
ILLINOIS JOURNAL OF MATHEMATICS
Volume 30, Number 1, Spring 1986

GEOMETRIC AND TOPOLOGICAL PROPERTIES OF
CERTAIN w* COMPACT CONVEX SUBSETS OF DOUBLE
DUALS OF BANACH SPACES, WHICH ARISE FROM THE

STUDY OF INVARIANT MEANS

BY

EDMOND E. GRANIRER

INTRODUCTION

Let -= ( (1oo),; (1) 1 I111, (n) 0 for all n > 1) where
8n 1 are defined by $n(k)= 1 if k n and is 0 otherwise. Then -contains a set H fiN- N which satisfies: card H 2 (where c is the
cardinality of the reals), H is a w* perfect set and H is isometric to a
canonical 11 basis i.e. for any linear combination of elements h H, IIETchll

E’;Icil.
We will call a w* compact subset A of the dual X* of a Banach space X

"big" if there is an onto bounded linear map t: X --, l such that t*(’) c A.
Note that in this case t* is an isomorphism into X* (i.e., for some V > 0,
II t* II >- II II for each (l)*) and if H t*(flN N) then: card H
2’, H is w* perfect and H is isomorphic to a canonical 11 basis (i.e.,
IIE’chll > Ei’lcl for any linear combination of elements of H).

There are many results in the literature on invariant means which, when
slightly paraphrased, express the fact that a set of invariant means is "big".
The most useful corollary of our main result of Section 1 (Theorem 1.1) is

Theorem 1.4 and it incorporates some of these results in the setting of Banach
spaces. It is a definitive improvement of some results we obtained in the past
[8, Cor. 1.3]. It states loosely, that if X is a Banach space, K c X convex
bounded (assumed embeded in X**) S a countable set of operators s,:
X-X,A {yw*clK; s,*y=0 for all n} and if some nonvoid w*
G,-section Ao of A can be pushed outside the w*-sequential closure of K
(w*seq cl K) then Ao is necessarily "big". Specifically we have:

THEOREM 1.4. Let X be a Banach space, S a sequence of operators s"
X ---> X, K X convex bounded A { y w*clK; s,, *y 0 for n > 1 }. Iffor

Received August 22, 1983.
1This paper contains the details of part of the results contained in the lecture delivered by this

author at the Conference on the Geometry of Normed Linear Spaces in honor of Mahlon M. Day.
It is dedicated to Mahlon M. Day with much gratitude and respect.

(C) 1986 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

148



BIG W* COMPACT CONVEX SETS 149

* X* and scalars an the nonooid setsome xn

* for >1}Ao (yA (y, xn) =an n

is such that Ao N w*seq clK then there exists an onto linear bounded map t"
X* 1 such that

(a) t*c Ao, hence Ao is big, afortiori does not have the WRNP, and, 0(b) tcllin(S*X*u (xn} U K } c cwhere

K= {x* X*;x*(K)=0}, c= {a= (an} l;limanexists}

and S’X* u *Y*n

It is easily seen in the remark after Theorem 1.4 that " is the "biggest" set
which can be included in such a set A0 i.e. isomorphically the above result is
definitive. Theorem 1.4 is false if card S c.
Ching Chou, in solving an open problem of Joe Rosenblatt [19] has proved

the following:

THEOREM (CC). If G is a countable group of measure preserving maps which
acts ergodically on the nonatomic probability space ( X, Sa, p) and if there is
some o Mc (the set of G inoariant means on L(X)) such that o P then
there exists an onto bounded linear map t: L(X) 1 such that t*: (l)*
L(X)* is an isometry into and such that t*() Mo. If H t*(flN N)
then card H 2c, H is a w* perfect set and the elements of H have pairwise
disjoint supports, i.e., H is isometric to a canonical 11 basis.

Our Theorem 1.4, being an isomorphic result yields, except for the fact that
H is only isomorphic to a canonical 1 basis, much more than Chou’s result.
We get a result with the following as a particular case:

THEOREM 2.6. Let ( X6a#) be any o-finite measure space, G a.countable set

of bounded linear maps gn" LI( X) LI(X) and let

MG- (4 z(g)*" 11411 1 k(1), **gn k foralln).

Assume that there is some ko Mc which is not in LX( X) and let then X c X
be such that lxn ’ 1 a.e. but k0(lxn) ’n 3’ < 1. Let A { k M; k(lx)

for all n }. Then any nonvoid w*G-section Ao ofA (afortiori A) is "big".

