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BETWEEN BANACH LATTICES
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N.J. KALTON! AND PAULETTE SAAB

1. Introduction

Suppose E and F are Banach lattices such that E* and F have order-con-
tinuous norms. In [4] Dodds and Fremlin (cf. also [1]) showed that if T:
E — F is a positive compact operator and 0 < S < T then S is also compact.
Aliprantis and Burkinshaw [1] showed by examples that the hypotheses on E
and F are necessary. In [2] they asked whether a similar result is true for
Dunford-Pettis operators, under the same hypotheses on E and F.

In this paper we give a positive answer to the question of Aliprantis and
Burkinshaw. However, after the initial preparation of the paper we learned of
the work of W. Haid [6] who also had answered the question in the form stated
a little before our work (see also de Pagter [9]). Haid’s theorem is:

THEOREM 1.1. Let E and F be Banach lattices so that E* and F have
order-continuous norm. Let T: E — F be a positive Dunford-Pettis operator. If
0 < S < T then S is a Dunford-Pettis operator.

Our methods are similar in spirit to those of Haid, but yield a more powerful
result (Theorem 4.4 below) in that the hypotheses on E* can be eliminated.

We also strengthen another result of [2]. In [2] it is shown that for any
Banach lattice £ if T: E — E is a positive Dunford-Pettis operator and
0 < S < T then S? is Dunford-Pettis; we show (Corollary 4.7) that in fact S?
is Dunford-Pettis. Again examples in [1] and [2] show that S need not be
Dunford-Pettis.

The argument for these results hinges on Theorem 3.2, a technical result
which has many other applications to similar problems. Some of these are
examined in Section 5. For an example we mention Theorem 5.4. Suppose E is
any Banach lattice and F is a Banach lattice with order-continuous norm.
Suppose further there is no disjoint sequence in F equivalent to the unit vector
basis of /,. Suppose R,S: E — F are regular operators with |S| < |R|.
Suppose there is a closed subspace H of E, isomorphic to /,, such that S is an
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REGULAR OPERATORS BETWEEN BANACH LATTICES 383

isomorphism on H. Then we can conclude that there is a closed subspace H; of
E, isomorphic to /,, so that R is an isomorphism on H,.

2. Notation

Let X and Y be Banach spaces. We denote by £ (X,Y) the space of
bounded linear operators from X into Y and abbreviate £( X, X) to Z(X).
We recall that T € £(X,Y) is a Dunford-Pettis operator if T maps weakly
compact sets into norm compact sets, or equivalently if ||7x,| — 0 whenever
x, — 0 weakly. In [2], T is said to be a weak-Dunford-Pettis operator if ST is a
Dunford-Pettis operator for every weakly compact operator S € £(Y, Z) for
some Banach space Z. Alternatively T is a weak-Dunford-Pettis operator if
whenever x, - 0 weakly in X and y*¥ — 0 weakly in Y* then
lim, ,  y¥(Tx,) = 0.

Suppose now E is a Banach lattice. The positive cone of E is denoted by
E,. If u € E_ then E, denotes the principal ideal generated by E, i.e.,

E,= {x € E: |x| < mu for some m € N}.

If E is separable then E certainly has a quasi-interior positive element [11, p.
97].

For general u € E_, E, considered with the order-interval [—u, u] as its
unit ball is a abstract M-space and hence can be identified with a space C(K,)
of continuous functions on some compact Hausdorff space K, [11, p. 165].
Precisely there is a lattice isomorphism J, of C(K,) onto E, mapping the
constant function 1 onto u. We shall refer to this isomorphism J, as the
Kakutani isomorphism associated to u.

A Banach lattice E has order-continuous norm if every descending sequence
e, € E_ is norm convergent. E is then order-complete and forms an ideal in
E** [11, p. 89]. We note that for any Banach lattice E, E* has order-continu-
ous norm if and only if every disjoint bounded sequence e, in E is weakly
convergent to zero. [4, Corollary 2.9]. In particular for any closed sublattice E,,
of E, E} will also have order-continuous norm.

If E and F are both Banach lattices then a linear operator T € £ (E, F) is
called regular if T = P, — P, where P,, P, € £ (E, F) are positive; alterna-
tively T is regular if for some positive P we have |Te| < P|e| for e € E. The
subspace of regular operators is denoted by Z,.(E, F). If F is order-complete
then Z.(E, F) is a lattice [11, p. 230]; in fact Z,(E, F) is a Banach lattice
under the norm ||T||, = || | T} ||.

In general, %,(E, F) need not be a lattice, but, since F ** is order-complete,
ZL.(E, F**) is a lattice. Thus if T € %,(E, F) then we can define |T| €
F(E, F**). If F has order-continuous norm then |7| (in £(E, F**)) maps
E into F and hence coincides with |T'| in the lattice £ (E, F).
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For any Banach lattice E we shall define a multiplier M € £,.(E) to be an
operator such that for some m € N,

|Me| < mle|, e€E.

