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be a fiber square; i.e., g: E ---, B is a fibration and the pull-back of g via f.
Eilenberg and Moore [8] have given a very beautiful theory for the cohomology
of the pull-back total space A, which has been expanded upon by many
researchers [4], [9], [11], [14]. In this paper a new chain complex is presented
whose homology equals that of A when all spaces are simply connected. It
relies heavily upon the Adams-Hilton construction and is therefore described
as having "Adams-Hilton type".

Certain properties and consequences are especially significant. The new
chain complex may be taken to be locally finite whenever X, B, and E have
locally finite homology. Over a field, we obtain another proof of the existence
of the Eilenberg-Moore spectral sequence, and an explicit perturbation theory
is constructed for its E term. We also demonstrate that this spectral sequence
is a homotopy invariant. As applications, the Eilenberg-Moore spectral se-
quence is shown to degenerate when f and g are "p-homogeneous" maps and
we compute anew the cohomology of the free loop space on any formal space.

1. Chain ringoids

In Sections 1 and 2 we shall develop the algebraic tools and techniques
needed in the remainder of the paper. In particular, we study objects called
"chain ringoids", which are a generalization of the objects obtained from the
two-sided cobar construction. As motivation, chain ringoids will later provide a
framework into which both cobar constructions and constructions of Adams-
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Hilton type conveniently fit, thus allowing us to make the connection between
them. The main result of this section, Theorem 1.5, asserts that quasi-isomor-
phisms of certain chain complexes always have inverses with certain desirable
properties.
We begin with a series of algebraic definitions. The geometric motivation, as

we shall see later in greater detail, is the desire to understand the singular
chains on the space of those paths on a given space which start in one subspace
and end in another. Allowing only paths which start and end at the base point
yields an H-group, whose cubical singular chains form a ring. Allowing more
paths yields an H-groupoid, whose cubical singular chains form something we
call a "ringoid".
A ringoid is an abelian group (P, +), together with two subgroups K and L

and a pairing/: K (R) L P satisfying the following axioms:
(a) If R K 3 L, then /x(R (R) R)_ R, and IR(R)R makes R into a

(generally non-commutative) ring with unity.
(b) g(K (R) R)_c K and gl:(R)g makes K into a right R-module.
(c) /s(R (R) L)_c L and tXIR(R)L makes L into a left R-module.
(d) This diagram commutes:

/(R)1
K(R) R (R) L K(R) L

K(R)L P.

The action of the pairing/x on a ringoid will be called multiplication and will
be denoted by a raised dot or by juxtaposition. A morphism between two
ringoids f: P P’ must have f(K)

_
K’, f(L)

_
L’, and be a morphism of

rings, modules or groups when suitably restricted.
Ideally one might expect a "ringoid" to be for tings what a "groupoid" is for

groups. That is, one of the operations, in this case multiplication, would not
always be defined, but it would satisfy the usual axioms whenever they made
sense. The object we have defined would be a very special kind of ringoid with
this more general definition. The geometric motivation for this restriction is
that we shall consider composing two paths in our path space only when the
first ends at the base point and the second starts there. Roughly speaking, the
K, R, and L of the ringoid correspond respectively to the subspaces of paths
which end at the base point, which are loops at the base point, and which start
at the base point.
By a graded group we mean a Z-graded abelian group which is zero in all

negative dimensions. A graded ringoid is a graded group P together with two
graded subgroups K and L and a pairing : K (R) L P satisfying (a)
through (d) above. Here we assume the pairing is of graded groups, i.e.,
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l(K, (R) Lt) Pk+l" A morphism of graded ringoids must have degree zero.
Let f, g: P P’ be two morphisms of graded ringoids. A derivation of degree
r from f to g is a degree r homomorphism F: P P’ of graded groups such
that

F(x. y) F(x). g(y) +(-1)rlxlf(x) F(y) (2)

whenever x.y is defined in P. Note that this implies that we must have
F(K)

_
K’, F(L)

_
L’, and F(R) R’. Note also that setting x y 1

yields F(1)= 0.
Fix a commutative ring with unity S. A graded S-module M {M } is

augmented if and only if it comes with a surjection e: M M0 S and a
right inverse e’: S M0 M, in which case we let M denote ker(e). For any
graded S-module V, TV is the tensor algebra (over S) on V, which is always
augmented via

S ToV TV.

It is always assumed that TV inherits its grading from V; the gradation on TV
induced by the number of factors will be called the lower gradation and will
only occasionally be used.
Assume henceforth that all tensor products are over S. A tensor ringoid is

any object of the form P M (R) TV (R) N, for V a free graded and M and N
augmented free graded S-modules, with M and N also free. A tensor ringoid
becomes a graded ringoid by setting K M (R) TV, L TV (R) N, choosing
the obvious pairing, and letting the augmentations dictate how R TV
embeds in K and in L. Note that a tensor ringoid is itself naturally aug-
mented. A morphism of tensor ringoids is any map of graded ringoids which
also preserves the augmentation. The lower gradation on TV is extended over
M (R) TV (R) N by assigning all of M and N to lower degree zero.
As M, V, and N are required to be S-free, we may define a set of generators

for the tensor ringoid P M (R) TV (R) N to be a disjoint union of S-bases for
M, V, and N. By a slight abuse of terminology we shall sometimes refer to
"the" generators of P even though the set of generators is by no means
canonical. None of our results will depend upon which set of generators is
used.
Our first four lemmas will be used to show that it suffices to do certain

constructions and to check certain formulas on the generators of a tensor
ringoid. We state them here for convenient reference, but the proofs, which are
straightforward formal verifications, are postponed to the appendix.
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LEMMA 1.1. Let P M (R) TV (R) N and P’ M’ (R) TV’ (R) N’ be two tensor

ringoids. Suppose for 0, 1, 2, fi’: (M V N) -o p’ has

fi’() - M’ (R) TV’, f/(V)
_
TV’ and fi’(lV)

_
TV’ (R) N’,

where f,f{, f are_maps of graded S-modules of degree O, O, r respectively.
Viewing M, V, and N as submodules of P, f, f( extend uniquely to morphisms
of tensor ringoids fo, fl" P -+ P’ andf extends uniquely to a derivation f_ from
fo tfl.

LEMMA 1.2. Let P M (R) TV (R) N and P’ M’ (R) TV’ (R) N’ be tensor
ringoids and let f, g: P - P’ be two morphisms of tensor ringoids. Suppose
h o, h 1" P P are morphisms of tensor ringoids and h 2 is a derivation of degree r

from h o to hi, and likewise for h’o, h], h’" P’ --* P’. Suppose further that
ghi= hf on the generators of P for O, 1, 2. Then ghi= hf on all of P,

O, 1, 2.
Keeping in mind that the motivating examples for studying ringoids will be

certain singular chain complexes and certain approximations to them, we now
introduce a differential on tensor ringoids. A chain ringoid is a tensor ringoid
P, together with a derivation d from the identity to the identity of degree -1,
such that d 2 0 and d(ff)

_
ft. A morphism of chain ringoids is a morphism

of tensor ringoids commuting with the respective differentials. By Lemma 1.2
this happens if and only if it commutes for a set of generators. It is easily seen
that a derivation d of odd degree from the identity to itself has d E 0 if and
only if d 2(xj)= 0 for each generator xv. of P.
The reader familiar with two-sided cobar constructions will no doubt

recognize chain ringoids as a generalization of them. We shall make this
connection precise in Section 4.
Chain ringoids will be a central concept throughout this paper. They are

obviously a special kind of chain complex over S, and a morphism of chain
ringoids is a special kind of chain map. We also restrict our attention to a
special kind of chain homotopy. Let f, g: (P, i) (Q, d) be two morphisms
between chain ringoids and let F be a derivation of degree / 1 from f to g. F
is a derivation homotopy from f to g if and only if

(F8 + dF)(x) f(x) g(x) (3)

for all x P. This is a generalization of "algebra homotopy" as defined in [5].

LEMMA 1.3. Let f, g: (P, ) (Q, d) be two morphisms of chain ringoids
and let F be a derivation of degree + 1 from f to g. Then F is a derivation
homotopy from f to g if and only ifformula (3) holds when x is a generator of P.

We shall also make use of a kind of "derivation homotopy between
derivations".
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LEMMA 1.4. Let f, g: (P, i) - (Q, d) be two morphisms of chain ringoids
and suppose F, G, H are derivations from f to g of degree + 1, + 1, + 2 respec-
tively. Then the formula (Hi dH)(x) (F G)(x) holds for all x P if
and only if it holds for all x belonging to a set of generators for P.