Joe Rosenblatt and M. Talagrand in their study of G-invariant means which
are not invariant with respect to some given transformation, have proved in
[20] a result which when restricted to countable G is as follows:
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THEOREM (RT). Let G be a countable amenable group G acting on a set D
and let MG be the set of G invariant means on l(D). Assume that for any
E c D with card E < card D, O(le) 0 foreach k MG. Let v: D -+ D be a
one to one onto map. Then the following are equivalent.

(a) There exists some k Ma and a set E c D such that q(le) #= ck (lye).
(b) There exists 0 < <_ 1 and a set H of mutually singular elements of Ma

such that card H 2c andfor somefixedE c D, O(le) I and O(loE) _< 1
for each tk in H.

Using our Theorem 1.4, we get a result which is a definite improvement of a
slightly weaker version of the above. We have:

THEOREM 2.1. Let G be a countable set of bounded linear maps

gn’l(D)-)l(D)

and assume that M6 ( II(D) . Let v,: I(D) --> I(D) be arbitrary maps,
f 1oo(D), o M and let an o(fn), fin ko(nf, )" Then the set

Ao {, - M; k(f,) an, d(onf,) , for all, }

is "big ".

Hence, if we are willing to accept the fact that the elements of H are only
isomorphic to a canonical 11 basis, then we can relax the conditions on G and
o. G[v] need only be a countable set of (arbitrary) bounded linear maps
gn: l(D) -o /I(D) (Vn: l(D) lO(D)).
We further apply our Theorem 1.4 to amenable actions of second countable

locally compact groups G on a locally compact space Z and obtain Theorem
2.4 (see Section 2 for details).
Our last application of Theorem 1.4 is to certain algebras PM,(G) of

operators on LV(G), for second countable groups G, and obtain definitive
improvements of results of Ching Chou [1] and of ours [9], [10]. In [1] and [9],
C* and W* algebra methods play a crucial role and these work only for
p 2. They do not seem to work for p =/: 2. It is at this place, when trying to
generalize results of Chou to p 2 that we discovered that H. Rosenthal’s
fundamental Theorem 1 of [21] can replace the W* algebra methods of Chou
and became thus one of the main ingredients of Theorem 1.1.
We come now to the next main result of Section 1 namely Theorem 1.6 and

an application.
Let sk: 1 -o l be given by (ska)(n) a(n + k) and let AC be the closed

linear span of { C1 + r.(sak a k } where a e , n > 1 and C is the field
of scalars (complexes or reals). This is just the space of almost convergent
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sequences and c c AC. (As known, WAP(N) AC and AC is not norm
separable). We have:

THEOREM 1.6. Let s,: X X, K c X convex bounded,

A ( y w*clK; s, *y 0 for each n },
CAo= (yA; y(x*)=aforeachn}

be such that Ao o w*seq cl K= and t: X* 1 (onto), be all as in
Theorem 1.4
Let R c l be separable and R’o be the closed linear span of (R + AC}.

Then X*/t-l(R’o) (and afortiori X*/Wfor any subspace W c t-(R’o)) has
as a continuous homomorphic image.

We apply Theorem 1.6 to amenable actions of locally compact groups G on
coset spaces Z G/Go and obtain Theorem 2.5’, a particular case of which is:

THEOREM 2.5. Let G be second countable GO a closed subgroup, Z G/Go
and let /o be a topologically inoariant mean on UCBt(Z). Let TIM denote the
set of all such means. Let Fo be the linear span of

{ f- otrlf; f UCBt(Z), at P(G)}

where PI(G) {a LI(G); a >_ OfadX 1}. Let fn L(Z, ) and let

K c (fig Ll(Z,);fl> O, finds= 1}
be convex and such that o w*cl K, where , is a quasiinvariant measure on Z.
Let Ro be the closed linear span of

{CI+Fo+ (f)O+Ko}

where K= (f UCBt(Z); f(K)= 0). Then UCBt(Z)/W has as a
continuous homomorphic image, for any subspace W c Ro, if G/Go does not
admit a finite invariant measure.

The reader may want to note that if Go is normal in G then WAP(G/Go) is
a (somewhat small) subspace of R 0. Theorem 2.5 improves a result in [9] and is
related to results of Ching Chou [1] (see Section 2 for details).
The reader will find, we hope, other results in this paper which are interest-

ing for their own sake.



