p < . In the sequel we assume 1 < p < and s(A)s(B)
l,, so that 6e,(A, B) is defined (Theorem 5.7). The following result was shown
to us by P. Eenigenburg.

LEMMA 6.1. Let {an} and {bn} be sequences in R / such that an O, bn J, O,
and =anb < c. If {nk}= 0 iS a strictly increasino sequence of positive
inteaers, then

lim ( anbnk+n)k--, oo n=l

Proof Let f(n)= anbnk+n; since {bn} is decreasing, thenfk(n)>fk+l(n) for
all, k, n > 1. Since limn-.oo bn 0, then fk 0 pointwise in Z/. Since
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a,b,k+ < =x a.b, < , the Monotone Convergence Theorem (applied to
Z+ with counting measure) implies that

lim a.b.k +. lim a. b. +. 0.
koo \n= n= \k--*oo

THEOREM 6.2. Let 1 < p < .
compact.

v is compact if and only if A and B are

Proof Since IIXII IlXIl for every X in C,, it follows easily that if 5ep
(A, B) is compact, then S(A, B) is compact, and thus A and B are compact
[113, [243.

Conversely, assume that A and B are compact operators with s(A)s(B) 1;
then s.(A) O, s.(B) O, and .=1 s.(A)’s.(B)’ < . Lemma 6.1 implies that

(*) k-.oolim (n=l sn(A)Psn+k(B)t’) =0"
For k > 1, since s.(A) . 0, there exists nk > 0 such that

s.+x(A)’s(B)t’ +... + S.+k(A)’Sk(B)t’ < 1/k.
Let A U IAI and B V IBI denote the polar decompositions of A and B

respectively. Let {e}. denote an orthonormal sequence in acg such that
Ble, s.(B)e, for each n. For k > 1, define a finite rank operator Qk as
follows" Qke=s(B)e (l<i<k); QkX=O if (x, e3=0 for l<i<k. Let
Bk VQk. Let {f.}= denote an orthonormal sequence in a’ such that IAI
f s(A)f for each n. For k > 1 define a finite rank operator Pk as follows’
Pk f si(A)f (1 < < nk); Pk x 0 if (X, f) 0 for 1 < < nk. NOW let Ak
UPk.

Since Ak and Bk are finite rank operators,

5a,(Ak, Bk), 5e,(Ak- A, Bk) and 5t’,(A, Bk B)

are defined; moreover, it is easily verified that the range of 5a,(Ak, Bk) is at
most k. nk-dimensional, so that 6e(Ak, Bk) is a finite rank operator and per-
force compact. To show that 5e(A, B) is compact, it thus suffices to prove
that lim_.oo ll6ep(Ak, nk)- Sap(a, B)II 0. For S (af),

II(a, B)(X)- (A, n)(X)ll

II(A- A, B)(X)II + II(h, B n)(X)ll
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and the desired convergence now follows from these inequalities via (*) and

In 1-10] it was shown that an elementary operator on (aCe) is surjective if
and only if it is right invertible and bounded below if and only if it is left
invertible. Moreover, the left and right spectra of elementary operators were
calculated by R. Harte [13]. Using the results of [10] and [13] we show that
y is neither bounded below nor surjective.

PROPOSITION 6.3. Let a be a proper two-sided ideal of q’(’rg). The ranoe
of an elementary operator on (’g) does not coincide with

Proof If Ran (R(A, B))= a, then " c Ran (R), so Theorem 2.3 in [10]
implies that Ran (R(A, B))= (a’), a contradiction.

COROLLARY 6.4. ff’,,(A, B) is not surjective.

PROPOSITION 6.5. 5.(A, B) is not bounded below.

Proof Proposition 4.1 implies that A or B is compact. If A is compact, A
is not bounded below, so there exists a sequence {X,} of rank one partial
isometrics such that IIAX, O. Since rank (AX,) < 1,

hX. n ax. n ax. n 0.
so 6e is not bounded below. Similarly, if B is compact, there exists a
sequence {V.} of rank one partial isometrics such that V.BII--, 0, and thus

IIAV.BII _< Ilall IIV.BII, Ilallll V.BII 0. so the result follows.