Thus —mI < M < ml. If E is order-complete, M is a multiplier if it belongs
to the principal ideal generated by the identity operator.

LemMA 2.1. Let K be a compact Hausdorff space. Then M € L (C(K)) is a
multiplier if and only if there exists f€ C(K) so that Mh(s) = f(s)h(s),
se K,h e C(K).

Proof. Suppose M is a multiplier. Then for s € K the linear functional
h — Mh(s) satisfies |Mh(s)| < m|h(s)|, h € C(K). Thus there exists f(s)
with —m < f(s) < m so that Mh(s) = f(s)h(s). Since M1 € C(K), f€
C(K) and M has the prescribed form. The converse is trivial.

LEMMA 2.2. Let E be a Banach lattice with a quasi-interior positive element u
and let J,: C(K,) = E, be the associated Kakutani isomorphism. Then there is
an isometric lsomorphzsm of C(K,) onto the space of multipliers of E given by

f — f where f[J,g1=J,(fg), g € C(K,). Further the map f — f is an algebra
isomorphism.

Proof. 1If fe€ C(K,) then the formula f(J g)=J,(fg), g € C(K,), de-
fines a linear operator f: E, - E,. Clearly ||f|| < ||f|| and so f extends to a
linear operator in Z(E) Wthh is clearly a multiplier. The map f — f is clearly
an injective algebra homomorphism.

We show that f — f is in fact an isometry. Suppose ||f|| = 1 but ||f]| = r < 1
Choose p with r < p <1 and then & € C(K,) with ||k]| =1 and A(s) =
whenever |f(s)| < p. Then if e = J A, If - e| = ple| so that ||f]| = p contrary
to our assumption.

A Banach lattice E is said to satisfy an upper-p-estimate where 1 < p < oo
if there is a constant C so that for disjoint set e,...,e, in E,

n 1/p
lley + -+ +e,|l < C( Zlnei||1') .

i=1

E is said to satisfy a lower-g-estimate for 1 < g < oo if there exists ¢ > 0 so
that for any disjoint set e,...,e, in E,

n 1/q
lley + -+ te,ll = C( leeill") .
i=1

See [6, p. 82].
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If e;,...,e, € E then for 0 < p < oo, the element (|e,|? + --- + |e,|?)'/?
€ E is unambiguously defined (see pp. 40-42 of [7]).

A subset A of E is called solid if whenever a € A and |e| < |a| then
e € A. The solid hull of the set B is the set A = {e € E: |e| < |b| for some
be B}. Weset B*=BNE,.

Finally we note that it will often be convenient to use (,) for the natural
pairing between E and E* or between E** and E*.

3. The basic approximation theorem
We start with a lemma which follows from work of Dodds and Fremlin [4]:

LeMMA 3.1. Let E and F be Banach lattices and suppose A C E and B C F*
are bounded solid sets. Suppose T,: E — F are positive operators so that T,, — 0
in the weak-operator topology, i.e., (T,e,f*) > 0 for e € E, f* € F*. Sup-
pose further whenever {a,} is a disjoint sequence in A* and {b,} is a disjoint
sequence in B we have

@) (T,a,by—0, beB,
(i) (T,a,b,) >0, ae€A,
(i) (T,a,, b,y — 0.

Then

lim sup sup|(T,a,b)| = 0.

N0 ged beB
Proof. For a € A™ note that

lim (T,a,b) =0,b€ B, and lim (T,a,b,) =0
n— oo n— oo

for (b,) disjoint in B*. Thus by Theorem 2.4 of [4].

lim sup (T,a,b) = 0.

n— o peB

If (a,) is disjoint in 4" then using conditions (i) and (iii) above and Theorem
2.4 of [4],

lim sup(T,a,,b) =0.

n—o pep

Now let d, by any sequence in B*. We have

lim (a,T*d,y =0 and lim (a,,T,*d,) = 0
n— oo

n— o0



386 N.J. KALTON AND PAULETTE SAAB
where a € A* and {a,} is disjoint in 4*. Thus by Theorem 2.4 of [4] again,

lim sup{a,T*d,) =0

n—00 ge4
and the lemma follows.

THEOREM 3.2. Let E and F be Banach lattices each with a quasi-interior
positive element. Let T be a positive operator T:- E — Fandlet A C E, BC F*
be a solid bounded sets. Suppose that whenever {a, )} is disjoint in A* and {b,}
is disjoint in B then

(i) lim,_ Ta, = 0 weakly,
(i) lim,_ T*b, = 0 weak*,

(i) lim,_ (Ta,,b,) = 0.

Suppose further that R, S € Z(E, F) satisfy |S| < |R| < T in L(E, F**).
Then given € > O there exist multipliers M,,... .M, € L(E),L,,...,L, €
ZL(F) so that if

So = i L;RM;
i=1
then
|(Sa — Sya,b)| <&, a€ A,beB.
Proof. We let u€ E, and v € F, be quasi-interior elements such that
Tu <v. Let
J:C(K,)>E, and J;:C(K,) - F,

be the associated Kakutani isomorphisms. As in Section 2 there is an isgmetric
algebra isomorphism of C(K ) onto the multipliers of E given by f — f where

J(fm) =f1(h), heC(K,),

and a similar isomorphism g — g of C(K,) onto the multipliers of F.