In Section 2 we shall construct a way of combining certain simple chain
ringoids into more complicated ones. We shall want to deduce that a map
between chain ringoids induces an isomorphism of homology when this is
known to be true for the smaller pieces. The first step is to show that any
suitable quasi-isomorphism has a suitable inverse. Although it is known [7] that
a chain map inducing an isomorphism of homology has a chain homotopy
inverse when the complexes in question are free, we shall need a stronger result
concerning inverses up to derivation homotopy.
A chain tensor algebra is a chain ringoid (P M (R) TV (R) N, d) for which

M N S. We denote it by (TV, d) or simply TV.

THEOREM 1.5. Let f: (TM, ) - (TV, d) be a morphism of chain tensor
algebras inducing an isomorphism of homology. Then there is a morphism

g: (TV, d) (TM, )

of chain tensor algebras together with derivation homotopies Ffrom 1 to gf and G
from 1 to fg.

Note. This is an immediate consequence of [5] when S is a field.

Proof. See the appendix.

One application of Theorem 1.5 concerns the "homogeneous homology" of
a chain ringoid P (M (R) TV (R) N, ). Since 8(P)

_
P, 8 is non-decreasing

on lower degree; i.e., i applied to a product involving or more generators
from V must equal a linear combination of products involving or more
generators from V. For x a product of generators of lower degree t, write
(x) xo + x + x2 + -.., where x has lower degree + i, and set io(X )
xo. Extend 8o to an S-module map 8o: P P. (P, 8o) is also a chain
ringoid, called the homogeneous approximation to (P, 8o), and the homology of
(P, 8o) is called the homogeneous homology of (P, 8).

LEMMA 1.6. There is a functor ff from chain ringoids to chain ringoids which
sends each chain ringoid to its homogeneous approximation. Furthermore,
whenever F is a derivation homotopy from f to

g:(P,6)-(Q,d),
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then there is a derivation homotopy Fo from ff(f ) to

of(g): (P,3o)--) (Q, do).

Proof For f: (P, 3) ---) (Q, d) a morphism of chain ringoids, and for x a
product of generators in P of lower degree t, let fo(x) be the component of
f(x) in Q with lower degree t. Extending f0 to a map of S-modules f0: P Q
gives a map satisfying foSo dofo, so we may define d’(f) to be f0. Likewise
let Fo(x) be the component of F(x) with the same lower degree as x when x
is a product of generators, and extend linearly. The desired formulas which
assert that F0 is a derivation homotopy from f0 to go are just the lower degree
components of the formulas (2) and (3).
An immediate corollary which we state without further proof is:

LEMMA 1.7. Suppose the morphism f: (TM, 3) - (TV, d) of chain tensor
algebras induces an isomorphism on homology. Then f also induces an isomor-

phism of homogeneous homology.

Note. A converse to this lemma when S is a field is supplied in [5].

2. A homotopy invariance theorem

The main result of this section asserts that the homology of a certain
construction, which associates a chain ringoid to a diagram of spaces and
maps, is a homotopy invariant. We shall later use this result frequently to
simplify computations and comparisons. We begin with several definitions and
observations which will remain relevant throughout the paper. Then we state
the theorem; its proof, which utilizes eight technical lemmas, is contained in
the appendix.
Our first definition is very general. Let be any category. The category of

corners in has as objects all diagrams in of the form

f g
XB E (4)

and as morphisms all commuting diagrams in of the form
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The terminology "corner" comes from the fact that we wish to think of (4) as
the maps involved in the lower fight corner of the pull-back diagram (1). For
-: ’ a functor, o" induces a functor from corners of to corners of
’. By a slight abuse of notation, the latter functor will also be denoted ’.

For an arbitrary graded S-module M, let sM denote its suspension, i.e.,
(sM) Mn_ 1, and let M/ denote the augmented graded module M/ S
sM, the first summand occurring in degree zero. For (TM, d) a chain tensor
algebra, consider M+(R) TM. We can extend

s" M sM M+ M+(R) TM

to an S-module map s: TM M+(R) TM of degree + 1 by setting s(1)= 0
and

S ( Xjl Xjt ) S ( Xjl ) Xj Xjt

This done, we may extend d over all of M+(R) TM by the formula

ds(x) x sd(x) (6)

for x TM. Define )U(TM, d) to be (M+(R) TM, d). )U is a functor from
chain tensor algebras to chain ringoids. It is known (e.g., the proof in [2] works
for the general case) that d2= 0 and that g(TM, d) is acyclic, i.e., the
augmentation (S, 0) 3U(TM, d) is a chain equivalence.

Similarly we may define s’ as the composition

M sM M+ TM (R) M+

and extend s’ over TM by s’(1)= 0 and

s’( ) (- 1) I;’’’’’’-’1 s’Xjl Xjt Xjl Xjt_l ( Xjt )"

Formula (6) with s’ replacing s extends the differential d over TM (R) M+, and
we let .(TM, d) denote (TM (R) M/, d). .e is also a functor from chain
tensor algebras to acyclic chain ringoids. The need for a sign in the formula for
s’ may come as a surprise, but it is there because the formula

d(xy) d(x)y +(-1)lXlxd(y), (7)

which specializes (2), is not fight-left symmetric, so (TM, d) is not a right-left
symmetric object.
A construction of central significance in this paper is called the "associated

chain ringoid".
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DEFINITION 2.1. Let

(TM, d) L (TV, dr) L (TN, dN) (8)

be a corner of chain tensor algebras, f and g induce maps of tensor ringoids

f+" M+(R) TM--) M+(R) TV, g+" TN (R) N+-o TV (R) N+.

Extend dM, dN as above over M + (R) TM, TN (R) N + to obtain
)U(TM, dM), ’(TN, dN). Define d on generators of M/ (R) TV (R) N/ by

diM+= f+ du dl v dr, diN+= g+ dN’

and extend d over all of M+(R) TV (R) N+ by formula (7). d 2 0 on genera-
tors of M+(R) TV (R) N+ hence d2= 0. The associated chain ringoid to the
corner (8) is

TM TVL TN (M+(R) TV (R) N+,d).

We will abbreviate

f g
Y- TM -) TV - TN

to -(TM, TV, TN) or to Y’(f, g) when no confusion can result. It is easily
checked that - is a functor from corners of chain tensor algebras to chain
ringoids. Note that

,Y- TM --) TM (-- S Off ( TM, dM)

and

.Y" S TM (-- TM .W ( TM, dM)

We are now almost ready to state the homotopy invariance theorem. Let
CTA denote the category of chain tensor algebras over S. Let TOP denote the
category of pointed topological spaces and continuous maps, or a subcategory.
A functor -: TOP CTA satisfies the derivation homotopy axiom if and only
if whenever f, g: X Y are homotopic, there is a derivation homotopy from
(f) to (g): -(X) -(Y). We shall observe in Sections 3 and 4 that
both the Adams-Hilton construction and the cobar functor satisfy this axiom.
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THEOREM 2.2. Let -: TOP CTA be any functor from a subcategory of
pointed topological spaces to chain tensor algebras which satisfies the derivation
homotopy axiom. Let

f gP
-.B

f +

(9)

be any diagram in TOP which commutes up to homotopy. Suppose , fl, and /
are homotopy equivalences or, more generally, that the induced maps H,(),
H,,(fl), and H,’() on homology are isomorphisms. Then there is a
morphism

between the associated chain ringoids of these corners such that induces an
isomorphism on homology and on homogeneous homology.

Proof See the appendix.

3. The model of Adams-Hilton type

In this section we develop the main theorem, proving the existence of a
"small" chain complex whose homology equals that of the fiber homotopy
pull-back A for a corner (4) of simply-connected spaces. When the coefficient
ring S is a field, the dual of this chain complex is filtered and gives rise to a
spectral sequence converging to H*(A;S). We observe that this spectral
sequence is a homotopy invariant and explore some of its properties.
Our overall goal in this paper is to understand (1) better, in particular to

evaluate H,(A; S) when g is a fibration. When g is not required to be a
fibration, the pull-back

X nE ((x,e) c X Elf(x)= g(e)}

still exists, but the homotopy type of X BE is no longer a homotopy
invariant of f and g. The proper generalization for our purposes of (1) to

arbitrary corners is called the "fiber homotopy pull-back". Starting with any
corner

f g
XBE
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of spaces, make g into a fibration : / B in the usual way, i.e.,

((to, e) B’ Elto(1) g(e)} and (to,e)= to(O).