7. Conclusion

We wish to discuss briefly some open questions suggested by our results.
Concerning the range inclusion problem Ran (R(A, B)) , we may assume
that {A1, A,} and {B1, B,} are each dependent modulo (g)[2].
Let us consider the ease when A and B have this property and consist of
mutually commuting compact operators; we may further assume that {A,

A,} and {B:, B,} are each independent modulo . Under these con-
ditions, if Ran (R) = , does it follow that Ran (S(A, B)) = for 1 < < n ?
If so, then Theorem 5.6 implies that s(Ai)s(Bi) J (the ideal set of ) for each
i. Theorem 5.6 provides the converse implication: if each s(Ai)s(Bi) belongs to, then Ran(R) = . Using themethods of Section 5, we are able to provide
an affirmative answer to the preceding question if, in addition to the above
hypotheses, we assume that the coefficient operators are positive.

Despite this evidence, we are able to show that the answer to the above
question is negative in general. Indeed, for C1 and n 2, we will exhibit
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mutually commuting compact normal operators At, A2, Bt, B2 such that
{At, A2} is independent mod , {Bt, B2} is independent mod ,

Ran (S(Ax, Bx) + S(A2, B2)) c= J,

but

Ran (S(A,, B,)) g; for 1, 2.

Thus the range inclusion problem remains open for n 2.
Let {en}n_-t denote an orthonormal basis for ’. Let M and N denote the

diagonalizable normal operators on defined as follows:

Men (1/nt/2)en (n >_ 1); Ne. (1/n)e. (n >_ 1).

Consider the following mutually commuting compact operators on

At=MN, Bt=NM, A2=-MOe, B2=-NM.
Let R denote the elementary operator on ff’ defined by

R(X) A1XB + A2 XB2.

It is straightforward to verify that (At, A2} is independent modulo Ct and
that {Bt, B2} is independent modulo Ct. Let

X X
denote the operator matrix of an operator X in (’). A matrix calculation
shows that the matrix of R(X) is of the form

2MXttN O ).NX2tN NX22N
since s(M)s(N) It and s(N)s(N) lt, Theorem 5.7 implies that each com-
ponent of the above matrix is trace class, and it follows that R(X) C; thus
Ran (R) c Ct. On the other hand, the matrix of A2 XB2 is equal to

(MJI1N --MX2
since M2 Ct, if we set Xtt 0 and Xt2 1, it follows that A2XB2
Thus

Ran (S(Ai, B3) C for 1, 2.

(Note also that s(A2)s(B2) It despite the fact that A2 B2 e Ct.)
The preceding example warrants further examination. Let

A’t=2M0, B’=NO, A’2=ON and B’2=NN.
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Note that for each X (’),

A’XB’ + A’2XB’2 A1XB1 + a2 XB2 R(X).

Thus R(A, B) S(A’, B’) + S(A’2, B’2), and it is clear from Theorem 5.6 that
Ran (S(A[, B’i)) c C for 1, 2. We are thus led to the following question.

Question 7.1. Let R(A, B) denote an elementary operator on .() and
let denote a proper two-sided ideal of .(). If Ran (R(A, B)) , do
there exist an integer p _> 1 and operators A’,..., Ap, B’,..., Bp, such that

and such that

p

R(A, B)= S(A;,
i=1

Ran (S(A’, B)) =
for l_<i<p?

In view of Theorem 5.6 and E2, Theorem 1.1], an affirmative answer to
Question 7.1 would solve the range inclusion problem.

In [22], J. Stampfli determined the norm of the generalized derivation
T(A, B), and [-6] contains estimates of the norm of 64[ .L’(). What is
the norm of ’z(A, B)? In the case of inner derivations, we can obtain an
estimate as follows. If Ran (6) , let 6,: .Z(f)--, denote the induced
operator and let denote the scalar such that A- A e (Corollary 2.5). It
follows from [6, Proposition 4.7] that

211a- ll > 116.(a)ll-> 116lll > diam (W(A)),

where W(A) denotes the numerical range of A. Concerning closure properties
of Ran (-.), can Theorem 3.5(ii) be extended to arbitrary norm ideals ?

Concerning the operator , is the identity [[(R)(A, B)[[ =I)(s(A)s(B))
valid? In [’27] the semi-Fredholm domain of S(A, B) is determined; it would
be interesting to determine under what conditions the operators S(A, B)- A
and .(A, B) have closed range.
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