152 EDMOND E. GRANIRER

O. Definitions, notations and remarks

Let E be a normed space over the reals or complexes. E* will denote its
dual. If F is a space of linear functionals on E then e(E, F) will denote the
weakest vector topology on E which makes all linear maps e (f, e), e E
continuous, for each f E. The weak (w) [weak* (w*)] topology on E [E*]
is just e(E, E*) [e(E*, E)]. Let Q: E E** be the canonical imbedding. If
K c E we will sometimes look upon K as being canonically imbedded in E**
and thus write K instead of QK. We will then write (K, w*) or w*cl K instead
of (QK, w*), w’el QK, respectively. These denote QK with the w* topology
and the w* closure of K in E**, respectively. If K c E is convex, ext K is the
set of extreme points of K. We say that the bounded set B c E is isomorphic
(isometric) to a canonical I basis if there is some c > 0 such that

for any finite subset (bl,..., bn } c B and scalars al,..., an.
All the results in this paper are tree for spaces over the complex (C) or real

(R) numbers. The only place where this needs special attention is in the use of
H. Rosenthal’s fundamental theorem which is tree for R or C as proved by L.
Dor (see [21, p. 805]).

If X is completely regular Hausdorff, C(X) will denote the bounded R (or
C) valued continuous functions on X. If a X, Pa - C(X)* is defined by
paf f(a) for f in C(X). It is readily seen that llS".’aiPa, ll ETlal for any
{ a,..., a } c X and scalars ai. For any Banach algebra A let

Aa { + A*; q * 0 and multiplicative }.

It is then clear that ifA C(X) or A L(X, 5a, ) where (X6a/x) is a
measure space then any subset B AA is isometric to a canonical basis.
Any C(X)* ( L(X)*) such that Cf 0 if f > 0 and 1 1 is

called a mean. If A X let 1A(X ) 1, if X A and 0 otherwise.
If S is a set of maps s: X X we let Sb { sb; s S } and write Sb b

to denote the fact that sb b for all s S. BX(BN) will always denote the
Stone-Cech compactification of the topological space X (N denotes the dis-
crete positive integers).

Let be a locally convex vector topology on the vector space E (we write
(E, ) is an 1.c.s) and K E. We write seq el K for the -sequential closure
of K; thus x0 ,seqcl K iff there is some sequence xn K such that
lim n ooxn xo.
Let #’= ( (/oo),; (1) 1 I[11; (Co} 0}, where /[co] is the

space of bounded real or complex sequences a { an }o (such that limn_.ooan
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0) with the usual norm Ilall suplal. The set " will be important in the
sequel. This set - is "big" in the following sense: " contains the set
fiN- N H such that (a) card H- 2c where c is the cardinality of the
continuum, (b) H is a w* perfect set (i.e., compact with no isolated points)
and (c) H is isometric to a canonical 11 basis (as any subset of A too ). The set

fiN- N can be identified with the set of free ultrafilters on the positive
integers N (and A B will always denote the set theoretical difference of A
and B).

If A c E then CoA (cllin(A)) will denote the convex hull (closed linear
span) of A.
Any other notation in this paper is consistent with Dunford-Schwartz"

Linear operators, vol. I, Interscience, New York, 1958.

1. Results on the geometry of Banach spaces

DEFINITION. (a) Let A be a subset of the l.c.s. (E, z). The set A0 is said to
be a z-G section of A if there exist z-continuous linear functionals x, on X
and scalars a,, n 1, 2, 3... such that

Ao (x A; x;(x)

=0, a,=0.Note that A A0 if we take all x,
(b) We defined

where

Co= (f l; limf(n) 0}.
Note that whenever f l and lim,f(n) exists, (f)= lim,f(n) for any

(c) We identify any subset K of the banach space X with its canonical image
QK in its second dual X**.

THEOREM 1.1. Let X, X, be Banach spaces, s," X --, X, be bounded linear,
a,, X,, n 1, 2,..., and K X a bounded convex set. Let

A {w*clK} tq (y X**; s* *y a, foreachn>l}

Let Ao be a nonvoid w*G section of A.
IfAo ( w*cl K) w*seq cl K then there exists a bounded linear onto map

t: X* - 1 such that t*: (1)* --, X** is a norm isomorphism into and such
that t*(,’) Ao.
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In particular, ifH t*(flN N) c Ao then (a) card H 2c, (b) H is a w*
perfect set and (c) H is isomorphic to a canonical 11 basis.