The fiber homotopy pull-back of the corner

f g
XB-E

is the pull-back X B/. This is well known to be a homotopy invariant, and
to have the same homotopy type as the pull-back if g was a fibration to start
with. A morphism of corners (5) in which a, fl, 3’ are weak homotopy equiv-
alences gives rise to a weak homotopy equivalence of the fiber homotopy
pull-backs.
A very important special kind of fiber homotopy pull-back occurs when f

and g are inclusions. In that case, / (to Blto(1) E ) and the fiber
homotopy pull-back is A { to Bllto(1) E and to(0) X), the space of
paths in B starting in X and ending in E. The space A has the same homotopy
type as the space of Moore paths in B from X to E, i.e.,

{to" [0, r] B for some r > 0[to(0) X, c0(r) E }.

The latter space will henceforth be denoted Pxe. For simplicity we define a
bipair (B, X, E) to be a pointed space B together with two (pointed) subspaces
X and E such that X E .. A bipair (B, X, E) is m-connected if and only
if B, X, and E are all m-connected. Clearly, a bipair is a special kind of corner
in which both morphisms are inclusions. For a bipair (B, X, E), the map

p" PxF XE, p(to) (to(0), to(r))

is a fibration.
We recall next some basic facts and notation about the Adams-Hilton

construction [2]. Let X be any 1-connected CW complex and let CU,(2X)
denote the chain complex of non-degenerate cubical singular chains on fX
p,X, with coefficients in S. The Adams-Hilton construction over S, which we
denote by ’, associates to each such X an associative differential graded
algebra (eat(X), dx) and a chain map Ox: sO(X) --. CU.(fX) such that

(Ox)," H,(z’(X),dx) --+ H,(aX;S)

is an isomorphism. The choice of zC(X) depends upon the CW decomposition
of X and the choice of d is not canonical in general even for a given CW
structure. However, ’ is functorial in the sense that for any f: X Y and for
any suitable models oat(X) and z’(Y) for X and Y, there is a chain map
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z’(f)" (’(X), dx) (’(Y), dr,) making

H,(..(f))
H,( e’ ( X), dx) --r. H,( ( Y ), dr)

(ff),
H,(aX;S)

(o)

commute. If in addition g: Y Z, zC(gf) can be taken to be zg’(g)o zg’(f).
Algebraically, z’(X) is a free tensor algebra over S. In particular, if

X w (Jire is a CW decomposition for X with each [eil >- 2, we may
take zC’(X) S(a[i F) with lag[ [e[ 1. (z(X), dx) is in fact a chain
tensor algebra and the induced maps z(f) are morphisms in CTA. This
makes it possible to define ’z, a (multi-valued) functor from corners of
1-connected CW complexes to chain ringoids. As we shall see shortly, the
"model of Adams-Hilton type" referred to in the title is precisely Y-z’ applied
to a corner of spaces.
Another property of we shall use is that the differential dx on z’(X) can

be extended over the larger S-module (X) C(X) (R) zC’(X), C(X) denot-
ing the cellular chains of X with coefficients in S. When this is done,
((X), dx) is acyclic and 0x extends to a chain map

cu,(ex%).

As is easy to see from the formulas in [2], ((X),dx) is precisely
.:U(.x’(X), dx). Using parallel reasoning, 0x could as well be extended to a
chain map

Ox:

A final property worth noting is that when Y
___
X is a subcomplex, dx may be

chosen to be an extension of any suitable dr under the natural embedding
s’(Y) ’(X).

For bipairs, the main theorem may be deduced from these observations
alone. A CI/V bipair (B, X, E) is assumed to exhibit X and E as subcomplexes
of B, and a I-connected CW bipair is taken to have trivial 1-skeleton. When we
consider the Adams-Hilton models of the spaces in such a bipair (B, X, E), we
always assume that ds, Os are chosen so as to extend dx and de, Ox and OE,
respectively.
A 1-connected CW bipair (B, X, E) determines two chain complexes, namely

CU,(PffE) and, when it is viewed as a corner, Y-C(X B E).

THEOREM 3.1. There is a natural isomorphism ,: H,Y-- H,(P .’.; S)
offunctors from 1-connected CW bipairs to graded S-modules.
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Proof For any such bipair (B, X, E), note that

o: r(g(x. d) - cv.(e;.) cv.(e.).
O’(g(S).d.)-CU.(e**),

and

are multiplicative and consistent where their domains overlap, so together they
define : -(X B E) CU,(PE). In the sense of diagram (10),
induces a natural transformation , between the homologies of these two
functors.
To prove t, an isomorphism, we first reduce to the case when E is locally

finite, since we will then want to use that X E is also a CW complex. The
reduction is made in the usual way: E lim (E ), where is the partially

ordered collection of all locally finite subcomplexes of E. That

Y- X
f BE =limq-z’ XBE

is obvious, so

H,Sz’ XBE =limH,.Y-z’ X ’--> B E

pB "S), because any com-Fortunately we also have H,(PxBE; S) lim H,( xe.,

pact subset of Pffe actually lies in some PB
XE

To show that each 0, is an isomorphism when E is locally finite, we use a
spectral sequence comparison. Filter

r,(x B e) c;(x) (R) ,(B) (R) C;(e)

by setting

Dn= Cf(X) (R)dg(B) (R) CtC(E).
r+t<_n

Recalling that p" PXSF X E is a fibration, filter CU,(PffF) SO as to obtain
the Serre spectral sequence, i.e., by inverse images under p of the skeleta of
X E. By construction and [2], / preserves these filtrations and consequently
induces a map of spectral sequences. The "E1’’ term for D, is

c,(x) (R) I,(’(X),d,,) (R) cc,(e) c,(x) (R) t/,(UB; S) (R) C(e)
= c(x e; t/,(B; S))
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and its "E 2’’ term is isomorphic with H,(X E; H,(flB; S)). This agrees
with the second term in the Serre spectral sequence and / is easily seen to
induce this isomorphism. By standard arguments (e.g., [6]),

0,.  /,er e(x s)
is an isomorphism.
Theorem 3.1 asserts that for 1-connected CW bipairs, H,q’a/ agrees with

the homology of the fiber homotopy pull-back. To extend this to corners of
1-connected spaces which are not bipairs, we reason as follows. First, a/

operates only on CW complexes, so if necessary we replace each space by a
CW approximation. This does not affect the weak homotopy type of the fiber
homotopy pull-back. Second, we replace a corner of CW complexes with a CW
bipair by using a double (reduced) mapping cylinder. Theorem 2.2 is used to
deduce that H,.gag( ) is unchanged during this step. To apply Theorem 2.2,
however, we need to know that a/ satisfies the derivation homotopy axiom,
and this requires an understanding of how the Adams-Hilton model looks on a
(reduced) cylinder.

Let X tO t3 ve be a 1-connected CW complex with trivial 1-skeleton
and let ( (X I)/(, I). We have

all(X) S(a[i F) and A(.)= S(a,a;’,b[i F),

where [all a[ a;’[ ell 1 and bil [ell. Assuming we have cho-
sen dx, we may define dye as follows. First define morphisms f, g: A(X)
A(.’) of tensor ringoids and a derivation F of degree + 1 from f to g by
f(ai) a, g(ai) a;’, and F(ai) bi. d may be taken to be an extension
of dx on the subcomplexes X 0 and X 1, and this suggests that a
candidate d for dx. is obtained by setting d(a)=fdx(a) and d(a;’)=
gdx(a). Setting

d(bi) (f g- Fdx)(ai)

f and g become morphisms of chain tensor algebras (.si’(X), dx) - (’((), d)
with F a derivation homotopy from f to g. To verify that d is a valid choice
for dx., it suffices to show this when the cells of " are attached one at a time,
and the only possible uncertainty is for the cells corresponding to the bi’s. For
these it suffices to check that H,(a/(), dlx..)= H,(.; S) for n-skeleta
X" of X. But this is obvious because f is a chain equivalence (its inverse h has
h(a) h(a’)= ai, h(bi)= 0) and consequently

H,(a/(’"), dlx..)-- H,(ag(X"),dxlx.) = H,(fX’; S)

LEMMA 3.2. As a functor from pointed 1-connected CW complexes and
continuous maps between them to CTA, al satisfies the derivation homotopy
axiom.
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Proof. The essence of the model for " described above is that if f0 and fl
are the inclusions of X into X 0 and X 1, then there is a derivation
homotopy F from ’(f0) to zC(fl). Suppose go, gl: X-- Y and h is a
homotopy between them. h" X" Y extends

gO V gl: (X X 0) V(X X 1)- Y,

and it is implicit in [2] that sO(h) may be chosen so as to extend any suitable
zC’(g0 v gl). e’(h) is a morphism of chain tensor algebras, so zC’(h)o F is a
derivation homotopy from

zz/(h) zc’(f0) ze’(h f0)
to

oqg(h) (fl) ’(h fl) zC’(gl).

