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IDEAL PROPERTIES OF REGULAR OPERATORS
BETWEEN BANACH LATI’ICES

BY

N.J. KALTON AND PAULETTE SAAB

I. Introduction

Suppose E and F are Banach lattices such that E* and F have order-con-
tinuous norms. In [4] Dodds and Fremlin (cf. also [1]) showed that if T:
E F is a positive compact operator and 0 < S < T then S is also compact.
Aliprantis and Burkinshaw [1] showed by examples that the hypotheses on E
and F are necessary. In [2] they asked whether a similar result is true for
Dunford-Pettis operators, under the same hypotheses on E and F.

In this paper we give a positive answer to the question of Aliprantis and
Burkinshaw. However, after the initial preparation of the paper we learned of
the work of W. Haid [6] who also had answered the question in the form stated
a little before our work (see also de Pagter [9]). Haid’s theorem is:

THEOREM 1.1. Let E and F be Banach lattices so that E* and F have
order-continuous norm. Let T: E F be a positive Dunford-Pettis operator. If
0 < S < T then S is a Dunford-Pettis operator.

Our methods are similar in spirit to those of Haid, but yield a more powerful
result (Theorem 4.4 below) in that the hypotheses on E* can be eliminated.
We also strengthen another result of [2]. In [2] it is shown that for any

Banach lattice E if T: E E is a positive Dunford-Pettis operator and
0 < S < T then S 3 is Dunford-Pettis; we show (Corollary 4.7) that in fact S 2

is Dunford-Pettis. Again examples in [1] and [2] show that S need not be
Dunford-Pettis.
The argument for these results hinges on Theorem 3.2, a technical result

which has many other applications to similar problems. Some of these are
examined in Section 5. For an example we mention Theorem 5.4. Suppose E is
any Banach lattice and F is a Banach lattice with order-continuous norm.
Suppose further there is no disjoint sequence in F equivalent to the unit vector
basis of 12. Suppose R,S: E F are regular operators with ISI-< IRI.
Suppose there is a closed subspace H of E, isomorphic to 12, such that S is an
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isomorphism on H. Then we can conclude that there is a dosed subspace H of
E, isomorphic to 12, so that R is an isomorphism on Ha.

2. Notation

Let X and Y be Banach spaces. We denote by .og(X, Y) the space of
bounded linear operators from X into Y and abbreviate Za(X, X) to Za(X).
We recall that T .oq(X, Y) is a Dunford-Pettis operator if T maps weakly
compact sets into norm compact sets, or equivalently if II TxII ---, 0 whenever
x 0 weakly. In [2], T is said to be a weak-Dunford-Pettis operator if ST is a
Dunford-Pettis operator for every weakly compact operator S .(’(Y, Z) for
some Banach space Z. Alternatively T is a weak-Dunford-Pettis operator if
whenever x, 0 weakly in X and y,* 0 weakly in Y* then

lim y*(Tx) O.
Suppose now E is a Banach lattice. The positive cone of E is denoted by

E /. If u E/ then E denotes the principal ideal generated by E, i.e.,

Eu (x E:lxl -< mu for some m N}.

If E is separable then E certainly has a quasi-interior positive element [11, p.
97].

For general u E/, E, considered with the order-interval [-u, u] as its
unit ball is a abstract M-space and hence can be identified with a space C(K,)
of continuous functions on some compact Hausdorff space K, [11, p. 165].
Precisely there is a lattice isomorphism J, of C(Ku) onto Eu mapping the
constant function 1 onto u. We shall refer to this isomorphism J, as the
Kakutani isomorphism associated to u.
A Banach lattice E has order-continuous norm if every descending sequence

e, E/ is norm convergent. E is then order-complete and forms an ideal in
E** [11, p. 89]. We note that for any Banach lattice E, E* has order-continu-
ous norm if and only if every disjoint bounded sequence e, in E is weakly
convergent to zero. [4, Corollary 2.9]. In particular for any closed sublattice Eo
of E, E0* will also have order-continuous norm.

If E and F are both Banach lattices then a linear operator T Za(E, F) is
called regular if T Px P2 where Px, P2 .(E, F) are positive; alterna-
tively T is regular if for some positive P we have Tel <- P lel for e E. The
subspace of regular operators is denoted by -qOr(E, F). If F is order-complete
then .’r(E, F) is a lattice [11, p. 230]; in fact .’,(E, F) is a Banach lattice
under the norm II TII IIITI II.

In general, Za,(E, F) need not be a lattice, but, since F ** is order-complete,
.’r(E,F**) is a lattice. Thus if T .r(E,F) then we can define ITI
.o9(E, F**). If F has order-continuous norm then ITI (in .e(E, F**)) maps
E into F and hence coincides with TI in the lattice Za(E, F).