We shall break up the proof into several lemmas. Before proving the first we
note a fact which will be used several times. Let F denote the order-ideal in
F** generated by F; ie., x € F if |x| <w for some we F. If ¢, >0 is a
monotone increasing sequence in F* and ¢ = sup, . ¢, then

(x,9,) > (x,¢) forall x € F.

In fact if |x| < w € F then (x,¢ — ¢,) < (w,¢ — ¢,) since ¢, > ¢ weak*.
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LEMMA 3.3.  There exists ¢ € F¥so that if 0 < x < Tu in F** and {x,¢)
= 0 then (x,b) =0 for all b € B.

Proof. 1If {b,} is disjoint in B* then (Tu,b,) — 0. Hence there is a
maximal countable disjoint set {b,} in B with (Tu, b,) > 0 for each n € N.

Set ¢ = 227", Thusif b€ Band b A ¢ =0, (Tu,b) = 0. Now if 0 < x <
Tu and {x,¢) = O then if b € B™, since x € F,

<x, supb A m¢> = sup(x,b A m¢) =0.

However (Tu, b — sup,,b A m¢) = 0 so that (x,b) = 0.

Now let P be the band projection onto the band generated by ¢ in F*.
Thus if f* =0, Pf* = sup,,f* A m¢. Again if x € F C F**,

(x,Pf*) = lim {(x,f* A m¢).
n— oo
LEMMA 3.4. Suppose V € L(E,F**) and —T < V < T. Suppose
(Vfu, %) 20, fe C(K,),.g€C(K,),.

Then P*V = 0 in L (E, F**).

Proof. We need only show P*Ve > 0if 0 < e <u. Pick f€ C(K,),>0
so that fu = e.

Now suppose 0 < ¢ < ¢. Then 0 < J* < J* in C(K,)*. Now by the

Radon-Nikodym theorem given & > 0 thereexists g € C(K,)sothat0 < g <1
and

I (h) — J*¢(gh)| < ellnll, he C(K,).

Hence if w € [—v,v] in F, |¢(w) — §*p(w)| < e. By a weak*-density argu-
ment if —v < x <vin F** |{x,¢ — §*)| < & Thus

Ve, ¥y = (Ve, §*) — e = (Vu, %) — e > —e.
As € > 0 is arbitrary (Ve,y) > 0, for 0 < ¢ < ¢. Now if y € F*, with y = 0,

(P*Ve,y) = (Ve,PY) = lim (Ve,y A m¢) = 0.

For fe C(K,) and ge C(K,) we define f® ge C(K, X K,) by
f®g(s, 1) = f(s)g(2).
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LemMA 3.5. Suppose V € L(E, F) with —aT <V < oT for some a > 0.
Then there is a unique bounded linear operator T',: C(K, X K,) > Z(E, F)
such that

T, (f®g)=2gVf.
If V > 0 then T, is a positive operator.

Proof. Define W;: C(K,)—> C(K,) for i =1,2 by W, =J'TJ, W, =
J,'WJ,. Then W, > 0 and W;1 < 1. Hence for each ¢t € K, there is a positive
Borel measure p, € M(K,) with p,(K,) <1 so that

Wih(t) = [h(s)dp, (s).
Now if h > 0, —aW,h < W,h < aW;h so that for any h € C(K,),
|Woh(1)] < a [lh(s) dp, (5)-

Hence for each ¢ there exists a Borel function ¢, on K, with —a < ¢, < a
everywhere so that

IIVZh(t) = fcp,(s)h(s) ap., (s)
For X7_.f, ® g, € C(K,) ® C(K,) define T,,(7_,f, ® g;,) = X_,8,Vf. Then

n
Jv_lrv( Z [i®g
i=1

(1) = [o(s)h(s) X £(5)e(0) i ).

Hence if
n
® g. t
Lros|-, me [ 06)80)]
n n
1, £r0 )| sa| £ ®g,lflh(S)|du,(S)
i=1 i=
It follows that
rV(Zfi®gi)e =a Zfi®gi’T|e|
i=1 i=1
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for any e € E, and hence for any e € E. In particular

< af|T|

FV( fo ®g;
i=1

fo ® gi“
i=1

so that I'), extends uniquely to a bounded linear operator
r,: C(K,xK,)»>2(E,F)

with ||T,|| < «||T||. If ¥ = 0 then we may take 0 < ¢, < « everywhere and it
is not difficult to check that

I (k) () = [k(s,1)9,(s) dp, (s)

for he C(K,), ke C(K,X K,). Hence I',(k) = 0 if k > 0.