THEOREM 3.3. Let

f g
XBE

be any corner of pointed 1-connected CW complexes and let A be its fiber
homotopy pull-back. Then

(IH,’z’ X B E

is isomorphic with H,(A S) as graded S-modules.

Proof. Replacing B by its double reduced mapping cylinder B’, we obtain
a diagram (9) commuting up to homotopy in which a and 3’ are the identity, fl
is a homotopy equivalence, and the corner

f’ g’
X’ B’ *-" E’

is a bipair. Apply Theorems 2.2 and 3.1 and the homotopy invariance of the
fiber homotopy pull-back.
Theorem 3.3 already fulfills one of the promises of the introduction, namely,

a free chain complex with homology equal to H,(A;S), whose basis is locally
finite whenever X, B, and E are locally finite CW complexes. However, when
S is a field, we would like something as small as possible for two reasons. First,
in practice the size of

( I
D, =q’ze XBE
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grows rapidly as the number of cells in B increases, so actual computations are
simplified by keeping this number small. Second, we shall see in the following
sections that a lot of information can be deduced from D. if the cellular
models we choose are "minimal". We recall next the relevant definitions.

Suppose now that S is a field and let p be its characteristic (p 0 is
allowed). A 1-connected space X with a specified CW decomposition is
p-minimal if and only if the cellular chain complex for X with coefficients in S
has all differentials vanish. By the universal coefficient theorem, this depends
only on p. It is equivalent [5] to the vanishing of the differential in
9ff(’(X), dx). When X is locally finite, p-minimality is equivalent [3] to the
existence of a bijection in each dimension between the cells of X and an
S-basis for H.( X; S).
For any 1-connected space X with locally finite p-homology, there is a

p-minimal approximation to X, i.e., a p-minimal CW complex X’ and a
p-homotopy equivalence f: X’ --, X [3]. We extend this to corners in the next
lemma. All spaces and maps are henceforth taken to be pointed.

LEMMA 3.4. Let

f g
XB<--E

be any corner of 1-connected spaces with locally finite p-homology. Then there are
p-minimal spaces X’, B’, E’ and a diagram commuting up to homotopy

f g’
X’ ,B’, E’

X ’B E

(11)

in which a, fl, are p-homotopy equivalences.

Proof First pick a p-minimal approximation to B, fl: B’ --, B. Replacing
fl by a fibration /, taking pull-backs of / via f and g, and choosing
p-minimal approximations to the pull-backs results in a diagram

Ott ]t

X’- , /- e’

E
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in which the squares commute, the triangle commutes up to homotopy, and h
is a homotopy equivalence. Since the fiber of : B has trivial p-homo-
topy, and / are also pohomotopy equivalences. It follows that setting
a t a’, 3’ ’ 3", f’ h f a’, and g’ h 3" yields the desired
diagram (11).

THEOREM 3.5. Let

gxf-+B+-E
be any corner of 1-connected spaces with locally finite p-homology, let A be its

fiber homotopy pull-back, and suppose S is a field of characteristic p. Then there
is a corner

f gt
X’ B’ +’- E"

in which X’, B’, E’ are p-minimal such that

as graded S-modules. In particular, H,(A S) equals the homology of

H,(X; S) (R) Ts-1/,(B; S) (R) H,(E; S) (12)

with respect to a certain explicitly computable differential.

Proof Apply Lemma 3.4 to obtain a diagram (11) subject to the conditions
of that lemma. If we localized all spaces at (p), a, fl, / would become
homotopy equivalences, so the fiber homotopy pull-backs A’ and A of
the corners (f’,g’) and (f,g) have the same p-homotopy type. Thus
H,(A; S) H,(A’; S) - H,oY-(f’, g’). 37"g(f’, g’) is always equal as a
tensor ringoid to

( x’ ) T, ( s ) CC, ( E )

C denoting cellular chains with coefficients in S and s-1 denoting desuspen-
sion. This agrees with

H,(X’;S) (R) Ts-I,(B’;S) (R) H,(E’;S) (13)

precisely when all three spaces are p-minimal, and the p-homotopy equiv-
alences allow us to equate (12) and (13).
When S is a field, yet another very important construction is possible. Let

f g
XB-E
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be a comer of 1-connected CW complexes. The dual of -M’(f, g) which
equals

D* c:( g) T$-I(--’:(B) (R) C:(E),

where Cc*(X) Hom(C(X), S), may be viewed as a filtered cochain complex
by grading it with

D C:(X) (R) s-I:(B) (R) (R)s-l:(n) (R) C:(E).
n factors

As D is also graded by dimension, we may write D n’ q for the component of
D n in dimension q. For the sake of comparison with the Eilenberg-Moore
spectral sequence [8J later, it is most convenient to replace D*’* by the
equivalent complex D*’*, where

b",’= c:(x) (R) (R) (R) Cc*(e)
n factors

so that 9 n’t D n’t-n as S-modules. The differential a on )*’ * satisfies

d(bn’t) C. bn,‘+l ( bn-l’t (]) b n-2,t-1 (D (])b 0,’-n+l,

so the first grading gives rise to a spectral sequence. We collect information
about this spectral sequence, called the dual spectral sequence, in the following
lemma.

LEMMA 3.6. Suppose S is a field. Let

f g
X-B*--E

be any corner of 1-connected CW complexes and let A be its fiber homotopy
pull-back. The dual spectral sequence for this corner has

[ ItE’t n*(x; S) *(B; S) (*(a; S) H*(E; S)
n factors

and has

( Eo’t = nq(A; S)
t-n=q

as graded S-modules. The differential d has bidegree (- r, -r + 1).
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The next lemma asserts that the dual spectral sequence is a p-homotopy
invariant.

LEMMA 3.7. Let S be a field of characteristic p and let

f’
X’ -B ’’ --E

X B E

be a diagram of 1-connected CW complexes which commutes up to homotopy and
in which x, fl, "/are p-homotopy equivalences. Then the dual spectral sequences
for the corners (f’, g’) and (f, g) coincide from their E terms onward.

Proof By [6] it suffices to construct a filtration preserving chain map from
b for (f, g) to D for (f’, g’) which induces an isomorphism on the E terms.
This is equivalent to constructing a morphism of tensor ringoids :
,Y’(f’, g’)---, oq-c’(f, g) whose dual is isomorphic on the E1 terms. The
latter requirement is equivalent to the demand that + induce an isomorphism
of homogeneous homology. This is guaranteed by theorem 2.2 if we know that
/(a), (fl), ’(3’) induce isomorphisms of homology. This in turn follows
from (10), since a p-homotopy equivalence induces an isomorphism of loop
space homology with coefficients in S.
We may combine Lemmas 3.7 and 3.4 to obtain the E2 term of the dual

spectral sequence.

LEMMA 3.8. Let

f g
XBE

be a corner of 1-connected CW complexes with locally finite p-homology and
suppose S is a fieM of characteristic p. The Ez term of the dual spectral sequence
for this corner is

E’t Tor;(s;S)(H*(X; S),H*(E; S)).

Here H*(X; S) and H*(E; S) are viewed as H*(B; S)-modules via f* and g*.

Proof By Lemmas 3.4 and 3.7, we need only compute the E2 term when
X, B, and E are p-minimal, where p char(S). Writing d do + dx + d2
+ for the differential d on .Y’aC’(f, g), where d is the component of d
which raises the lower degree by i, we have do 0 and dx being the dual of



A MODEL OF ADAMS-HILTON TYPE FOR FIBER SQUARES 481

the cup product [5]. From this we may deduce that (El, all) coincides with the
bigraded two-sided bar resolution for H*(X; S) and H*(E; S) and
H*(B; S)-modules. Then

E;,t= n,(E,t, dl) Tor;B;S)(H*(X;S),H*(E;S)).