384 N.J. KALTON AND PAULETTE SAAB

For any Banach lattice E we shall define a multiplier M &at(E) to be an
operator such that for some m N,

IMel <- mlel, e E.

Thus -mI < M < ml. If E is order-complete, M is a multiplier if it belongs
to the principal ideal generated by the identity operator.

LEMMA 2.1. Let K be a compact Hausdorffspace. Then M .’(C(K)) is a
multiplier if and only if there exists f C(K) so that Mh(s)=f(s)h(s),
s K,h C(K).

Proof Suppose M is a multiplier. Then for s K the linear functional
h Mh(s) satisfies [Mh(s)l < mlh(s)l,h C(K). Thus there exists f(s)
with -m < f(s) < m so that Mh(s)= f(s)h(s). Since M1 C(K), f
C(K) and M has the prescribed form. The converse is trivial.

LEMMA 2.2. Let E be a Banach lattice with a quasi-interior positive element u
and let Ju: C(Ku) --> E be the associated Kakutani isomorphism. Then there is
an isometric isomorphism of C(Ku) onto the space of multipliers of E given by
f - f where f[Jug Ju(fg), g C(Ku). Further the map f --> f is an algebra
isomorphism.

Proof If f C(Ku) then the formula f(Jug)= J,(fg), g C(K,), de-
fines a linear operator f: E, E,. Clearly [IfI[ < Ilfll and so f extends to a
linear operator in Za(E) which is clearly a multiplier. The map f f is clearly
an injective algebra homomorphism.
We show that f f is in fact an isometry. Suppose Ilfll 1 but Ilfll r < 1.

Choose p with r < p < 1 and then h C(Ku) with II h II 1 and h(s) 0
whenever If(s)[ < p. Then if e Jh, If" el > plel so that Ilfll >- p contrary
to our assumption.

A Banach lattice E is said to satisfy an upper-p-estimate where 1 < p < c
if there is a constant C so that for disjoint set el,..., e in E,

liel+-.-+enl < C Ile/ll p
i----1

E is said to satisfy a lower-q-estimate for 1 < q < o if there exists c > 0 so
that for any disjoint set el,..., en in E,

Ilel/’"/ell >c Ileill q
i-----

See [6, p. 82].
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If ex,..., e, E then for 0 < p < oo, the element (lellp + + [e, lP)t/p
E is unambiguously defined (see pp. 40-42 of [7]).
A subset A of E is called solid if whenever aA and [e[ _< [a[ then

e A. The solid hull of the set B is the set A (e E: [e[ _< [b[ for some
b B}. We set B+= B tq E+.

Finally we note that it will often be convenient to use , ) for the natural
pairing between E and E* or between E** and E*.

3. The basic approximation theorem

We start with a lemma which follows from work of Dodds and Fremlin [4]"

LEMMA 3.1. Let E and F be Banach lattices and suppose A c E and B F*
are bounded solid sets. Suppose Tn: E F are positive operators so that T 0
in the weak-operator topology, i.e., (The, f*) 0 for e E, f* F*. Sup-
pose further whenever (a ) is a disjoint sequence in A + and (b } is a disjoint
sequence in B / we have

(i) (Tnan, b) 0, b B,
(ii) (Tna, bn) O, a A,
(iii) (Tnan, bn) O.

Then

lim sup sup (Tna, b) 0.
n--*oo a-A bB

Proof. For a A + note that

lim (Tna b) O, b B, and lim (Tna bn ) 0
n oo

for (bn) disjoint in B /. Thus by Theorem 2.4 of [4].

lim sup (Tha, b) O.
n--- o b B

If (an) is disjoint in A / then using conditions (i) and (iii) above and Theorem
2.4 of [41,

lim sup (Tnan, b) 0.
n bB

Now let d by any sequence in B /. We have

lim (a, Tn*dn) 0 and lim (an, Tn*dn ) 0
n oo n oo
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where a A / and { a ) is disjoint in A 4. Thus by Theorem 2.4 of [4] again,

and the lemma follows.

lim sup (a, Tn*dn) 0
n ot a A

THEOREM 3.2. Let E and F be Banach lattices each with a quasi-interior
positive element. Let T be a positive operator T: E F and let A c E, B F*
be a solid bounded sets. Suppose that whenever ( a } is disjoint in A + and ( b }
is disjoint in B / then

(i) limnTan=Oweakly,
(ii) lim T*b, 0 weak*,
(iii) lim, Tan, b,) O.

Suppose further that R, S (E, F) satisfy S < ]R < T in (E, F **).
Then given e > 0 there exist multipliers M1,..., Mk .’(E), L1,... L,
(F) so that if

k

SO y’ L,RM
i=1

then

[Sa Soa, b)l < e, a A,b B.