Remark. w*seq cl K can be replaced by the elements of w*cl K which are
Baire- 1 functions on (B*, w*) where B* {x* X*; IIx*ll -< 1} (see
Odell-Rosenthal [17, lemma 1 and remark on p. 379]).

* X* and scalars a, such thatProof Choose x.

Ao {w*cl K } N {y X**; s**y a,, (y, x*) a,, n > 1}.

Let Yo A0 be fixed and let w K be such that w*limw Y0. By a slight
adaptation of a technique of Namioka (see [8, p. 17]) there exists a net vt of
convex combinations of the w such that

and

w*lim v, Y0, liom

lim I<x,*, vo> a, 0 for each n 1,2,

For each n, choose ft, such that

1 , 1
[[so#.-a,,l[< and [(xa,oa.)-,a[< ifk<_n.

We claim that vt" X does not have any weak, i.e., o(X, X*), Cauchy
subsequence. In fact, assume that v, vo. is one. Then clearly

lim a. 0 and liml (x.*, v,) a.I 0 for each n 1,2,
k k

Let z X** be given by z w*lim v,. Then s,**z w*lim,s**v a, and
(z,x*) =limk(v,,x,*)=a,, for each n>l. Hence zA0. But z
w*seq cl K, which cannot be.

Since vt" does not have any weak Cauchy subsequence, Rosenthal’s funda-
mental Theorem 1 on p. 805 of [7] shows that some subsequence uk vt is
isomorphic to a canonical 11 basis. (The scalars may be real or complex her" as
proved by L. Dot.) This means that there is a > 0 such that for any linear
combination of the Uk’S we have

(o) >_ nE
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Clearly limjllSnUj a.[[ 0 and limjl(x*, uj) a.[ 0 for each n.
* X* and on the scalars a. which de-Note that the uj’s depend on the x.

fine A o.
Inspired by an idea of Ching Chou (see [2, Theorem 3.3]), we define t:

X* by (tx*)(n)= (x*, u.). It is easy to show now that is onto 1.
(We avoid the difficulties encountered by Chou [2] who heavily uses order and
geometric properties of W*-algebras and their preduals, by the use of
Rosenthal’s fundamental theorem.)

In fact, if b (b.) is arbitrary define the linear functional

Then by (0) we have

b, [Ib[I Ic l lib I[-
Hence is bounded and, by the Hahn-Banach theorem, has a norm preserving
extension b* X*. Clearly tb*(n)= (, u,) b,, and

(1) llb*ll 6-llblloo.
In particular t(X*)= 1. Also Iltx*ll =sup, l(x*, u,I-< IIx*llM; thus Iltll
< M, where M sup{ Ilxll; x K }. Furthermore if q, (l)* and is given
by Rosenthal’s theorem then, by (1),

1 1 1
Ilt*,/,ll sup [(q, t$x*)[ > sup

IIx* <1 Ilblloo_<l

Thus t*" (1)* X** is an isomorphism into (with IIt*q, II 1/8 where 8 is
determined by Rosenthal’s theorem.
We show now that t*-c Ao.
Let q, (l)* be such that q,f 0 whenever f Co and such that q(1) 1

II 4’ II. Then (q, b) lim b, whenever lim, b, exists. But

and

**t * )x ) ts*.x*

(2) (ts*,x*)(k) (x*, s,,Uk) ---) (X*, a,,) as k

**tThus (, ts*x*) x*, a) and s, * a for all n.
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Furthermore (t*q, x* ) (q, tx* ) and since Uk is a subsequence of %
have

we

(3) (t, x* )(k) (X*Uk) ---> an as k --.

Thus (q, tx*, > a, for all n.
Now we use the fact that I111 1 (1) to show that t*q w*cl K. Let

8n (1)* be defined by <in, b) bn for b { bn } . Then

<x*,

since tx*(k) <x*, Uk). It follows that t*in un K c X**. But ’c
w*clCo{Sn; n > 1}. Hence t*’c w*cl K. It follows that t*’c A0 which
finishes the proof of the first part. Now consider the set fiN N Ato { q