Now T, has an extension I',: C(K, X K,)** > Z(E, F**) which is
continuous for the weak *-topology on C(K, X K, )** and the weak *-operator
topology on Z(E, F**). We identify the space B(K, X K,) of bounded Borel
functions on K, X K, as a linear subspace of C(K, X K,)** in the natural
way. Note that if ¥ > 0 then ', > 0.

LEMMA 3.7. Suppose R, S € L(E, F) with |S| < |R| < Tin L(E, F**).
Then there exists h € B(K, X K,) so that P*I'y(h) = P*S in L(E, F**).

Proof. For V€ X(E, F) with —mT < V < mT for some m € N we de-
fine a measure

p(V)e M(K,XK,)
by

[kdp (V) = (D, (k)u,8), ke C(K,XK,).
If fe C(K,)and g € C(K,),
J1®gdu(v) = (&Vfu,4).
It follows that u(gVf)=f® g - u(V) for f € C(K,), g € C(K,). Thus

p(T(f@g))=f®g- pl).

Now suppose k € B(K, X K,) and that k, is a bounded net in C(K,) ®
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C(K,) such that k, - k weak*. Then T',(k,) = I',(k) in the weak*-oper-
ator topology. For f ® g € C(K,) ® C(K,) we have

(8T (ko) fu, ) = (T (ko) fu, 8%¢) = (T (k) fu, %)

However k- p(V) = k - p(V). Hence

[(f@g) -kau (V)= (T, (k)fu, g*).

Now take V' = R and choose k so that |k| =1 and k- u(R) = |u(R)|.
Then

((Tr(k) £ R)fu, g*¢) 2 0
for all f> 0, g > 0. Hence P*['p(k) > |P*R| in L(E, F**). Thus
P*T(k) +(I = P*)|R| = +S and P*I, (k) > +P*S.

Again if f, g = 0, (Tp(k)fu, §*6) = (S} £*¢)| so that |u(S)| < |p(R)].
Now select & so that |h| <1, h € B(K, X K,) and h - p(R) = pu(S). Then

(Tr(h) — Sfu, g%y = 0

for all f, g. Hence P*T'x(h) = P*S.
We are finally in position to complete the proof. We define the map

A: C(K,xXK,)—>1,(A4XB)
by
Ah(a,b) = (Tx(h)a,b), a€ A4 beB.

A is clearly bounded; we shall show that A is weakly compact. It suffices to
take a sequence {4,} with disjoint supports and 0 < 4, < 1 and show that
[|AhA,|| = 0. In fact

I{Tx(h,)a,b)| < (Tr(h,)lal,|bl), a€Ad, beB,
since I'y_p(h,) > 0 and T'z, x(h,) = 0.
Let I'y(h,) = T,. Since h, = 0 weakly in C(K, X K,), T, = 0 weakly in
Z(E, F) and hence T, — 0 in the weak-operator topology. If {a,} is disjoint
in A* and {b,} is disjoint in B*

(T,a,.b < (Ta,,by > 0,b € B, (T,a,b,) < (Ta,b,) >0,a€ 4,
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and
(T,a,,b,) < (Ta,,b,) > 0.
Thus by Lemma 3.1,

lim sup sup|({T,a,b)| =0

n—® ge4 beB

and hence ||Ah,|| — 0 as required.
Since A is weakly compact it has a weak *-weak continuous extension

A: C(K, X K,)** > 1_(4 X B).
By continuity, if » € B(K, X K,),
Ah(a,b) = (Tx(h)a,b), a< A, be<B.

Fix h so that —1 < h <1 and P*Iz(h) = P*S in L(E, F**) (by Lemma
3.7). Fore€ E,

(ITr(h)e — Se|,¢) = sup (Tp(h)e — Se,y) = 0.
¥ <¢

However I'; — Tz > 0 and T'; + T > 0. Hence
IT(h ) < Tr(hy) and |Tp(h_)l < Tr(ho).
Thus |Tx(h)| < Tr(|h]) < T. Also |S| < T. Thus |Tx(h)e — Se| < 2T|e].
If 0 < |e|]u we use Lemma 3.3 to conclude that {|I'x(h)e — Se|,b) =0,
b € B, and hence, since B is solid,
(Tr(h)e,b) = (Se,b), beE B.
Now this equation holds, by density, for all e € E and in particular for all

a € A4;ie., Ah(a,b)= (Sa,b),a€ 4, bEB.
Since A is weakly compact A is in the closed linear span of

{a(f®g): fe C(K,). g€ C(K,)};

i.e., for € > O there exists f,..., f, € C(K,) and g,..., 8, € C(K,) so that

k
‘I Zf@g, —An||<e
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However if L, = §, € Z(F), M, = f, € #(E) and S, = ©*_,L,RM, then this
implies that |(Sa — Sya,b)| <&, a€ 4, b € B.

4. Applications to Dunford-Pettis operators

In order to apply Theorem 3.2, we shall need a lemma which helps to
establish conditions under which the hypotheses of 3.2 can be verified.