Proof We let u E/ and v F/ be quasi-interior elements such that
Tu < v. Let

J" C(Ku) E and Jo" C(Ko) Fo

be the associated Kakutani isomorphisms. As in Section 2 there is an isometric
algebra isomorphism of C(Ku)1onto the multipliers of E given by f f where

J(fh) fJ,,(h), h C(K,,),

and a similar isomorphism g of C(Ko) onto the multipliers of F.
We shall break up the proof into several lemmas. Before proving the first we

note a fact which will be used several times. Let P denote the order-ideal in
F** generated by F; i.e., x P if xl -< w for some w F. If n > 0 is a
monotone increasing sequence in F* and q SUPn >_ltn then

(x, qn) x, q) for all x P.

In fact if xl w F then x, q q,) < w, q q’n) since qn q weak*.
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LEMMA 3.3. There exists dp F so that if 0 < x < Tu in F** and (x,
0 then (x, b) 0 for all b B.

Proof If {bn) is disjoint in B + then (Tu, bn)--*0. Hence there is a
maximal countable disjoint set { b, } in B/ with (Tu, b,) > 0 for each n N.
Set q=E2-"b,.ThusifbBand bAq=0,(Tu, b) =0. Nowif0<x<
Tu and (x, q,) 0 then if b B +, since x P,

x, supb A mq)= sup (x, b A mq) O.
rn

However (Tu, b SuPmb A mq) 0 so that (x, b) 0.

Now let P be the band projection onto the band generated by q in F*
Thus if f* > O, Pf* sup,,f* A mq. Again if x P c F**,

(x, Pf*) lim (x,f* A mq).
oo

LEMMA 3.4. Suppose V ( E, F * * ) and T < V < T. Suppose

(Vfu, *,6,) > O, f C(Ku)+, g C(Ko)+.

Then P*V > 0 in .LO(E, F**).

Proof We need only showP*Ve>0if0<e<u. Pick f C(Ku)+>O
so that fu e.
Now suppose 0 < 6 < q. Then 0 < Jv*/< Jv*q’ in C(Ko)*. Now by the

Radon-Nikodym theorem given > 0 there exists g C(Ko) so that 0 < g < 1
and

IJo*q(h) -L*(gh)l -< ellhll, h C(Ko).

Hence if w [-v, v] in F, lp(w)- *q(w)l < e. By a weak*-density argu-
ment if -v < x < v in F** I(x, 6 *q’)l < e. Thus

As > 0 is arbitrary (Ve, q) >_ O, for 0 _< q _< q. Now if F*, with q >_ O,

(P*Ve, 6) (Ve, P6) lim (Ve, q A mq) >0.
m-- oo

For f C(Ku) and

f (R) g(s, t) f(s)g(t).
g C(Ko) we define f (R) g C(K Kv) by
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LEMMA 3.5. Suppose V .’(E, F) with -aT < V < aT for some a > O.
Then there is a unique bounded linear operator Fv: C(K Ko) .’(E, F)
such that

F(f (R) g) ,Vf.

If V > 0 then FV is a positive operator.

Proof Define W/: C(Ku) --> C(Ko) for 1, 2 by W J- tTJu, W2

J-XVju. Then W > 0 and Wll < 1. Hence for each K there is a positive
Borel measure g M(Ku) with g t(K,) < 1 so that

Wh(t) fh(s) dtt (s).

Now if h > 0, -aWlh < W2h < aWh so that for any h C(Ku),

W2h(t)l <_ flh(s)l dl,

Hence for each there exists a Borel function t on K with -a < /)t a
everywhere so that

wgh(t) f,()h() dll (S).

i=lfi (R) gi C(Ku) (R) C(Ko) define Fv(Ei=f (R) gi) y,.ni__xigZ Then

Jo-lFv E f (R) g, Jh(t) O,(s)h(s) E f(s)g,(t) dl (s).
i=1 i=1

Hence if

lfi (R) gi max
(s, t) K x K

n

Efi(s)gi(t)
i-1

flh(s)ldt(s).
It follows that

FV fi(R)gi e
i=

Tlel
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for any e E and hence for any e E. In particular

g

so that Fv extends uniquely to a bounded linear operator

Fv: C(K Ko) -.LP(E, F)

with IIFoll _< all TII. If V > 0 then we may take 0 _< ’ht -< a everywhere and it
is not difficult to check that

J-Fv(k)J.h(t ) fk(, t)q,,(s) dl, (s)

for h C(K,), k C(K, Ko). Hence Fv(k) > 0 if k > 0.
Now Fv has an extension ’v: C(K, Ko)**.’(E,F**) which is

continuous for the weak*-topology on C(K, Ko)** and the weak*-operator
topology on Za(E, F **). We identify the space B(K, Ko) of bounded Borel
functions on K, Ko as a linear subspace of C(K, Ko)** in the natural
way. Note that if V > 0 then ’v > 0.