4. The Eilenberg-Moore spectral sequence

In this section we show that the dual spectral sequence coincides with the
spectral sequence of Eilenberg and Moore [8]. In the process we offer a
variation on the proof of the existence of the Eilenberg-Moore spectral
sequence. Lastly, we observe that an explicit perturbation theory may be given
for its E term and state a very general homotopy invariance theorem.
We begin with a review of the basic notation and facts about the two-sided

cobar construction. Given any free S chain complex (C,, 3) with CO --S
which is a chain coalgebra over S via ," C, C, (R) C,, we may form the
cobar construction for C,, denoted C,"

where 3r 81 + 32, 8 -s-3, and if ,(a)= Ea (R) a’, then

G(s-a) y’.(-1)ta;’(s-la;).(s-a;’).

The axioms for an associative chain coalgebra require that

and consequently 32r 0. 3r is extended over Ts-1, so as to make it into a
chain tensor algebra, i.e., by formula (7).
The two-sided cobar construction begins with a chain coalgebra C, and a

right and a left chain comodule, C, and C. The cases that we shall be
concerned with all have the additional property that C and C,’ are them-
selves free associative coalgebras, the comodule structures coming from chain
coalgebra maps f’: C, ---, C, and f’" C ---, C,. The formulas for the
two-sided cobar construction, sometimes denoted (C,, C,, C), may easily
be recognized as coinciding with the formulas of Section 2 for the associated
chain ringoid to the corner

of chain tensor algebras. An excellent reference, containing many explicit
formulas, for the cobar construction is [4].
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Eilenberg and Moore [8] were the first to observe the connection between the
two-sided cobar construction and the cohomology of the pull-back of a
fibration. Let ’(X) denote the singular chain complex on X with coefficients
in S, viewed as a free chain coalgebra via the Alexander-Whitney diagonal. Let
m(x) denote the subcoalgebra spanned by those singular simplices which
send the m-skeleton of the standard simplex to the base point of X. With this
notation, a key step in the Eilenberg-Moore paper may be described as the
proof that for 0-connected spaces,

H,(A; S) = H,-(X /-, B E) (14)

when g is a fibration and A is the pull-back as in (1). Interestingly, (14) can
also be obtained using only Adams’ result [1] and the techniques introduced
here, if we require all spaces to be simply connected. This proof is given next.

LEMMA 4.1.
axiom.

The functors __m, m > 0, satisfy the derivation homotopy

Proof. As in the proof of Lemma 3.2, it suffices to show that the two
inclusions gi" X " (X I)/(, x I) by gi(x) (x, i) for 0,1 in-
duce derivation homotopic chain maps. For a singular p-simplex : ap X,
the "standard" homotopy between (0) g0#(q) and t(1) gl#() is given by
the formula

P

G(q) E (-
n=O

where (n>" ap + ,- is defined by

<,>(Xo, X,...,x+x)
(P(Xo,...,X "b Xn+ Xp+l),Xn+ "q- +Xp+l).

Extend G over m(x) so that it is a derivation from go# to gl#. We want G
to be a derivation homotopy from go# to gl#, and by Lemma 1.3 we need
only verify that

TG() _1_ GT() (0)_ (1),

where we are abusing notation slightly by writing q instead of s-Xq for this
typical generator of fl__m(x). Since 3r i1 + 2 and the fact that

(1G q_ GI)() (o)_ (1)
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is just the standard proof that cgm satisfies the (usual) homotopy axiom, it
remains to check that

+ o

for each singular simplex .
Again we rely on explicit formulas. Following accepted notation, write

P

:z((t’) E (-1)’,- Cp_,,
i=0

where is the front/-face and the back j-face of

p p+l

2G() E Y’ (-1)"(--1) ((.))"((,, ) p+l-i
n=O i=0

P

G6=(+) E (-1)JG(v’’"
j=O

P P

E (-l)G(a(t’) 6’,,(j E j(t’(,"
j----0 j---0

P J

E E (-1)J+t(jq)<t>
j----0 t----0

p p-j

E E
j=0 t=0

P J

E E(-1)+tj+l(*(t))" ((1)(,))p--j
j=O t=O

P P

E E(-l) j((,)) "((t))p--j+l
j=0 t----j

P P

E E(-1)+‘j+l()(/))" ((t{t))p--j
t-O j---t

p

-E E(-l) ’-
t==O j----O

p p+l

Y’. E (--1)J(--1)tj(q)<t>)"((tJ<t>)p+l--j
t=O j=O



484 DAVID J. ANICK

Lemma 4.1 and Theorem 2.2 allow us always to replace any corner by a bipair
and the fiber homotopy pull-back by a path space when working with the
two-sided cobar construction. A more subtle consequence of Lemma 4.1 is that
the inclusion __(m ..(0 is a natural derivation homotopy equivalence when
restricted to m-connected spaces. This follows because the inverse to c6’m(x)
,__, cg0(X) may be given, on each singular simplex, in terms of a homotopy
between two maps of the standard simplex to X (for example, see the proof of
the relative Hurewicz theorem in [16]).

THEOREM 4.2. There is a natural isomorphism between the two functors
H,q-W, and H,(P.’.; S) from 1-connected bipairs to graded S-modules.

Proof The proof follows the same fines as that of Theorem 3.1. In place of
the Adams-Hilton construction and the natural transformation 0 we have from
[1] the cobar construction and a natural transformation

’IX" __l(x)---> CU,(PL)

which extends to a map lx: ,,(_-c6l(x)) CU,(PX,x) Similar reasoning to
that in [1] allows ,/x also to be extended to

For a 1-connected bipair (B, X, E) we may piece together r/n, r/x, and /e to
obtain a natural transformation

’1]" -___61( X --..> B <.-- E)--> CU, ( P BxE )
That induces an isomorphism of homology follows from the same spectral
sequence comparison as was used in proving theorem 3.1. Finally, the fact that
__(1 _. __(60 is a natural derivation homotopy equivalence means by the
methods of Section 2 that q-_W1 .__, ,y-_c6,0 is a natural equivalence on
1-connected bipairs. The desired natural isomorphism is a composition

H,..’_cd’ (--- H,TCg --) H,(P.’. S).

Results 4.1 and 4.2 combine to yield (cf. (14)):

THEOREM 4.3. Let

f g
XBE

be any corner of 1-connected spaces and let A be its fiber homotopy pull-back.
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Then

f g
When S is a field, the dual of q-0(X B ,-- E) may be filtered, just as

in Lemma 3.6, to obtain a spectral sequence converging to H*(A; S). Clearly
this spectral sequence is precisely the Eilenberg-Moore spectral sequence.
Lemmas 3.6 and 3.7, without the restriction that the spaces be CW complexes,
are also true of the Eilenberg-Moore spectral sequence, since their proofs
remain valid when . and 0 are replaced throughout by cgl and
With so many similarities between the dual spectral sequence and the

Eilenberg-Moore spectral sequence, one suspects that they must coincide. The
proof of this is given next.

THEOREM 4.4. Suppose S is a field and let

X--’BE

be any corner of 1-connected CW complexes. The dual spectral sequence and the
Eilenberg-Moore spectral sequence for this corner coincide from their El terms
onward.

Proof. By the previous remarks it suffices to demonstrate this equivalence
for bipairs, so assume (B, X, E) is a 1-connected CW bipair. As in the proof of
lemma 3.7, we need only construct a morphism of chain ringoids

which induces an isomorphism on homogeneous homology. We have observed
that there is an explicit map

as well as a map

both of which induce isomorphisms on homology. The map 0 is not canonical.
It can be defined [2] on one generator at a time, and it has indeterminacy
which allows the addition of certain boundaries when choosing the 0-images of
generators. We see readily that in fact O can be chosen so that the 0-image of
each generator lies in the image of /. Then factors through / and we may
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write O l/J for some morphism of chain ringoids. Since and rl induce
isomorphisms on homology, does also.

Performing the construction of separately for X, E, and B gives a
commuting diagram in CTA,

(5)

where B is chosen to extend both x and e- In (15), all three vertical maps
induce isomorphisms of homology. is just ’(e, B, e), the induced map
on associated chain ringoids, and the essence of Theorem 2.2 is that under such
conditions induces an isomorphism on homology and on homogeneous
homology.

THEOREM 4.5. Let

be any corner of 1-connected spaces with locally finite p-homology, let A be its

fiber homotopy pull-back, and suppose S is a field of characteristic p. Then there
is an explicitly computable "perturbation theory" for the E term of the Eilen-
berg-Moore spectral sequence for this corner. That is, there is a map : El E1

with d 2 O, with respect to which E is a filtered complex, such that H.(El,-- H*(A; S) as graded S-modules, and by filtering (Ex, c) one recovers the
Eilenberg-Moore spectral sequence starting with the E term.

