ILLINOIS JOURNAL OF MATHEMATICS
Volume 29, November 1, Spring 1985

WEIERSTRASS POINTS AND MODULAR FORMS

BY
Davip E. ROHRLICH!

Let X be a compact Riemann surface of genus g. A point x € X is called a
Weierstrass point if there is a regular differential on X, different from 0, which
vanishes at x to order at least g. The concept of Weierstrass weight refines this
notion: Given a point x € X, let {w,,..., w, } be a basis for the regular
differentials on X such that

0 =ord,w; <ord,w, < --- <ord,w,

where ord , denotes order at x. The Weierstrass weight of x is the nonnegative
integer

Y. (ord,w; +1 — ).

l<j<g

Since ord ,w; > j — 1, this sum is 0 if and only if ord ,w; = j — 1 for all j; one

deduces that x is a Weierstrass point if and only if its Weierstrass weight is

positive. Furthermore, it is known that the sum of the Weierstrass weights of

all points on X is (g — 1)g(g + 1). Thus for g > 2 the set of Weierstrass

points is a nonempty and finite set of intrinsically distinguished points on X.
Now let p be a prime, and put

Lo(p) = {Y € SLy(Z): v = (‘c’ Z), c=0 (modp)},

where SL,(Z) denotes the group of 2 X 2 matrices with integer coefficients and
determinant 1. The group I'y( p) acts on the upper half-plane H by fractional
linear transformations, and the quotient space I'y( p) \ H is a Riemann surface
of finite type. Adding two cusps to I'y( p) \ H, we obtain a compact Riemann
surface X,( p), which for p > 23 has genus > 2. The location of the Weierstrass
points on X,( p) is largely a mystery. For the known facts (including some
known Weierstrass points), the reader may consult the papers of Atkin [1],
Newman-Lehner [3], and Ogg [4], [S]. The point of departure of the present
note is the remark (cf. [6]) that the Weierstrass points of X,,( p) are essentially
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the zeros of a certain modular form W for I'y( p). This fact suggests that we
should try to determine the modular form W more explicitly. The object of this
note is to take a step in this direction by calculating W as a modular form
mod p in the sense of Serre and Swinnerton-Dyer. As a corollary of the
calculation we recover the theorem of Atkin (see [5]) that the cusps of X,(p)
are not Weierstrass points. It should be noted, however, that this derivation of
Atkin’s theorem provides less information than the proof given by Ogg.

In this paper, a modular form for I'y( p) of integral weight k is a holomor-
phic function f on H which satisfies

—k az + b
(cz + @) E55) = (o)

for every matrix

(‘cl Z) € Iy(p),

and which has the property that f(z) and z *f(—1/z) are represented by
absolutely convergent Fourier series of the form

1) = L a(mern
and

27 (=1/z) = X b(n)e>m=/?
n>0
respectively. If a(0) and b(0) are both 0, then f is called a cusp form. For
further facts and definitions pertaining to modular forms, the reader is referred
to Shimura [8], Serre [7], and Swinnerton-Dyer [9].

1. Definition of W

Fix a prime p and let g be the genus of X;( p). We shall be concerned with
a function W which we might call the Wronskian of X,( p). It is a modular
form of weight g(g + 1) for I',( p) with the following properties:

(i) Given a basis {fy,..., f,} for the space of cusp forms of weight 2 on
rO(p)a put

f(2) e fy(2)

@ . %

W(fi,- s f)(2) = d‘Z . ajz
d )& d s
&) (&) s

Then W(f,,..., f;) = cW for some nonzero constant c.
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(ii)) The Fourier expansion of W at infinity has the form

Z c(n)e21rinz

nxngy

with ¢(ny) = 1.

(iii) Let H* denote the union of H and the two cusps of I';(p). The
Weierstrass weight of a point of X,( p) represented by z, € H* is the order of
vanishing of W(z)(dz)&&*Y/2 at z,, measured in a local parameter for I,( p)
at z.

(iv) The Fourier coefficients c(n) in (ii) are rational.