LEMMA 3.7. Suppose R, S .,q(E, F) with ISI < ]R] < T in .(E, F**).
Then there exists h B(K Ko) so that P*’R(h)= P*S in .q(E, F**).

Proof For VZ,O(E,F) with -mT< V<mTfor some rnNwede-
fine a measure

#(V)M(KuKo)

by

fkd (V) (rz(k)u, q,), k C(gu go).

If f C(K,) and g C(Ko),

ff (R) gdlz (v)= (Vfu,).

It follows that #(,Vf)= f (R) g. #(V) for f C(Ku), g C(Ko). Thus

(rv(f (R) g)) f (R) g- (v).

Now suppose k B(K Ko) and that k is a bounded net in C(Ku)(R)
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C(Ko) such that k k weak*. Then Fv(k)---, ’v(k) in the weak*-oper-
ator topology. For f (R) g C(K,,) (R) C(Ko) we have

(,rv(k,)fu,,t,) rv(k,)fu, ,*,l,) --, ’v(k)fu, ,*q).

However k- #(V) --, k./z(V). Hence

f(f (R) ,) kd (v) ((k)fu, #*>.

Now take V R and choose k so that kl 1 and k (R) I#(R)I-
Then

+/-  )iu, >_ 0

for all f > 0, g > 0. Hence P*’R(k) > IP*RI in Ca(E, F**). Thus

e*’R(k) +(I-- P*)IR] > +S and P*’k(k) > +_.P*S.

Again if f, g >_ O, (R(k)fu, ,*) > I(Sf, ,*)1 so that ]/(S)I < I/x(R)I.
Now select k so that Ikl < 1, k B(K Ko) and k /(R) =/(S). Then

h ) Sfu, =0

for all f, g. Hence P*R(h)= P*S.
We are finally in position to complete the proof. We define the map

by

A: C(K,, Ko) loo(A B)

Ah(a,b)= (Fn(h)a,b), a A b B.

A is clearly bounded; we shall show that A is weakly compact. It suffices to
take a sequence { h, } with disjoint supports and 0 < h, < 1 and show that
II zX h,, II --’ 0. In fact

I(F(h,)a,b)l < (Fr(h,)lal, Ibl), a A, b B,

since I"T_ R(h,) > 0 and 1-’T+ R(h,) > 0.
Let I’T(hn) Tn. Since h,, 0 weakly in C(K,, Ko), T,, 0 weakly in

.a(E, F) and hence T, ---, 0 in the weak-operator topology. If { a, } is disjoint
in A + and ( b, } is disjoint in B+

(T,,a,,, b) < (Ta,,, b) O, b B+, (T,,a, b,,) < (Ta, b,,) O, a A,
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and

(T,,a,,, b,,) <_ (Ta,,, b,,) O.

Thus by Lemma 3.1,

lim sup sup l(Tna, b)[ 0
n--, a.A b.B

and hence Ilmh.II 0 as required.
Since A is weakly compact it has a weak*-weak continuous extension

C(K Ko)** -, x B).

By continuity, if h B(K Ko),

,h(a,b) (’R(h)a,b), a A, b B.

Fix h so that -1 < h < 1 and P*R(h)= P*S in Za(E, F**) (by Lemma
3.7). For e E,

([’R(h)e- Sel,ck) sup (’R(h)e- Se,4,) O.
I1_<

However ’r- ’R > 0 and ’r + R >- O. Hence

I’R(h+) _< ’r(h+) and IR(h-)l--< ’7-(h_).

Thus IR(h)l < y(Ihl) < T. Also ISl < T. Thus IR(h)e Sel < 2Tlel.
If 0 _< el u we use Lemma 3.3 to conclude that (1 R(h)e Sel, b) 0,

b B, and hence, since B is solid,

(’R(h)e,b) (Se, b), b B.

Now this equation holds, by density, for all e E and in particular for all
a A; i.e., h(a, b)= (Sa, b)., a A, b B.

Since A is weakly compact A h is in the closed linear span of

(A(f(R) g). f c C(Ku), g C(K,))

i.e., for e > 0 there exists fx,..-, f, C(Ku) and gl,-.-, glc C(K,) so that

i=1



392 N.J. KALTON AND PAULETTE SAAB

However if L ,i .’(F), M j .e(E) and SO ,i=lLiRMi then this
implies that I(Sa Soa, b)l < e, a A, b B.

4. Applications to Dunford-Pettis operators

In order to apply Theorem 3.2, we shall need a lemma which helps to
establish conditions under which the hypotheses of 3.2 can be verified.