(/oo).; q 0 and multiplicative}. As known, card (fiN- N) 2 (see
Rudin [22, p. 411]) and fiN N is a w* perfect set [22, p. 414]). As remarked
in Section 0 any subset of At is isometric to a canonical 11 basis. We have
shown above that t* is a w* w* continuous norm isomorphism into. Thus if
H t*(flN N) Ao then (a) card H 2c, (b) H is a w* perfect set and (c)
H is (only) isomorphic to a canonical 11 basis. (Thus Ilhx- h2[I > 2/ if
h 4= h2 and hi, h 2 belong to H. In particular, the least cardinality of a set
norm dense in A0 is > 2c.) QED

K. Musial introduced in [15] the weak Radon-Nikodym property (WRNP).
A subset K of a Banach space E is said to have the WRNP if for every finite
measure space (XAa#) and bounded linear T: Li(XAag) E such that
T(g(A)- 11,) K whenever g(A) = 0, T is represented by a Pettis kernel
with values in K, i.e., there is some f: X K such that e*(f(o)) is measur-
able for each e* E*. Moreover for each A 5a there is some ea K such
that e*(e)= fe*(f(o:))dg(o:).

In contrast with the RNP, the WRNP is not a hereditary property. If
however K E* is a w* compact convex WRNP set and K1 c K is a w*
compact convex subset then K has the WRNP. This, together with the
following beautiful theorem is due to E. Saab [24, p. 308].

THEOREM. Let K be a w* compact convex subset of the dual E* of a Banach
space E. The following are equivalent.

(a) K has the WRNP.
(b) Every bounded sequence {xn} in E has a subsequence {xnk; k > 1}

such that for each x* K, limkx*(xnk ) exists.
(c) For every w*-compact subset M ofK the restriction of every x** E**

to (M, o(E*, E)) has a point of continuity. Consequently w* compact convex
subsets of w* compact convex WRNP sets have the WRNP.
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In what follows we need the next lemma which we could not find in the
literature:

LEMMA 1.2. Let E be a Banach space, K c E* a w* compact convex set.
Assume that the set L c K is isomorphic to a canonical 11 basis and contains a
w* perfect subset LI. Then K does not have the WRNP.

COROLLARY 1.3. The set Ao of Theorem 1, and afortiori any w* compact
convex set containing it, do not have the WRNP (hence do not have the RNP).

This follows from Lemma 1.2 with A0

L
=Kand H= t*(flN- N)= L=

Remarks. It follows that the norm closed linear span of A0 does not have
the RNP and hence cannot be isomorphic to the following:

(i) I(F), F any cardinality, and in fact moreover to any (Er E)p, 1
< p < , if each Banach space E has the RNP;

(ii) Lp(lX E), 1 < p < oo, if E has the RNP;
(iii) dual subspaces of a w.c.g, space;
(iv) weakly locally uniformly convex duals, etc.
For these and more, see Diestel-Uh/[4, p. 218].
Clearly, any w* closed subspace of X** (of Theorem 1.1) which contains

the set A0 is a dual Banach space which does not have the WRNP.

Observation. Let X be compact Hausdorff, S c X a countable set dense in
itself and let T cl S. Define g: T [0,1] by g(S) 1, g(T S) 0. Then
g does not have any point of continuity.

Proof g is clearly not continuous at any x in T- S. (T- S since
otherwise S would be countable and closed and would by Baire’s cathegory
theorem contain an isolated point in S which cannot be). Assume that g is
continuous at x S. Then there exists an open (in T) set U such that
x U c S. Let V be open in T and such that clrV c U c S. Then clrV is
compact and countable hence has some isolated (in clrV) point y. Let W be
open in X satisfy W clrV (y }. Then W V 4: and hence W V
{ y ) and y is isolated in V and hence in S, which cannot be.

Proof of Lemma 1.2. By Theorem 8 of W. Rudin [23, p. 204], (L1, w*)
contains a (countable) subset S dense in itself. Then T cl S is a w* perfect
set and the function g: T [0,1] defined by g(S)= 1, g(T- S)= 0 does
not have any point of continuity, by the above observation. By assumption
there is some 8 > 0 such that any linear combination of elements of T satisfies
IlY’-’aqll >- Y’-’lal. Define the linear functional on the linear span [T] of T
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by

then

By the Hahn Banach theorem there is some bounded linear extension again
denoted by p to all of E*. Then p E** and p restricted to the w* compact
set (T, w*) does not have any point of continuity. This shows by E. Saab’s
theorem above that K does not have the WRNP. QED