Proof By Theorem 4.4 we may consider the dual spectral sequence instead
and by Lemmas 3.4 and 3.7 we may replace X, B, and E by p-minimal spaces.
The result then follows from Theorem 3.5.

Note. The claim that gives an "explicitly computable" perturbation
theory deserves to be qualified somewhat, a is computable directly from the
Adams-Hilton models for the spaces in the comer

These models may be deduced from some fairly basic information about the
spaces, and various examples appear in [2] and [4]. However, what is not so
explicit in this treatment is the actual chain homotopy equivalence between
(Et, d) and (Eo, dr).
For completeness, we state the most general homotopy invariance result

possible (of. [11]).
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LEMMA 4.6. Let S be a field, and suppose

X’ - B’’- E’

X ,B E

is a diagram of O-connected spaces which commutes up to homotopy. Suppose
further that a, t, and induce isomorphisms on homology with coefficients in S.
Then the Eilenberg-Moore spectral sequences for the corners (f’, g’) and (f, g)
coincide from their E terms onward.

Proof As in the proof of Lemma 3.7, we may apply Lemma 4.1 and
Theorem 2.2 if we show that fl__cg(a), fl__cg0(fl), and ff(3,) induce isomor-
phisms on homology. Clearly this amounts to proving the claim that whenever
Y and Y’ are 0-connected and h: Y’--, Y induces an isomorphism or,

homology with coefficients in S, then fl__cg0(h) is a quasi-isomorphism.
To prove this claim, dualize the map fl__ff0(h) and consider the induced map

on the resulting spectral sequences. The map induced on the E terms,

h" T/*(Y; S) T*(Y’; S),

is an isomorphism because h*" H*(Y; S)--, H*(Y’; S) is an isomorphism.
We conclude that the dual of ff(h), and hence ff(h) itself, is a quasi-
isomorphism.

5. Application to formal spaces

In this section we apply our results to show that the Eilenberg-Moore
spectral sequence for (1) degenerates over characteristic zero whenever f and g
are formal maps. This result has recently been proved via minimal models [19],
but the approach adopted here is valuable in that it generalizes to positive
characteristics.
Our main result will in fact be valid over arbitrary characteristics, so we

begin by describing a generalization of the concept of formal spaces [10], [12]
to non-zero characteristics. We restrict ourselves in what follows to the case
where S is a field, and let p--char(S). By [5] and [12], a 0-minimal
1-connected CW complex X is formal if and only if the Adams-Hilton model
(’(X),dx) when p 0 can be chosen such that, for each generator a of
(X), we may write

dx(ai) Ecijtajat (16)
j,t
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for some scalars cij S. As noted in [3], condition (16) provides an excellent
generalization of formal spaces to arbitrary characteristics. A p-minimal (p
arbitrary) 1-connected CW complex X is called p-quadratic if and only if dx
may be chosen on zd(X) such that (16) holds. This depends only on p
char(S) and, up to sign, the scalars cij. reflect the cup coproduct structure
of X.
A map f: X ---) Y between formal spaces is said to be a formal map when

its minimal model is a formal consequence of the map it induces on cohomol-
ogy. Assuming X and Y are 0-minimal 1-connected CW complexes, this is
equivalent to the condition that zd(f): (X) --. zec(Y) may be chosen so as
to send generators of (X) to linear combinations of generators in zg(Y).
Ignoring the differentials, ’(f) would then agree with its homogeneous
approximation g’’(f). This concept may be generalized to maps f: X Y
between p-minimal 1-connected CW complexes for any p. Call such a map
p-homogeneous whenever see(f) may be chosen so as to preserve lower degrees.

Formal spaces have many beautiful properties, and one particular property
deserves mention here since we shall generalize it. When p char(S) 0, the
Pontrjagin homology ring H.(flX; S) of the loop space on a formal space X
may be given the structure of a bigraded S-algebra, and this additional
structure is natural in the category of formal spaces and formal maps. For X
locally finite there is also a natural transformation from the Ext algebra of
H*(X; S) to the Pontrjagin ring H.(fX; S), which is an isomorphism of
bigraded algebras if the proper multiplication is adopted on the Ext algebra.
By [3], these properties still hold when p char(S) is arbitrary and we restrict
ourselves to the category of p-quadratic spaces and p-homogeneous maps,
which we call the p-formal category.

THEOREM 5.1. Let

be a corner in the p-formal category and let A be its fiber homotopy pull-back.
Then:

(a) H*(A; S) has a natural bigrading, and we may write

Hq(a S) ] nt’q(a S).
t=o

By "natural" here we mean that morphisms of corners in this category induce
maps which respect the bigrading on their fiber homotopy pull-back cohomology.

(b) There is a natural isomorphism of bigraded S-modules

Ht’q(A" S) T’rn*(s’S)(H*(X; S) H*(E" S))’’’-t, q+ (17)
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(c) When X and E are contractible, A has the homotopy type of B, and the
bigrading given here on A agrees with that of [3] or (for p O) [10] on

*(riB; S).
(d) The Eilenberg-]l/Ioore spectral sequence for this corner degenerates at the
term.

Proof This is a fairly direct consequence of Theorem 3.5 and Lemma 3.8,
where the automatic p-minimality of p-quadratic spaces renders unnecessary
the finiteness condition. In the p-formal category, the formulas for
together with (16) show that the differential d on the E term is actually the
whole differential d.

This proves part (d) and the formula

T,"*(B;S)(H*(X;S),H*(E;S)). (18)nq(A S)----
t=0

The right-hand side of (18) is bigraded and functorial as a functor on corners,
so, from (18), H*(A; S) inherits a natural bigrading. This proves parts (a) and
(b). Part (c) follows because one of the definitions [3] for the bigrading already
known on fB for B p-quadratic agrees with the one obtained by specializing
the natural isomorphism of part (b).
Examples of formal spaces are suspensions, spaces whose rational cohomol-

ogy is a polynomial algebra, and r-connected manifolds of dimension < 4r +
2. Wedges, fat wedges, and products of formal spaces are formal. Examples of
formal maps are the inclusion of a subcomplex into a 0-minimal formal
complex, the projection of a product of formal spaces onto one factor, and the
suspension of any map. The diagonal map A: X X X is formal when X is
a formal space, and the fact leads directly to:

THEOREM 5.2 (cf. [20]). Let S be a field of characteristic zero and let X be a

formal space. Let AX denote Xsl, the space offree (i.e., non-based) loops on X.
Then H*(AX; S) is naturally bigraded and

Ht,q(AX;S)
__

__R.R R) (19)To,t,q+t( R

where R H*( X; S ). In particular

Hq(AX; S) -- R.RTort, q+t(R,R ). (20)
t=0

Proof This is immediate from Theorem 5.1 once we note by [15] that AX
is the fiber homotopy pull-back of the corner

X--+XXX6-X

for any X.
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Unfortunately, the diagonal need not be p-homogeneous for Xp-quadratic
when p = 0. As a simple example take Y to be the suspension of CP 2 and
S Z/2Z. The decomposition of Y as u e 3 t.) e 5 is 2-minimal, so we may
write (Y) Sa2, a4), subscripts corresponding to degree. By dimensional
constraints, dr 0. Let bij .I(Y Y) be the generator corresponding to
the product of the/-cell and the j-cell when they both exist. Using the fact that
the transgressive generator of H4(Y; S) is the square of the generator of
H2(fY; S) (they are connected by an Sq2) we may deduce

oqC’(A)(a4) bo5 + bso + bo3b30

with indeterminacy dyy(b33) b30b03 bo3b30. So o’(A) cannot be chosen
so as to preserve the lower gradation. It remains an open question whether or
not (20) holds for Xp-quadratic when p > 0.
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Appendix

We assemble here proofs which were omitted from Sections 1 and 2 to
improve their readability. The proofs of Lemma 1.1 through 1.4 are straightfor-
ward checks, and the proof of Theorem 1.5 is in essence a large "diagram-
chase". The pool of Theorem 2.2 is spread out over eight technical lemmas, but
the underlying idea is very simple: we make use of the high degree of
naturalness intrinsic in Definition 2.1 for the associated chain ringoid.

Proof of Lemma_ 1.1._ Let { xj } be a set of generators for P, hence also an
S-basis for M V N. Let fo(1) fl(1) 1 and f2(1) 0. For 0,1, set

f,

whenever x#x x#, is defined in P, and recursively set

+ ( 1) IxJll f0 ( xjl ). f: ( xj2 xj, ).