LEMMA 4.1. Let F be a Banach lattice and let X be a Banach space. Let Q:
F — X be an operator which maps order-intervals into relatively weakly compact
sets. Let B C F* be the solid hull of Q*(U}) where Uy¥ is the closed unit ball of
X*. Then if {b,} is a disjoint sequence in B*, b, > 0 weak*.

Remark. Q maps order intervals into relatively weakly compact sets if for
every majorized disjoint sequence f, in F, ||Qf,|| = 0 (cf. [2] Theorem 1.2).

Proof. Consider the map V: F — I_(B) given by Vf(b) = (f,b). If { f,}
is a disjoint majorized sequence, 0 < |f,| < f say, then

VANl = sup|{f,, b}

bEB

sup (ISl 1Q*x*)

x> <1

= sup  sup [{g,,Q%*x*)|
18l < Iful f1x*) <1

= sup |Qg,l
gl < 1l

- 0.

Thus V' also maps order-intervals to relatively weakly compact sets. Assume
now for some f € F* and {b,} disjoint in B* we have (f,b,) = 1 for all n.
We can find a weak*-cluster point 8 of the point-evaluations ¢,(¢) = ¢(b,) on
I (B), and since V[—f, f] is relatively weakly compact there exist convex
combinations

p"
8, = Z a;E;
P,y +1

where p, = 0 < p; < p, < ... so that §, » B uniformly on V[—f, f]. Thus
8, — 8,,, — 0 uniformly on ¥V[—f, f] and so for suitable n,

sup 18,(Vg) —8,.,(Vg)l <3;
—f<g=<f
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ie.,

sup [(8,¢, — Coy1)| <2
—f=g=f

where ¢, = XJ» a,b,. Thus since |c¢, — ¢,,1]| = ¢, + ¢,1q,

(fren+ Cur) <2

and hence (f,c,) < 3. However (f,c,) =1 for all n. This contradiction
shows that (f,b,) = 0 for all f& F*.

LEMMA 4.2. Let E be a Banach lattice and let A C E be the solid hull of some
relatively weakly compact set W. If {a,} is a disjoint sequence in A" then
a, — 0 weakly.

Proof. Let R: Y — E be a weakly compact operator such that R(U,) > W.
Then R*: E* — Y* is weakly compact and hence if a** is disjoint in C*
where C is the solid hull of R**(U*) then a** — 0 weak* by Lemma 4.1.
Since A € E N R**(U*) the lemma follows.

Before giving our main results we derive the Dodds-Fremlin theorem [1], [4]
from our techniques.

THEOREM 4.3. Let E and F be Banach lattices so that E* and F have
order-continuous norm. Suppose T: E — F is a positive compact operator. If
0< S <T, then S is compact.

Proof. First we note that E* has order-continuous norm if and only if
every disjoint bounded sequence in E, is weakly null [4]; equivalently F has
order-continuous norm if and only if every disjoint bounded sequence in F¥ is
weak* null.

It clearly suffices to show S is compact on any subspace E, of E of the form
E, = E, where u > 0. Then replace F by F, = F, where v = Tu. E} and F,
also have order-continuous norms while E; and F, have quasi-interior positive
elements. Thus we can reduce the theorem to the case when E and F have
quasi-interior positive elements.

Now let 4 = Uy and B = Ug. We apply Theorem 3.2. Clearly-(i) holds
since a, — 0 weakly; similarly (ii) holds. For (iii) note that a, — 0 weakly
implies || Ta,|| — 0. Take R = T in the theorem. Then there exists multipliers
L,...,L,M,,...,M, sothat ||S — ¥ | L,TM,|| < e and so S is compact.

THEOREM 4.4. Let E and F be Banach lattices so that F has order-continuous
norm. Suppose T: E — F is a positive Dunford-Pettis operator and 0 < S < T.
Then S is a Dunford-Pettis operator.
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Proof. As in the previous theorem it suffices to take £ and F with
quasi-interior positive elements. Suppose e, € E and e, — 0 weakly. Let 4 be
the solid hull of {e,: n € N} and let B = U*. We again apply Theorem 3.2. If
{a,} is disjoint in A" then a, = 0 weakly (Lemma 4.2) and so Ta, — 0
weakly. If {b,} is disjoint in B* then b, — 0 weak* and so T *b, — 0 weak*.
Finally since a, — 0 weakly, ||Ta,| — 0 as T is a Dunford-Pettis operator.

Now for & > 0 there exist multipliers L,,..., L, of Fand M,,..., M, of E
so that if S; = YL, TM, then

|{(Sa — Sya,b)| <&, a€ A,beB.

Thus ||Se, — See,ll <& n € N. However lim, || Spe,l| = O since T is
Dunford-Pettis and so lim,_, sup|[Se,|| <& As &> 0 is arbitrary S is
Dunford-Pettis.

THEOREM 4.5. Let E and F be Banach lattices and T: E — F be a positive
weak Dunford-Pettis operator. If 0 < S < T then S is a weak Dunford-Pettis
operator.