Recall that

and

c= (a (an) ’, liman exists)n

c0= (a= {an)/" liman 0)n

The most useful result for the sequel is the following theorem which includes
most of the previous results for the special case where Xn X and a 0:

THEOREM 1.4. Let X be a Banach space (over C or R), let sn: X --* X be
bounded linear and K c X be bounded convex. Let

A (yw*clK; **s, y=O forn> l} 4: .
Suppose some nonvoid w*Gn section A o ofA given by

Ao (y A: y(x*) a forn > 1}

is such that Ao c { w*cl K } w*seq cl K. Then there exists a bounded onto
linear map t: X* such that

(a)

cllin(S*X* u (x,*} u K) c c

where S *X * U *Y* and K , x K ) O}lo..* ={x X*; *(
(b) t*: (1)*-o X** is a norm isomorphism into (which is w*- w*

continuous) such that t*c Ao. (Thus Ao is "big").
In particular if H t*(flN N) c Ao then
(c) card H 2c, H is a w* perfect set which is isomorphic to a canonical

basis. Afortiori Ao does not have the WRNP.
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Remark. The sequence S { sn ) cannot be replaced by a set S of cardinal-
ity c: Let (X, , p) be an infinite probability space, LI(Xp) L. For each
f in L let ly:L LI be defined by /,(g) (ffgdp)lx (f, g)l x L1.

By w* continuity we have

l*q (q, f)lx L1 c L* for all L*oo.

Fix some qo L L such that I1011 1 (q0, l x). For each f in

B { f Loo;llfll -< 1}

let af (e/o, f). If + L* satisfies (k, 1 x) 1 then lf*_*aAx(p) 0 for all f
in B iff (q, f afl x)1x 0 iff (, f) q0, f) for all f in L. Hence, if

then

A {w’elK} ( { L*oo; l_*azx Oforf B}
Thus A ( w,seq cl K . However A is not "big". If X {1, 2, 3,... } with
p { n ) 2 -n then card { If; f B ) c, the cardinality of the continuum.

Remark. It happens in applications that the bounded convex set K is
included in some hyperplane K c (x X; (x, x’) 1 } with x’ X*. Then
the w*G-section A0 can be written as

Ao= (yA:(y,y*) =0ifn>l} wherey*=x*-

If we construct the map for the y,* ’s then

(ty,*)(k) (y,*, uk) ---, 0 if k ---, .
Thus ty* co and tcllin(S*X* t3 (yn}] to K } c Co, and tx 1 c, in
this case.

Proof We only need to prove (a). If x* X* then by (2) of the proof of
Theorem 1.1,

t(s*x*)(k) (x*, snuk) (x*, an) 0 if k --, .
Thus t(s*X*) c co for each n, i.e., t(S*X*) c co.

Furthermore, by (3) in the proof of Theorem 1, we have

(tx* )(k) (x*,, uk) --, an if k --, o.
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Thus t(x*) c for all n. Since (tx*)(k)= (x*, Uk) and uk K, we have
tx* 0 if x* K, and (a) follows.

Remark. Isomorphically, the above theorem is the best possible: If X 11
then let s: l l be the zero operator. Let Pn 1 be defined by pn(k) 1
if k n and 0 otherwise. Let K { , /1; (n) >_ 0 and E(n) 1 }. Then

{w*cl K} N { 1’; (p) 0 for all n} =’.

Hence the set " of Theorem 1.4 is "attained", and the result is best possible
in this sense.
Theorem 1.4 above is an improvement on a result of ours [8, Cor 1.3, p. 21].

In [8], we were only able to prove that card A0 > 21 (see p. 61) and that A0 is
not norm separable.
Theorem 1.4 yields the following:

COROLLARY 1.4’. Let X, K, s: X X, A be as in Theorem 1.4 and let Ao
be a w*G,-section ofA given by Ao ( y A: ( y, x* ) an, n > 1 ).

If (i) card Ao < 2c or (ii) Ao has the WRNP then Ao w*seq cl K .
Remarks. Assume that the semigroup S acts on the set D and define on
(D) by (tsf)(d) f(sd) f(d). Then the dosed subspace Rs spanned by

ts(l(D)} is just the closure of (Z,ts, fi, s S, fi l(D), n > 1). Note that
the dual of I(D)/Rs is just the space of S-invariant elements of l(D)*, i.e.,

( ( D)/Rs) * ( 1(D) *; ts*O 0 for each s S ) 1s.