LEMMA 4.1. Let F be a Banach lattice and let X be a Banach space. Let Q:
F X be an operator which maps order-intervals into relatively weakly compact
sets. Let B c F* be the solid hull of Q*(U. ) where U. is the closed unit ball of
X*. Then if (b } is a disjoint sequence in B +, b 0 weak*.

Remark. Q maps order intervals into relatively weakly compact sets if for
every majorized disjoint sequence fn in F, II Qfll - 0 (of. [2] Theorem 1.2).

Proof Consider the map V: F - 1(B) given by Vf(b) (f, b). If ( f }
is a disjoint majorized sequence, 0 < Ifl -< f say, then

IlVfll supl(L,b)l
bB

sup <ILl, IQ*x*l)
x* -<

sup sup gn, Q’x*)
gn < Ifn x* --<

sup IlOgll
Ig.I-<

Thus V also maps order-intervals to relatively weakly compact sets. Assume
now for some f F+ and ( bn } disjoint in B / we have (f, b) 1 for all n.
We can find a weak*-cluster point fl of the point-evaluations e() (b) on
l(B), and since V[-f,f] is relatively weakly compact there exist convex
combinations

n E Oliei
P_I+I

where P0 0 < P < P2 < so that 8 fl uniformly on V[-f, f]. Thus

n n+ 0 uniformly on V[-f, f] and so for suitable n,

sup ]8,,(Vg) ,,+l(Vg)[ < 1/2;
--f<g<f
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where c

sup J(g,c.- c.+1) < 1/2
-f<_g<_f

E,_,aibi. Thus since ]c. c.+ 1] c. + c.+ 1,

(f, . + <

and hence (f, c,) < 1/2. However (f, c,)= 1 for all n. This contradiction
shows that <f, bn) 0 for all f F/.

LEMMA 4.2. Let E be a Banach lattice and let A c E be the solid hull ofsome
relatively weakly compact set W. If { a } is a disjoint sequence in A / then
a 0 weakly.

Proof Let R: Y E be a weakly compact operator such that R(Uy) D W.
Then R*" E* Y* is weakly compact and hence if a** is disjoint in C/

** --, 0 weak* by Lemma 4.1.where C is the solid hull of R**(U*) then a,
Since A c E R**(UY*) the lemma follows.

Before giving our main results we derive the Dodds-Fremlin theorem [1], [4]
from our techniques.

THEOREM 4.3. Let E and F be Banach lattices so that E* and F have
order-continuous norm. Suppose T: E - F is a positive compact operator. If
0 < S < T, then S is compact.

Proof. First we note that E* has order-continuous norm if and only if
every disjoint bounded sequence in E/ is weakly null [4]; equivalently F has
order-continuous norm if and only if every disjoint bounded sequence in F+* is
weak* null.

It clearly suffices to show S is compact on any subspace E0 of E of the form
E0 E where u > 0. Then replace F by F0 Fo where v Tu. E’ and F0
also have order-continuous norms while E0 and F0 have quasi-interior positive
dements. Thus we can reduce the theorem to the case when E and F have
quasi-interior positive elements.
Now let A Ue and B UF*. We apply Theorem 3.2. Clearly-0) holds

since a 0 weakly; similarly (ii) holds. For (iii) note that a --, 0 weakly
implies II Tanll O. Take R T in the theorem. Then there exists multipliers
L1, Lk, Mx,..., Mk so that IIS Fki=lLiTMill < e and so S is compact.

THEOREM 4.4. Let E and F be Banach lattices so that F has order-continuous
norm. Suppose T: E F is a positive Dunford-Pettis operator and 0 < S < T.
Then S is a Dunford-Pettis operator.
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Proof. As in the previous theorem it suffices to take E and F with
quasi-interior positive elements. Suppose e E and e 0 weakly. Let A be
the solid hull of (en: n N} and let B UF*. We again apply Theorem 3.2. If
{ an} is disjoint in A + then a 0 weakly (Lemma 4.2) and so Ta ---> 0
weakly. If (b ) is disjoint in B / then b 0 weak* and so T*b - 0 weak*.
Finally since a --> 0 weakly, II Tall --, 0 as T is a Dunford-Pettis operator.
Now for e > 0 there exist multipliers L Lk of F and MI,..., Mk of E

so that if SO Y’.LiTM then

I(Sa- Soa, b)l < e, a A,b B.

Thus l[ Sen Soenl[ e, n N. However lim II S0e.ll 0 since T is
Dunford-Pettis and so limn__,supllSen[ < e. As e > 0 is arbitrary S is
Dunford-Pettis.

THEOREM 4.5. Let E and F be Banach lattices and T: E F be a positive
weak Dunford-Pettis operator. If 0 < S < T then S is a weak Dunford-Pettis
operator.