Proof. Suppose first both E and F have quasi-interior positive elements.
Suppose e, = 0 weakly in E and f* — 0 weakly in F*. Let 4 be the solid
hull of {e,: n € N} and B be the solid hull of { f,*: n € N}. If a,, is disjoint
in A% and b, is disjoint in B* then a, — 0 weakly and b, — 0 weakly so that
(Ta,,b,) — 0.

Now applying Theorem 3.2, if ¢ > 0 there exist multipliers L,,..., L, of F
and M,,..., M, of E so thatif S, = LL,TM,,

|<Sen - SOen’ fn*>| e
Now S, is weak-Dunford-Pettis so
limsup|{Se,, f¥)| < e.

We conclude that (Se,, f,*) — 0; i.e., S is weak-Dunford-Pettis.

For the general case it suffices to show that S: E; — F, is weak Dunford-
Pettis whenever E, = E, and F, = F, where u > 0, v = Tu. This will follow
from the preceding argument if we show that T: E; — F, is weak Dunford-
Pettis. Suppose e, — 0 weakly in E; and f* — 0 weakly in F*. Then there is
bounded operator Q: Fy* — F* so that for fe€ F,, (f{,0f*) =(f,f*). In
fact if f* > 0 and f > 0 we define

(f,Of*) =sup(f A nu, f*)

and extend Q by linearity. Now Qf* — 0 weakly in F* and (Te,, Of*) =
(Te,, f,*) — 0 as required.
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We shall need the following extension of Theorem 4.4.

THEOREM 4.6. Let E and F be Banach lattices and let X be any Banach
space. Suppose T: E — F is positive Dunford-Pettis operator and 0 < S < T.
Let Q: F — X be any operator which maps order-intervals to relatively weakly
compact sets. Then QS is a Dunford-Pettis operator.

Proof. Again it suffices to consider the case when E and F have quasi-
interior positive elements. Let e, — 0 weakly in E and let 4 be the solid hull
of {e,}. Let B be the solid hull of Q*(Uy). Applying Lemma 4.1 we see that
the conditions of Theorem 3.2 hold. Hence for &€ > 0 there exist multipliers
L,..,L,e&(F) M,,....M, € £(E) so thatif S, = XL, TM, then

|{Se, — Sge,,, Q*x*)| <&, neN,|x*|| <1

However S, is Dunford-Pettis so that ||Sye,|| — 0. Hence limsup||QSe,|| < e.
Again we conclude that ||QSe,| — 0.

CoOROLLARY 4.7. If E is a Banach lattice, T: E — E is a Dunford-Pettis
operator and 0 < S < T then S? is a Dunford-Pettis operator.

Proof. For any disjoint majorized positive sequence e, e, —> 0 weakly and
so ||Te,|| — 0. Thus ||Se,|| = 0 and so S maps order-intervals into weakly
compact sets. Hence S? is Dunford-Pettis.

As in [2] we can restate Corollary 4.7 for the case of products S,S, where
0<S8,<T,and0< S, < T, and T} and T, are Dunford-Pettis.

If E is an AL-space and F is weakly sequentially complete then £ (E, F)
=%(E, F) and is thus a Banach lattice (see [11, p. 232 and p. 95]). It has
been shown by Dodds and Fremlin [4] (cf. also Bourgain [3]) that if F is also
an AL-space then the Dunford-Pettis operators in Z(E, F) form a band. See
[2, Corollary 3.6] for an extension of this result.

THEOREM 4.8. Let E be an AL-space and suppose F is a weakly sequentially
complete Banach lattice. Then the Dunford-Pettis operators form an order-ideal
in L(E, F).

Proof. We suppose R € L(E, F) is a Dunford-Pettis operator and S €
F(e, F) with |S| < |R|. Welet T = |R|. As usual if e, — 0 weakly in E we
can find closed order-ideals E, in E and F; in F each with quasi-interior
positive elements so that T(E;) C F, and e, € E, forall n € N. In Z(E,, F))
we also have |S| < |R| =T.

Now let 4 be the solid hull of {e,: n € N} in E, and let B be the unit ball
of Fy*. If {a,: n € N} is disjoint in A" then a, — 0 weakly and hence as E,
is an AL-space, ||a,|| — 0. Conditions (i) and (iii) of Theorem 3.2 now follow
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immediately. Furthermore F and hence F, have order-continuous norm and
hence T *b, — 0 for any disjoint {b,} in B™.

The proof is now exactly as the proof of Theorem 4.4. We deduce from
Theorem 3.2 that since R: E, — F; is Dunford-Pettis we must have || Se,|| — 0.

5. Other applications

Let us call a linear subspace £ of £ (X, Y) (for X and Y Banach spaces) an
ideal if STV € # whenever S € £(Y), T € # and V € Z(X).

If E and F are Banach lattices an operator T: E — F is M-weakly compact
[8] if || Ta,|]| — O whenever a, is a disjoint bounded sequence in E. If F has
order-continuous norm then the Banach lattice Z,( E, F') has order-continuous
norm if and only if every T € Z,(E, F) is M-weakly compact [4, Theorem
5.1].