The fact that l(D)/Rs is "big" (for example, it contains ) is another way
of expressing the fact that Is is "big". There are quite a few results in the
literature which express the fact that spaces analogous to I(D)/Rs + R
(with R --C1 or separable and Rx c l(D)) are not norm separable or
contain 1. For example, see [9, p. 381], [1, p. 197]. A deep result of this type
was obtained by Dzinotyiweyi [5, p. 226], namely that for any locally compact
noncompact group G, UC(G)/WAP(G) contains an isometric copy of .
We are able here to improve a slightly weaker version of a more general

result. We prove that some of these spaces have 1 as a continuous homomor-
phic image. We gain the fact that the results hold for all Banach spaces.
As known, if X c X2 are dosed subspaces of the Banach space X then

defined by ,r(a + X) a + X2 is a continuous linear map. Consequently, if
X/X2 has as a continuous linear image, so does X/Xx.
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LEMMA 1.5.
1.4. Let

Let the nonvoidAo c ( w*cl K } w*seq cl K be as in Theorem

K= (x* X*’,x*(K)=O}, S*X*=Us.X* *,Rs=cllin(S*X*),
1

and let R X* be any separable subspace. Let Ro cl lin(K + Rs + R1).
Then X*/Ro (and afortiori X*/W for any subspace W Ro has as a
continuous homomorphic image.

Proof We haveAo= (yw*clK;s**y=0; y,x.*)=a. for n>l).
* R since by proving the result for a bigger R weWe can assume that x. ,

will have a stronger result. Let x’* Ao and let (r.*)] be dense in R such
that (x’ } (r,* }. Let/3, x*(r,*). Then the set A (y Ao; y(r,*) [3,
for n >_ 1} is a w*G section of Ao such that x’* A Ao. Now construct
the onto map t" X* - l of Theorem 1.4 with r,*, fin replacing x*, an. Then

[cllin{ S’X* to { r.* }}] c c

by Theorem 1.4(a). If x* X* then (tx*)(n)= (x*, un) where the un K
are constructed with respect to r.*, ft. (instead of x.*, a.). In any case (x*, u.)

0 for any x* K thus t(K) 0. It follows that tR o c c. It is enough
hence to show that X*/t-t(c) (which is isomorphic to l/c, via the map
tl(X* + t-(c)) tx* + e) has as a continuous linear image. The follow-
ing remark, which is probably known, will in fact prove that l/c contains an
isometric copy Yo of . The identity map i: Yo- Yo has as known a
continuous linear extension to l/c [3, p. 106].

Remark. Note that we have shown above that X*/t-l(c) contains an
isomorphic copy of .
Remark 1. l/c contains an isometric copy of .
Proof Write the positive integers N t3 A where each A s, 0, 1, 2,...

is infinite and A N Aj if 4: j. Let Y ( f 1; f(As) ci, > 0), i.e.,
the functions in 1 which are constant on each As. Let Yo (f Y;
f(Ao) 0}. Clearly Y and Yo are isometric copies of . Let _q’o fiN N be
such that q,o(1Ao) 1 (i.e.,. 4o lives on Ao). If f 1 let f C(flN) be its
unique extension and let f= flaky--v (the restriction of / to fiN- N). The
map f --, f from Y to C(flN N) satisfies Ilfl] ]]fll C(N- N)~ for each

f. Y since each such.f is constant on each A Let Y= (f;f Y),
Yo { fi; f Yo ). Then Y and ’o are isometric to . Define the projection P:
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C(flN N) ---> C1 by Pf= (q)of)l. Let Q I- P. Then

C(flN-- N) C1 (9 Q[C(flN--- N)].

If f Yo then Qf= f- (q)of)l f since q)o lives on A0 and f(Ao) 0 for
f Yo- Thus

fro c QC(flN- N) C(flN- N)/C1.

However C(flN-- N) -- l/co. Hence

C(flN-.. N)/CI = (i/Co)/(C/Co) . i/c.

Remark 2. Let sk: --) be defined by (ska)(n) a(n + k) where
a is given by a (a(n)}. Then

cl lin ( Sl } el lin( sa- a," a, } Rs
k=l

where S (sk I; k > 1}. As known and easily checked,

where

RS (al; q)(a) =0foreachq)Ms)

Ms { q) l; (1) 1 Ilqbll, sq) q) }.