Proof Suppose first both E and F have quasi-interior positive elements.
Suppose e -’-> 0 weakly in E and fn* --> 0 weakly in F*. Let A be the solid
hull of { en: n N} and B be the solid hull of { f*: n N}. If a is disjoint
in A / and b is disjoint in B / then a 0 weakly and b 0 weakly so that
(Tan, bn) O.
Now applying Theorem 3.2, if e > 0 there exist multipliers L1,... L of F

and M1,..., M, of E so that if SO ELiTMi,

Sen Soen, fn*)l < e.

Now SO is weak-Dunford-Pettis so

lim sup l(Sen, fn*)] < e.

We conclude that (Se,,, f,*) 0; i.e., S is weak-Dunford-Pettis.
For the general case it suffices to show that S: Eo Fo is weak Dunford-

Pettis whenever Eo E and Fo F where u > 0, v Tu. This will follow
from the preceding argument if we show that T: Eo Fo is weak Dunford-
Pettis. Suppose e 0 weakly in Eo and fn* 0 weakly in Fo*. Then there is
bounded operator Q" Fo* F* so that for f Fo, (f, Qf*) (f, f*). In
fact if f* > 0 and f > 0 we define

(f, Qf *) sup (f/x nu, f *)

and extend Q by linearity. Now Qfn* 0 weakly in F* and (Ten, Qfn*)
(Ten, fn*) 0 as required.
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We shall need the following extension of Theorem 4.4.

THEOREM 4.6. Let E and F be Banach lattices and let X be any Banach
space. Suppose T: E F is positive Dunford-Pettis operator and 0 < S < T.
Let Q: F X be any operator which maps order-intervals to relatively weakly
compact sets. Then QS is a Dunford-Pettis operator.

Proof Again it suffices to consider the case when E and F have quasi-
interior positive elements. Let e 0 weakly in E and let A be the solid hull
of { e }. Let B be the solid hull of Q*(U,). Applying Lemma 4.1 we see that
the conditions of Theorem 3.2 hold. Hence for e > 0 there exist multipliers
L1,... L, .a(F), M1,..., M, SO(E) so that if SO ELiTM then

I<Se- Soen, Q*x*)l < e, n N, IIx*ll < 1.

However So is Dunford-Pettis so that IIS0ell O. Hence lim sup ll OSenll < e.

Again we conclude that OSenll O.

COROLLARY 4.7. If E is a Banach lattice, T: E - E is a Dunford-Pettis
operator and 0 < S < T then $2 is a Dunford-Pettis operator.

Proof. For any disjoint majorized positive sequence en, e 0 weakly and
so II Tell --" O. Thus IlSell --’ 0 and so S maps order-intervals into weakly
compact sets. Hence S2 is Dunford-Pettis.
As in [2] we can restate Corollary 4.7 for the case of products SIS2 where

0 < $1 < T and 0 < S2 < T2 and T and T2 are Dunford-Pettis.
If E is an AL-space and F is weakly sequentially complete then SO(E, F)
SOt(E, F) and is thus a Banach lattice (see [11, p. 232 and p. 95]). It has

been shown by Dodds and Fremlin [4] (cf. also Bourgain [3]) that if F is also
an AL-space then the Dunford-Pettis operators in S(E, F) form a band. See
[2, Corollary 3.6] for an extension of this result.

THEOREM 4.8. Let E be an AL-space and suppose F is a weakly sequentially
complete Banach lattice. Then the Dunford-Pettis operators form an order-ideal
in SO(E, F).

Proof. We suppose R SO(E, F) is a Dunford-Pettis operator and S
SO(e, F) with ISI -< IRI. We let T IRI. As usual if e 0 weakly in E we
can find closed order-ideals E0 in E and F0 in F each with quasi-interior
positive elements so that T(Eo)c Fo and e E0 for all n N. In SO(E0, F0)
we also have SI -< RI T.
Now let A be the solid hull of { en: n N} in E0 and let B be the unit ball

of Fo*. If (an: n N} is disjoint in A / then a 0 weakly and hence as E0

is an AL-space, Ilall --" 0. Conditions (i) and (iii) of Theorem 3.2 now follow
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immediately. Furthermore F and hence F0 have order-continuous norm and
hence T*b 0 for any disjoint (b } in B /.
The proof is now exactly as the proof of Theorem 4.4. We deduce from

Theorem 3.2 that since R: E0 F0 is Dunford-Pettis we must have II Senll - O.