THEOREM 5.1. If E and F are Banach lattices such that F has order-continu-
ous norm then each of the following conditions suffices to ensure that %,(E, F)
has order-continuous norm.

(a) E satisfies an upper p-estimate and F satisfies a lower g-estimate where
1<gqg<p.

(b) E* has order-continuous norm and F is an AL-space.

Proof. (a) See Theorem 7.7 of [4].

(b) Suppose T: E — F is a positive linear operator and {a,} is a disjoint
bounded sequence in E . Then a, — 0 weakly and hence Ta, — 0 weakly so
that ||Ta,|| — 0; i.e., T is M-weakly compact.

THEOREM 5.2. Suppose E and F are separable Banach lattices such that
ZL.(E, F) has order-continuous norm. Let # be closed ideal of #(E, F). Then
JINEL(E, F) is a band.

Proof. Both E and F have quasi-interior positive elements. Since Z,(E, F)
has order-continuous norm, we need only show that #NZ.(E, F) is an
order-ideal. Suppose R€ f and S € Z(FE,F) with |S| < |R| =T. Let
A = Ug and B = U in Theorem 3.2. Since T is M-weakly compact and F
has order-continuous norm, the hypotheses of Theorem 3.2 are satisfied.
Hence, for € > 0, there exist L,,...,L, € £(F) and M,,... M, € #(E) so
that if S, = =¥ | L,RM;, then ||S — S,|| <e. Thus S € 4.

Remark. Theorem 5.2 applies to the case E= L, and F= L, where
1<g<p.

We shall say that a linear operator T: X — Y is /,-singular (where 1 < p <
oo) if there is no infinite dimensional subspace X, of X isomorphic to /, such
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that T|X, is an isomorphism. The case p = 2 is of special interest here in view
of Rosenthal’s characterization of the Dunford-Pettis operators in £(L,) as
the /,-singular operators [10].

PROPOSITION 5.3. Suppose 1 < p < oo and that F is a Banach lattice with
order-continuous norm. Suppose there is no sequence of disjoint vectors in F
equivalent to the unit vector basis of 1,. Then if Fy is a closed subspace of F
isomorphic to 1,, there exists ¢ € F¥ so that for some ¢ >0, c||fll < o(|f]),
fEF,

Proof. We need only consider the case when F has a weak-order unit and
then take ¢ to be any strictly positive linear functional on F. Then the result
follows simply from a result of Figiel, Johnson and Tzafriri [S], or [7,
Proposition 1.c.8, p. 38].

THEOREM 5.4. Suppose E and F are Banach lattices with F having order-con-
tinuous norm. Suppose 1 < p < oo and F contains no closed sublattice, lattice-
isomorphic to l,. Then the | -singular operators in Z,(E, F) form an order-ideal.

Remark. By Proposition 5.3 (or Proposition 1.c.8 of [7]). This theorem is
trivial if 2 < p < oo since every operator is /,-singular.

Proof. Again, it will suffice to consider the case when E and F have
quasi-interior positive elements. Suppose S, R € %,(E, F) where |S| < |R|
and R is [ -singular. Let E, be a closed subspace of E isomorphic to /, such
that S|E, is an isomorphism. According to Proposition 5.3 there exists
¢ € F¥ so that for some ¢ > 0,

¢(1Sel) = c||Sell, e € E,.

Let A be the solid hull of Uy and let B = [—¢,¢]. Let T = |R| and apply
Theorem 3.2. We note first that by Lemma 4.2, Ta, — 0 weakly for every
disjoint sequence {a,: n € N} in A*. If {b,} is disjoint in B* then b, = 0
weak* and so T *b, — 0 weak*. Finally (Ta,, b,) < (Ta,,¢) — 0.

Now there exist multipliers L,,..., L, € £(F)and M,,..., M, € L(E) so
that if Sy = X% ;L,RM, then |(Sa — Sya,b)| < ic, a € A, b € B. Hence for
e € E,,

¢(1Se — Spel) < sclell.

Thus ¢(|Sye|) = 3c|le|| and hence S, is also an isomorphism on E,. Thus
there is a closed subspace E; of E, with E; =/, and 1 <j < k so that
L,RM;|E, is an isomorphism. Hence M;(E,) = /, and R|M;(E,) is an isomor-
phism contrary to our assumption. Hence S is also /,-singular.
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We now consider a slight modification of Theorem 5.4. Let us say that an
operator T: X — Y is complementably [ -singular if there is no infinite-dimen-
sional subspace X, of X isomorphic to /, so that T|X, is an isomorphism and
T(X,) is complemented in Y. An /,-singular operator is complementably
l -singular; the converse is true if the range space Y has the property that
every subspace isomorphic to /, contains a complemented infinite-dimensional
subspace. In the case p = 2, it can be shown that this latter property holds for
the spaces Y = L where 1 < r < oo.

We shall require the following lemma.