Properties (i) and (ii) constitute the definition of W. Indeed, (i) determines W
up to multiplication by a nonzero constant, and the normalization (ii) makes W
unique. Elementary rules of differentiation and properties of determinants then
show that W is a modular form. As regards (iii), it is apparent from the
definitions that the Weierstrass points of X,(p) are precisely the zeros of
W (z)(dz)8E* D72, For a proof of the sharper statement given in (iii), and for
detailed proofs of the other facts just mentioned, see [2, pp. 82—85]. All these
results belong to the general theory of Riemann surfaces. Property (iv), by
contrast, depends on the fact that the space of cusp forms of weight 2 for
T',(p) has a basis consisting of forms with rational (or even integral) Fourier
coefficients at oo [8, p. 85]. If {f,..., f,} is such a basis, then the Fourier
coefficients of W(f,, ..., f,) are rational multiples of (27i)58~1/2, whence the
Fourier coefficients of W are rational.

Example. 1If p = 23, then g = 2, and the Weierstrass points of X,,(23) are
the six fixed points of the hyperelliptic involution of X;,(23). The hyperelliptic
involution is the automorphism of X,,(23) induced by the map z —» —1/23z
on H. Using these facts, one can show that

W = DG,
where

D(Z) = e21riz l_I (1 _ eZm’nz)(l _ e21ri23nz)
nx>1

and

G(z)=1-1/24 % (Z (%)(dz + 23(n/d)2))e2"""2.

n>1\d|n

The functions D and G are modular forms of weight 1 and 3 respectively with
Nebentypus character equal to the Legendre symbol ( /23). (See [7, p. 231]
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for the definition of a modular form of Nebentypus.) The Fourier coefficients
of D and of G are integral, hence so are those of W.

2. Calculation of W mod p

As is customary, we identify a modular form for I';( p) with a formal power
series in an indeterminate ¢ by putting

f= X a(n)q"

n>0
if
f(z) = ¥ a(n)e?™,

n>0

We let A denote the unique normalized cusp form of weight 12 for SL,(Z), and
if k£ is an even integer > 4, we let E, be the normalized Eisenstein series of
weight k for SL,(Z). Thus

A=qT1Q-q")*

n>1
and

2k n
1) E,=1- B Z ”k—1(”)q >
k

nz1

where B, is the k-th Bernoulli number and o,(n) = L, ,d" If

f= X a(n)q" and h= Y b(n)q"

n>0 n=0

are modular forms with rational, p-integral Fourier coefficients at oo, then we
write f = h (mod p) to denote that a(n) = b(n) (mod p) for every n.

Henceforth we assume that p > 23. If we write p + 1 = 12g + r, then
r=20, 6, 8, or 14. We define E, to be 1.

THEOREM. The Fourier coefficients of W are p-integral, and
W= Ag(g+1)/2E;gEﬁ(g—1)/2 (mod p)

Proof. Let M be the Z-module of cusp forms of weight p + 1 for SL,(Z)
with integral Fourier coefficients, and let N be the Z-module of cusp forms of
weight 2 for I'y( p) with integral Fourier coefficients at oo. Both M and N
have rank g. The reduction map Z[[q]] — Z/pZ[[q]] provides embeddings

M/pM - Z/pZ[[q]] and N/pN - Z/pZ[[q]],
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and a theorem of Atkin and Serre ([7], p. 228) implies that M/pM and N/pN
have the same image in Z/pZ[[q]]. It follows that if { F},..., F,} is a basis for
M over Z, then there exists a basis { f;,..., fg} for N over Z such that

(2) F=f (modp), j=1,...,8.

If §: A — A is a derivation of a commutative ring 4 and hy,..., A g are
elements of A, we put

h, h,
Sh S
Ws(hy, .o hg) = 1 _ ’,’g
sg—lhl 88_1hg

In particular, consider Ramanujan’s derivation 6: C[[q]] = C[[q]], given by
0=gqd/dq. If {f,..., fg} is a Z-basis for N as above, then

Qi) VW (f, L f) = Wl fis- o 1),

because on modular forms, d/dz = 2xif. Thus cW = Wy(f;,..., f,) for some
¢ € Z, and by (2), we have

(3) W= Wy(F,...,F,) (modp).