5. Other applications

Let us call a linear subspace o of .L’(X, Y) (for X and Y Banach spaces) an
ideal if STV J; whenever S .P(Y), T o and V

If E and F are Banach lattices an operator T: E - F is M-weakly compact
[8] if II Tall - 0 whenever a is a disjoint bounded sequence in E. If F has
order-continuous norm then the Banach lattice .,q’,(E, F) has order-continuous
norm if and only if every T &at(E, F) is M-weakly compact [4, Theorem
5.].

THEOREM 5.1. If E and F are Banach lattices such that F has order-continu-
ous norm then each of the following conditions suffices to ensure that .ar(E, F)
has order-continuous norm.

(a) E satisfies an upper p-estimate and F satisfies a lower q-estimate where
l <q<p.

(b) E* has order-continuous norm and F is an AL-space.

Proof (a) See Theorem 7.7 of [4].
(b) Suppose T: E --* F is a positive linear operator and (a } is a disjoint

bounded sequence in E+. Then a, - 0 weakly and hence Ta - 0 weakly so
that 11 Tan[ - 0; i.e., T is M-weakly compact.

THEOREM 5.2. Suppose E and F are separable Banach lattices such that

*r(E, F) has order-continuous norm. Let je be closed ideal of .(E, F). Then
.5’r(E, F) is a band.

Proof Both E and F have quasi-interior positive elements. Since .L’,(E, F)
has order-continuous norm, we need only show that 3.t’,(E, F) is an
order-ideal. Suppose R o and S .q’,(E, F) with ISI -< IRI T. Let
A UE and B UF* in Theorem 3.2. Since T is M-weakly compact and F
has order-continuous norm, the hypotheses of Theorem 3.2 are satisfied.
Hence, for e > 0, there exist L1,..., Lk .P(F) and M1,... Mk .’(E) so
that if SO Eki=lLiRMi then IlS S011 < . Thus S

Remark. Theorem 5.2 applies to the case E =Lp and F Lq where
l<q<p.
We shall say that a linear operator T: X - Y is/p-singular (where I < p <
) if there is no infinite dimensional subspace X0 of X isomorphic to Ip such
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that T X0 is an isomorphism. The case p 2 is of special interest here in view
of Rosenthal’s characterization of the Dunford-Pettis operators in Sa(L1) as
the 12-singular operators [10].

PROPOSITION 5.3. Suppose 1 < p < c and that F is a Banach lattice with
order-continuous norm. Suppose there is no sequence of disjoint vectors in F+
equivalent to the unit vector basis of lp. Then if Fo is a closed subspace of F
isomorphic to lp, there exists k F_ so that for some c > 0, cllfll -< ’/’(Ifl),
f ,%.

Proof. We need only consider the case when F has a weak-order unit and
then take to be any strictly positive linear functional on F. Then the result
follows simply from a result of Figiel, Johnson and Tzafriri [5], or [7,
Proposition 1.c.8, p. 38].

THEOREM 5.4. Suppose E and F are Banach lattices with F having order-con-
tinuous norm. Suppose 1 < p < and F contains no closed sublattice, lattice-
isomorphic to lp. Then the lp-singular operators in *’r( E, F) form an order-ideal.

Remark. By Proposition 5.3 (or Proposition 1.c.8 of [7]). This theorem is
trivial if 2 < p < since every operator is/p-singular.

Proof Again, it will suffice to consider the case when E and F have
quasi-interior positive dements. Suppose S,R L’r(E, F) where ISI -< IR[
and R is/p-singular. Let E0 be a closed subspace of E isomorphic to lp such
that S IEo is an isomorphism. According to Proposition 5.3 there exists
q, F+* so that for some c > 0,

q,(ISel) -> cllSell, e Eo.

Let A be the solid hull of Ueo and let B [-’h, q]. Let T RI and apply
Theorem 3.2. We note first that by Lemma 4.2, Ta - 0 weakly for every
disjoint sequence { an: n N} in A /. If (b ) is disjoint in B / then b 0
weak* and so T*b 0 weak*. Finally (Tan, bn) <_ (Tan, ,) O.
Now there exist multipliers L1,..., Lk .(F) and M,..., Mg Aa(E) so

that if SO Y’.ki=ILiRM then I(Sa Soa, b)[ <_ 1/2c, a A, b B. Hence for
e go,

q(ISe- S0el) < 1/2cllell.

Thus q,(ISoel) 1/2cllell and hence SO is also an isomorphism on E0. Thus
there is a closed subspace E of E0 with E -= lp and 1 < j < k so that
LjRMjlE is an isomorphism. Hence Mj(Et) lp and RIM  e ) is an isomor-
phism contrary to our assumption. Hence S is also/p-singular.
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We now consider a slight modification of Theorem 5.4. Let us say that an
operator T: X - Y is complementably le-singular if there is no infinite-dimen-
sional subspace X0 of X isomorphic to e so that TIXo is an isomorphism and
T(Xo) is complemented in Y. An /e-singular operator is complementably
/p-singular; the converse is true if the range space Y has the property that
every subspace isomorphic to e contains a complemented infinite-dimensional
subspace. In the case p 2, it can be shown that this latter property holds for
the spaces Y L where 1 < r < .
We shall require the following lemma.