LEMMA 5.5.  Let E be a Banach lattice and let V € £(1,, E) where1 < p <
0. Let (d,: n > 1) be the unit vector basis of I, and suppose e, € E are disjoint
with |e,| < |Vd,|. Then there exists W € £(l,, E) with Wd,, = e,

Proof. Suppose a;,...,a, € Rwith I7_,|e,|” < 1. Then

n n 172

20,2
Zaiei (Zaileil)
i=1 i=1

<

. 1,2
( )3 a%wd,v)

i=1

< KellVIl |(Zeatia?) ),
< KG” 4

by [7, Theorem 1.f.14, p. 93] (K; is the Grothendieck constant).

THEOREM 5.6. Suppose E and F are Banach lattices with F having order-con-
tinuous norm. Suppose 1 < p < oo and that either

(a) E contains no complemented sublattice, lattice-isomorphic to 1,, or

(b) F contains no complemented sublattice, lattice-isomorphic to [,.

Then the complementably 1 ,-singular operators in £,(E, F) form an order-
ideal.

Proof. We prove the theorem for the case when E and F have quasi-inter-
ior positive elements. As usual the general case can be reduced to this case,
noting in particular that the closure of every principal ideal in F is comple-
mented.

Let us suppose R € Z,(E, F) is complementably /,-singular and that |S| <
|R|. Let T = |R|. We shall show that if V: [, > E and W: F >, are
bounded linear operators then (WSVd,, d¥) — 0 where d,, is the unit vector
basis of /, and d ¥ is the unit vector basis of /, where ¢~' + p~' = 1. Since
WSV cannot therefore be the identity on /, this will establish the result.
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Let A be the solid hull of the sequence {Vd,: n € N} and let B be the solid
hull of the sequence {W*d*: n € N}. Let {a,,} be disjointin A" and let {5, }
be disjoint in B*. Then a, — 0 weakly (Lemma 4.2) and b, — 0 weakly so
that Ta, — 0 weakly and T *b, — 0 weak*. We shall show that (Ta,, b,) — 0.

Suppose (Ta,, b, = 8§ > 0 for all n € N. By passing to a subsequence we
may suppose a, < |Vd, | where r(n) is a strictly increasing sequence and
that b, < |W*dJ, | where s(n) is a strictly increasing sequence. To see this
observe that if a, < |Vd,| for some fixed k, then

<Tan’bn> =< <|de|9T*bn> - 0’

and a similar argument shows that if b, < |W*d,| then (Ta,, b,) — 0.
Now suppose we have case (a) of the hypotheses. By Lemma 5.5 there exist

Vi:l,> E and Q,:[,—> F*

so that V,d, = a, and Qd¥ = b,. Then (Q*TV,d,,d}) = & forall n € N and
hence by a standard gliding hump argument there is a subsequence d,,, of d,
so that Q*TV, is an isomorphism on the closed linear span [d,,)]. This
implies that [a,,,] is a closed sub-lattice of E lattice-isomorphic to /, which is
complemented (by PQ*T where P: [Q*TVid,; )] = [a,] is the inverse of
Q*T|[ay(m]- This contradicts hypothesis (a).

In case (b), we may find ¢, with 0 < ¢, < Ta, so that c, are disjoint and

(€n b,) = (Ta,, b,).

Indeed let B, = {f € F: b,(|f]) = 0} and let P,: F — B, be the band projec-
tion. Set ¢, = Ta, — P,Ta,. If m # n, since b, A b, = 0, given ¢ > 0 we can
write ¢,, A ¢, = u + v where {(u,b,,) = 0 and (v, b,) = 0 and u,v > 0 (Note
here that the order-interval [0, ¢,, A c,] is weakly compact). Thus Py < Pc, =
0 and as v € B,, v = 0; similarly ¥ = 0 and so ¢,, A ¢, = 0. Thus there exist
operators V,: [, = Fand Q,: /|, = F* so that V,d, = ¢, and Q,d,y = b,. The
conclusion of the argument is similar to case (a) and we omit it. We conclude
in either case that (Ta,, b,) — 0.

Now by Theorem 3.2, if ¢ > 0, there exist L,,..., L, € L(F), M,,..., M,
€ Z(E) so that if S, = X¥_,L,RM, then |(SVd, — SoVd,,W*d})| < e We
claim

(SVd,, W*d}¥) — 0.
Indeed, if not we can find a subsequence d,,, and 1 < j < k so that

|(L,RMVd, ), W*d%, 5| > 8.
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Again this means the existence of a further subsequence d,,, so that
WL,RMY [d, ]

is an isomorphism. Now if G = M;V'[d,, ] then G = /,, R is an isomorphism
on G and R(G) is complemented in F by the map P,WL; where P, is the
inverse of WL;: R(G)— WL,R(G). This contradicts the fact that R is
complementably /,-singular. Hence (S,Vd,, W*d,*) — 0 and so

limsup|{(SVd,,W*d})| < e.

n—oo
As & > 0 is arbitrary the proof is complete.
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