The key point here is that the tensor ringoid P is free with an S-basis
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consisting precisely of (1 } and pr_oducts of the form xjx xj,, > 1, where
xj= q M for m > 1 and xj= N for rn < t. This means that these formulas
define three unique maps of S-modules of degrees 0, 0, r respectively, f0 and
f: are clearly morphisms of tensor ringoids, and it suffices to check formula (2)
when x and y are products of generators.
Assume inductively that formula (2) holds when x and y are products of

generators and x .y is a product of fewer than generators. If now x .y is a
product of length t, write x x’ x", where x’ is a generator and x" -y has
product length t 1. We obtain

f(x y)= f:(x’ x"y) f=(x’)f:(x"y) +(-1) ,’l’’l,o(x’)f (x".v)
f2(x’)fl(x")fl(y) +(-I)r’lx’lfo(x’)[f(x")fl(y )

+ (-1)"lx"lfo(X")f2( y)]
fg_(x’)f(x")f(y) + (- 1)r’lx’lfo(x’)f2(x")fl(y )

+ (- 1)r’lXlfo(x’)fo(x")f2(y )

[f_(x’)f,(x")+(-l)r’Ix’Ifo(x’)f?.(x")]fx(y )

+ (- l)’l"lfo(x’x"lf2( y )

f2(x)fl(y) + (- 1)"Xlfo(xlfg_(y),
as desired.

Proof of Lemma 1.2. Again we may restrict our attention to products of
generators and by induction on product length it suffices to check for 0,1, 2
that

ghi(xy)= hf(xy)

when these equalities are known separately for x and for y. For 0 or 1,

gh,(xy) g(h,(x) h,(y)) gh,(x) gh,(y) hf(x) hf(y)

hi(f(x ) f(Y))= hif(Y),
gh2(xy ) g(h2(x ) hi(y) +(-1)lXlho(x) h2(y))

gh2(x ) ghl(y) +(-1)lXlgho(x) gh2(y )

h’2f(x ) h’xf(y) +(-1)rllh’of(x) h’2f(y )
h’2(f(x) f(y))

h’2f(x, y ).
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Proof of Lemma 1.3. As usual everything is additive so it suffices induc-
tively to verify formula (3) for a product xy when it is known to hold
separately for x and for y:

as desired.

Proof of Lemma 1.4. The formula we are to check is

(Hi- dH)(x) (F- G)(x).

It suffices to verify (A-l) on a product xy when it is known to hold on each
factor. Assuming (A-l) is valid for x and for y,

(rib dn)(xy)= u(8(x).y +(-1)lXlx
-d(n(x) g(y) + f(x) n(y))

HS(x). g(y) + f8(x). H(y) + (-1)l"lH(x) gS(y)

+(-1)lxlf(x) US(y) dH(x) g(y) (- 1)l"lH(x)
dg(y) df(x). U(y) -(-1)lxlf(x) dn(y)

(H, aH)(x), g(y) aH)(y)

(F(x) G(x)). g(y) +(-1)lxl/(x).(F(y) G(y))

F(x). g(y) + (-1)l’lf(x) F(y) G(x)" g(y)

-(-1)’lf(x) .G(y)
F(xy) G(xy).
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Proof of Theorem 1.5. We shall proceed by induction on the dimension to
construct g, G, F, and a derivation H of degree + 2 from f to fgf which
satisfies

H dH= Gf fF. (A-2)

We assume that g, G, F, and H exist and have all the stated properties in
dimension < n, clearly true for n 0. Lemmas 1.1 through 1.4 assure us that
it suffices to define and check the formulas for these on a set of generators for
TM and TV.

First we define g and G on a typical generator y in (TV),. x gd(y) has
already been chosen and 8(xl)= 8gd(y)= gd2(y)= 0, so x is a cycle in
TM. f(x) fgd(y) is a cycle in TV, and the formula

shows that

(Gd + dG)(dy) (1 -fg)(dy)

fg(dy) d(y GdCy)),

i.e., f(x) is a boundary. As f induces a monomorphism on homology, the
cycle Xl must also be a boundary. Choose x2 such that 8(x2) x and
consider YI =Y -f(x2)- Gd(y). We have

d(yl) d(y) df(x2) dGd(y)

d(y) -f(xl) +(fg- 1)(dy) -f(xl) + fgd(y) O,

SO Yl is a cycle in TV. As f induces an epimorphism of homology, there is
some cycle x3 (TM), such that f(x3) differs from y by a boundary, i.e., we
may write f(x3) y d(y2). Define g(y) by

g(y) xz + x3.

Then 8g(y) 3(x2) x gd(y), so g continues to be a chain map. Define
G(y) by

G(y) =Y2"

Then

dG(y) d(y2) y f(x3) (y f(x2) Gd(y)) -f(g(y) x2)
(1 -fg- Gd)(y),

so G continues to be a derivation homotopy from 1 to fg.
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Now we define F and H on a typical generator x in (TM)n. Consider

We have

14/1 (1 gf- FS)(x).

8(wl) 8(x) gfS(x) 8F$(x) (1 gf- 8F)(Sx) F82(x) 0,

so wl is a cycle in TM. However,

/(w) (f ygt- fF)()
(1 fg)(f(x)) -fF(8(x))
(Od + dO)f(x) +(HB dH- Gf)8(x)
d(Gf- n)(x)

is a boundary, and since f is one-to-one in homology, w is a boundary, say
w 8(w2). Consider Y3 Gf(x) n(x) -f(w2). d(Y3) f(w) df(w2)

0, SO Y3 is a cycle. As f is onto in homology, there is a cycle w3 and an
element Y4 such that f(w3)= Y3 + d(y4)-Define F(x) by

F(x) wg_ + w3;

then 8F(x)= 8(w2)= w (1 gf- F)(x), so F continues to be a deriva-
tion homotopy from 1 to g/. Finally, set

Then

/-/() =y4.

dI( ) d( y. )
=/(w) -y
fF(x) f(w2) -(Gf(x) HS(x) f(w2))
H(x) + fF(x) Gf(x)
(H8 + fF- Gf)(x),

so H continues to satisfy (A-2). This completes the inductive step, and the
proof.

Proof of Theorem 2.2. The remainder of the paper is devoted to a proof of
Theorem 2.2. The desired result will be rendered almost trivial after we
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complete a series of lemmas. The first two lemmas assert that the associated
chain ringoid functor oq" behaves well with respect to derivation homotopies.
For brevity we henceforth write TM for a chain tensor algebra (,TM, dM) when
the differential is unambiguous or does not need to be specified.

LEMMA A.1. Let h: TN --> TV be a morphism in CTA and suppose

f, g: TM ---> TV

are two morphisms in CTA with F a derivation homotopy from g to f. Define a
map of tensor ringoids qF: ’(f h) -’+ ’(g, h) by setting

,FIrV(R)V+= 1 and gPF(S(a)) s(a) F+darrM)s(a)

for a a generator of M, where F+ is the derivation of degree + 1 from g+ to f+:
M+ (R) TM --+ M+ (R) TV having F+(M+) 0 and F+

rM F. Then qF is an
isomorphism of chain ringoids.

Proof We first show that ffF is a morphism of chain ringoids, i.e., that
dgqF qFdf, where dg, df are the respective differentials on -(g, h), -(f, h).
Because the differential dM on the chain tensor algebra TM must preserve the
kernel of the augmentation, we may for each generator a of TM write
dM(a) Z,abi, where a M are generators, bi TM, and the sum is finite.
By (6), dar<rM)s(a)= a- Y’.s(a)b and the formula for qF(S(a)) may be
written as

tkF(sa ) sa F(a) E(-1)la;lsaF(bi). (A-3)

We must verify that

for each generator x of q’(f, h) (M+ (R) TV (R) N+, dr). Formula (A-4) clearly
holds for x a generator of TV (R) N/. So let a be a generator of M, with
dM(a) Y’.ab as above, and for dM(a) write Y’.a::h:. with a" generators and

-"-’j--tJ ij

b’. TM. The fact that dt 0 means that

::h:.h. 0E(1)lafladM(bi) q- E Ea,j-,y-t

and consequently that

E Y’.(-1)l<51a’jb’ijbi EadM(bi).
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Using this we obtain

_,(--1)’aTlsai "(F(bi?)f(bi)
(g- f- dvF- FdM)(a ) -Zsa "(g- f- dvF- FdM)(b,)

--0.