LEMMA 5.5. Let E be a Banach lattice and let V .(le, E) where I < p <. Let (dn: n > 1) be the unit vector basis of e and suppose e E are disjoint
with levi <_ Vdl. Then there exists W .P(lp, E) with Wd e.

Proof Supposea anRwithE. e,=llxi < 1. Then

i=1 i=1

<_ . ai Vdil 2

i=1

1/2

< KGII VII

by [7, Theorem 1.f.14, p. 93] (KC is the Grothendieck constant).

THEOREM 5.6. Suppose E and F are Banach lattices with F having, order-con-
tinuous norm. Suppose 1 < p < o and that either

(a) E contains no complemented sublattice, lattice-isomorphic to lp, or

(b) F contains no complemented sublattice, lattice-isomorphic to e.
Then the complementably lp-singular operators in .’r(E, F) form an order-

ideal.

Proof We prove the theorem for the case when E and F have quasi-inter-
ior positive elements. As usual the general case can be reduced to this case,
noting in particular that the closure of every principal ideal in F is comple-
mented.

Let us suppose R r(E, F) is complementably/,-singular and that ISI <
R I. Let T RI. We shall show that if V: l E and W: F l, are
bounded linear operators then (WSVd,, d*) 0 where d, is the unit vector
basis of e and d* is the unit vector basis of q where q-1 + p-1 1. Since
WSV cannot therefore be the identity on I this will establish the result.
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Let A be the solid hull of the sequence { Vdn: n N} and let B be the solid
hull of the sequence { W*d,*: n N}. Let { a } be disjoint in A + and let { b )
be disjoint in B +. Then a 0 weakly (Lemma 4.2) and b 0 weakly so
that Tan 0 weakly and T*b 0 weak*. We shall show that (Tan, bn) O.

Suppose (Tan, bn) > i > 0 for all n N. By passing to a subsequence we
may suppose a < ]Vdr(n) where r(n) is a strictly increasing sequence and
that b < W*dn)[ where s(n) is a strictly increasing sequence. To see this
observe that if a < [Vd, for some fixed k, then

b.> _< <1 Vail, T*b.> O,

and a similar argument shows that if b _< W*dl then (Tan, bn) O.
Now suppose we have case (a) of the hypotheses. By Lemma 5.5 there exist

VI: lp E and QI: lq---> F*

so that Vld a and Qd* bn. Then (Q*TVldn, dn* ) > for all n N and
hence by a standard gliding hump argument there is a subsequence dk(n of d
so that Q*TV is an isomorphism on the closed linear span [dk(n) ]. This
implies that [ak(n) is a closed sub-lattice of E lattice-isomorphic to lp which is
complemented (by PQ*T where P: [Q*TVld,(n)] [ak(n) is the inverse of

Q*Tl[a,(n)]). This contradicts hypothesis (a).
In case (b), we may find c with 0 < c < Ta so that c are disjoint and

<c., <ra.,

Indeed let B ( f F: b(Ifl) 0} and let Pn: F B be the band projec-
tion. Set c Tan PnTan If m 4: n, since bm/x bn 0, given e > 0 we can
write cm/x c u + v where (u, bin) 0 and (v, bn) 0 and u, v > 0 (Note
here that the order-interval [0, cm/x cn] is weakly compact). Thus Pnv < Pncn
0 and as v Bn, v 0; similarly u 0 and so c A c 0. Thus there exist
operators V2" lp F and QI" lq --.> F* SO that V2d c and Qld* bn. The
conclusion of the argument is similar to case (a) and we omit it. We conclude
in either case that (Tan, bn) "-> O.
Now by Theorem 3.2, if e > 0, there exist L1,..., Lk O(F), M,..., M
*(E) so that if SO E=LiRM then I(SVd SoVdn, W*d,*)l < e. We

claim

(SoVd. W *d.* ) -, o.

Indeed, if not we can find a subsequence dr(n) and 1 __< j _< k so that

l(LjRMjVdr(n), W *dr*(n >l > "
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Again this means the existence of a further subsequence ds(n) so that

is an isomorphism. Now if G MV[ds<,) then G =- lp, R is an isomorphism
on G and R(G) is complemented in F by the map P1WLj where P1 is the
inverse of WLj: R(G) WLR(G). This contradicts the fact that R is
complementably/p-singular. Hence (SoVd., W*dn*) 0 and so

lim sup SVd., W*d* ) < e.

As e > 0 is arbitrary the proof is complete.
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