Following Ramanujan, put P = E,, where E, is the power series defined by
formula (1) for k = 2 (this is not a modular form). Let d be the derivation of
the graded ring of modular forms for SL,(Z) which on a form of weight & is
given by the formula

4 9F = (120 — kP)F

(see [9, p. 20]). We claim that

(5) Wy(Fy,..., F) = Wipe(F, ..., F,),
i.e., that
(6) Wy(Fy,..., F,) = 125" V2W,(F,,..., F,).

To see this, first note that for » > 0 and any form F of weight k, we have

n—1
(7) d"F = (120)"F+ Y. h,0™F,

m=0
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where A, is a polynomial in P, 6P, ...,0™ 'P which depends on n and k but
not on F. Indeed, (7) follows by induction from the Leibniz rule and formula
(4). Putting F = F),..., F, in (7) we see that the (n + 1)-th row in the matrix
defining Wy(Fy,..., F,) is equal to the (n + 1)-th row in the matrix defining
Wise(Fy, ..., F,) plus a linear combination of the preceding n rows in the
latter matrix. Since a determinant is an alternating multilinear function of its
rows, (5) follows, and therefore also (6). Combining (6) with the congruence
(3), we see that for any Z-basis { F,..., F,} of M we have

(8) ¢W=W,(F,...,F,) (modp),

with ¢’ € Z.
Now put

F,=EE}U-VAs/*1 1<j<g.
Then { F,,..., F,} is a Z-basis for M, and we have

3»11;) = Ag—j+13mErE43(j—l),
because dA = 0. It follows that

W,(F,,..., F,) = AS&*Y2W,(E, E,S,..., E,S¢!)

with § = EJ. Now if §: 4 — A is any derivation of a commutative ring 4 and
h,hy,...,h, are elements of A, then

9) Wy(hhy,..., kh,) = hEWs(hy, ..., h,)
(cf. [2, p. 82, equation 5.8.4]). Therefore
(10) W,(F,,..., F,) = AsG*D2EEW,(1, S,..., 8571).
To evaluate the right-hand side of (10), we note that
W,(1,S,...,557Y) = W,(3S,253S,...,(g — 1)58723S)
= (88)% (g — D)W,(1,8,...,5%72),
by (9). Applying induction, we obtain
g-1

Wa(l, S,...,Sg_l) = ( Hj!)(as)g(g—l)ﬂ.

Jj=1
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Since S = 3E}JE, = —12E2E, = —12E,,, substitution in (10) gives

Wy(F,,..., F,) = c"AS&*D/2E5(E,, )56~V
with
g—1

¢’ = (_12)8(8_1)/2 ].—Il.]'
Jj=

Now p does not divide ¢”, because 1 < g— 1 <12g + r — 1 = p. Thus the
congruence (8) implies

(11) c(¢”)'W = AsGHD/2ESEEED/2 (mod p).

To complete the proof of the theorem, let ¢ be the smallest power of
q = e*™* which occurs with a nonzero coefficient in the Fourier expansion of
W at oo (cf. (ii) in the definition of W in Section 1). Making the substitutions
q = e, dq/q = 2widz, we see that

ord W(z)(dz)*®* V% = ny — g(g + 1) /2.

Thus the Weierstrass weight of the cusp oo is n, — g(g + 1)/2; in particular,
ny = g(g + 1)/2. On the other hand, by (11), the coefficient of g&&*1/2 in
¢'(¢") W is congruent to 1 (mod p), and is therefore not equal to 0. We
conclude that n, is equal to g(g + 1)/2 and that ¢’(¢”")~! is congruent to 1
(mod p); the theorem now follows from (11). At the same time we have
recovered Atkin’s theorem that the cusp oo (hence also the conjugate cusp 0) is
not a Weierstrass point of X,( p).

Finally, we remark that our congruence can be written in the more concise
form

W= ®05£~D/2  (mod p),

where s = r + 12 and @, (j = 12, 18, 20, or 26) denotes the unique normal-
ized cusp form for SL,(Z) of weight ;.
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