It remains to verify that F is an isomorphism. Let P M+(R) TV (R) N+,
which equals both oq-(f, h) and Y’(g, h) as a tensor ringoid, and filter P by
setting p(-1)= 0 and

V (r) ) (M+)j (R) TV (R)(N+)k for r >_ O.
j+k<r

Note that bF preserves this filtration, i.e., dpF(P(r) ) P(’) for all r > -1.
is isomorphic if each of the induced maps

F

(Fr). p(r)/p(r- 1) _.) p(r)/p(r- 1)

on the quotients is an isomorphism. Formula (A-3) shows that q,(vr) is in fact
the identity on each such quotient.

LEMMA A.2. Let f: TM -+ TV be a morphism in CTA and suppose

g,h" TN - TV

are morphisms in CTA and G is a derivation homotopy from g to h. Then there is
an isomorphism of chain ringoids dpG: ’(f, g) ’(f, h).
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Proof Define qa by letting it be the identity on M+(R) TV and let

,’(b) +

The proof is parallel step for step to that of the previous lemma.
Essentially, Lemmas A.1 and A.2 say that the maps f and g in the corner

(8) may be replaced by derivation homotopic maps, without altering the
homology of the associated chain ringoid. In order to be able to handle a
diagram like (9) in full generality, however, we must also be able to replace the
chain tensor algebras themselves with suitably equivalent counterparts. An
important special case of this occurs when the diagram commutes precisely and
only one of the vertical maps, say the left-most, is not the identity:

)ca g
TM TV TN

TM TV "- TN.

(A-5)

One might expect that when a: TM TM’ induces an isomorphism of
homology in (A-5), then the induced map on corners,

q-(a, 1,1): .Y’( TM, TV, TN ) .Y’( TM’, TV, TN ),

would also be isomorphic on homology. One might expect similar results when
only the middle or right-most map is not the identity. This intuition turns out
to be correct but the proofs are rather technical. The proofs must in fact wait
until after the next three lemmas.
The next three lemmas prove that the isomorphisms q’F and q,a introduced

i.n Lemmas A.1 and A.2 are in some sense "natural". We first make the
observation that if

f gl h
TM TN TV TW

gz

are morphisms in CTA and G is a derivation homotopy from gl to g2, then Gf
is a derivation homotopy from gf to gf and hG is a derivation homotopy
from hgx to hg2.

LEMMA A.3. Let h a, h2: TM TM’ be two morphisms in CTA with H a
derioation homotopy from h 2 to h 1. Suppose

!
TM’ TV - TN
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is any corner in CTA. Let

I-I "- TM TV TN ,- TM TV - TN

be the isomorphism of Lemma A.1. Then the diagram

dPfH
S’(fhx, g)

oq’(f, g)

commutes up to derivation homotopy. In particular, it induces a commuting
diagram on homology and on homogeneous homology.

Proof Let h i. denote oq’(h i, 1, 1) for 1, 2. Let G ’( H, 0, 0), i.e., G
is the unique derivation from h 2. q)fH to ht, such that G(TV (R) N/) 0 and
for a a generator of M, G(sa) is the image of a under the composition

-H s
M -o TM’ -o (M’) +

(R) TM’ (M’) +
(R) TV (M’) +

(R) TV (R) N+= 3v(f, g).

We assert that G is a derivation homotopy from h 2, fffH to ht.. By Lemma
1.3 we need only check this on the generators, and this check is trivial except
for sa a generator of M+.

Writing dM(a) F,abi with a M generators and b TM, we have

( Gd//, + d/G ) ( sa )

G(fhl(a) Esaf" fh(b,)) d/f+sH(a)
,f+sU(a;).fhl(bi)-f+U(a) +f+sdM,U(a),

( h2.o dpfri h.)(sa)
h_.(sa fH(a) + f+n+sd(a)) h.(sa)
f+sh2(a ) f+sht(a) fH(a) + h2,f+H+sdM(a)

f+s(d,H + nd)(a) fn(a) E(-1)la;If+sh2(a) fH(bi).

These are equal because f/H(a) fH(a) and

f+sHdM(a ) Ef+sU(a;b,)

Y’.f+s(H(a). hl(bi) + (-1)l’"lh2(a) U(bi))
.f/sU(a;).fh,(b,)+ _(-1)l":lf+sh2(a).fH(bi).
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LEMMA A.4.
CTA and let

Let H be a derivation homotopy from h to h 2: TN TN’ in

TM L TVL TN’

be any corner in CTA. Then the diagram

-(f, ghl), ’(f, gh2)

’(f,g)

commutes up to derivation homotopy and induces a commuting diagram on
homology and on homogeneous homolo.

Proof Follow the same argument as for the previous lemma. The deriva-
tion homotopy from h, to h2, dpgH is given by F q’(0, 0,-H), where
F(M+(R) TV) 0 and for b a generator of N, F(s’b) is the image of b under
the composition

g+-H s’ tX+l M+ +N TN’ TN" (R)(N TV (R)(N )+ (R) TVe(N) =.’(f,g).

LEMMA A.5.
CTA and let

Let H be a derivation homotopy from h 2 to h TV TV’ in

f g
TM TV TN

be any corner in CTA. Then the diagram

’(1, hi,.1/(f’ g).(1, h2,1)

’( hlf hlg)," -,’( h_f h )

’(h2f h)

commutes up to derivation homotopy and induces a commuting diagram on
homology and on homogeneous homology.

Proof. Let F oq-(0, H, 0) be the derivation from kngO h2, to knf h,
with F(M+) F(N/) 0 and F(x) n(x) for x a generator of TV. Let dl
and do denote the differentials on oq’(f, g) and ff’(h2f, big) respectively. By
Lemma 1.3 we need only check that

(doF + Fdl)(X ) (dPHgO h2, qHfO hl,)(x)
for x a generator of ’(f, g)= (M+(R) TV (R) N+, d).
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For x a generator of TV, we have

(doF + Fdl)(X)=(dvH + Hdv)(X) (h2- hl)(X )

For sa a generator of M+,

(doF + Fdx)(sa ) Fdxs(a ) F(f(a) f+SdM(a))
Hf(a) H+f+sd(a)
s(a) -(s(a) nf(a) + H+f+sd.(a))

=s(a)-qnf(s(a))
qHg(h2,(sa)) qHf(hl,(sa)).

The check for a generator s’b of N/ is similar.
The next lemma uses the results assembled so far to show that diagram (A-5)

induces a quasi-isomorphism of associated chain ringoids when a is a quasi-
isomorphism. The remaining two lemmas prove similar results when one of the
other two vertical maps is the quasi-isomorphism.

LEMMA A.6. Suppose

g
TM" TV TN

is a corner in CTA and the morphism a" TM--+ TM’ in CTA induces an
isomorphism on homology. Then a, .q’(a, 1, 1)" q’(fa, g) --+ .q’(f, g) induces
an isomorphism on homology and on homogeneous homology.

Proof By Theorem 1.5 choose a’: TM’ -+ TM and derivation homotopies
F from 1 to a’a and F’ from 1 to aa’. Consider the diagram

TM --> TVTN
ag .g-(a, 1,1) , TM’ TVTN
a, oq-(a’, 1,1),[

TM TV TN

a, oq-(a, 1,1) $

TM’-> TV TN
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By Lemma A.3, a,a’, and /F’ induce the same map on homology and the
latter is an isomorphism by Lemma A.1, so a induces an injection on
homology. Likewise aa agrees on homology with ’F, SO a is surjective on
homology. Thus a and hence a, are isomorphic on homology. The same
proof works if "homology" is replaced throughout by "homogeneous ho-
mology".
The proofs of the last two lemmas are similar to the proof of Lemma A.6

and will be omitted.

LEMMA A.7. Suppose in CTA we have a corner

f g
TM TV- TN’

and a quasi-isomorphism y: TN TN’. Then

", oq’(1,1,3): ff’(f,g’/)q’(f,g)

induces an isomorphism on homology and on homogeneous homology

LEMMA A.8. Suppose in CTA we have a corner

f
TM TV- TN

and a quasi-isomorphism r: TV TV’. Then

/3, oq-(1,fl, 1): q-( f g) -o ,y"( Bf Bg)

induces an isomorphism on homology and on homogeneous homology.
We are at last in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Referring to (9), use the derivation homotopy axiom
to choose derivation homotopies F from -(fa) to o’(flf’) and G from
o(flg,) to o-(g),). The map k" --(f’, g’) 7--(f, g) given by

,t, o

is a morphism of chain ringoids, and each factor in this composition has
already been shown to induce an isomorphism on homology and on homoge-
neous homology.
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