In different terminology Rs is the space of sequences which are almost
convergent to 0. Denote this space by ACo. Clearly co c ACo.
Then Lemma 1.5 implies that l/W has as a homomorphic image for

any closed subspace W’ c R cllin{AC + R} where R is any separable
subspace of and, as known, AC C1 + ACo is the space of almost
convergent sequences (i.e., those a such that { q)(a); Ms } consists of
one scalar). As known, AC is not norm separable and contains WAP(N).
Moreover, there exists a family { At; 0 < < 1 } of subsets A of the positive
integers such that A c A if < s and q)(1A, ) for each q) Ms and
0 < < 1. (See our paper in Trans Amer. Math. Soc., vol. 111, 1964).

THEOREM 1.6. Let sn: X --) X, K c X be convex bounded, S (s },

A {yw*clK, S**y=0}, Ao= (yA; y(x*) =anforn> 1} 4: ,
Ao c w*cl K--- w*seqcl K and t: X* ---) (onto) all be as in Theorem 1.4.
Let R’ be separable and R’o cllin{AC + R}. Then X*,/Whas as a
homomorphic continuous image for each closed subspace W t-l(R’o).
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Proof X*/t-l(R’o) is isomorphic to l/R’o The above remarks show that
l/R’o has 0 as a homomorphic image hence so does X*//W for any
subspace W c t-l(R’o).

Remark. While t- 1(c) may be separable, t- I(R)) is not.

2. Applications of Theorems 1.4 and 1.6

Part 1. J. Rosenblatt and M. Talagrand in their study of G-invariant means
which are not invariant with respect to some given transformation have proved
the following in part of Theorem 2 of [20]:

(RT) Let G be an amenable group acting on an infinite set D such that for
any E c D with card E < card D, q(le)= 0, for each G-invariant mean on
l(D). Let v: D D be a one to one onto map. The following are equivalent.

(a) There exists a G-inoariant mean k and a set E D such that (1E)
O(IE).

(b) There exists , 0 < <_ 1, and a set H of mutually singular G invariant
means with card H 2m, m 2 card G, such that for some fixed E, if(le) 1
and q(loe) < 1 t for each k H.

We have the following remarks:
(i) The fact that the means in H are mutually singular is equivalent to

asserting that H is isometric to a canonical 11 basis (i.e., that IIETchll ETIcl
if h H and c are scalars).

(ii) If G is countable then card H 2c.
(iii) Let MG be the set of G invariant means on l(D). If for each E c D

with card E < card D one has q(le) 0 for each MG then clearly for
each finite E D we have q(le) 0 for each q Mo.

(iv) /I(D) is weakly sequentially complete and in fact so is the subset

K { II(D); ) O, EO(d)-- 1}.
d

Thus w*seqcl K K in PC(D)*. It is well known that

w*clg {q /(D)*; q(1) 1 IIq, II }.
As can easily be seen [8, p. 36], the fact that G (even if it is only a semigroup of
maps g: D D) does not have finite orbits in D, i.e., Gd is infinite for each
d D, is equivalent to M (3 ll(D) (or to My c w*cl K w*seqcl K1).

DEFINITION. A w* compact convex set A X*, where X is a Banach
space is said to be "big" if there exists an onto linear continuous map t:
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X l such that t*’c A. Then it follows that t*: (l)* ---, X* is a norm
isomorphism into. Any big set A contains a set H t*(flN-- N) such that
card H 2, H is w* perfect and is isomorphic to a canonical/t-basis. Thus
A does not have the WRNP. Our first application of Theorem 1.4 is:

THEOREM 2.1. Let D be infinite, G a countable set of bounded linear maps

gn" l(D ) "-’> l(D )

and let M
Assume that M
Let o Me, on: 1(D) -o IO(D) be arbitrary maps, fn 1(D) and define

an of and fin o(nf). Then the set

Ao {k e Me; f an, /(vnf) fin forn > 1}

is "big ".

It is enough to assume that K c K is convex such that

tk0w*clK and MeNw*seqcl(K)= .
In this case, Me would have to be replaced by Me w*cl K in the definition
of A 0.

Remarks. (a) Assume that g: D -o D is a map. Then g induces a map

t;: lX(D) ---> l(D)

as follows" If qb IX(D) then (t’gck)(E) ck(g-XE) for any E c D. Then the
operator tg" l(O) l(O) given by (tgf)(d) f(gd) satisfies tg (t’g)*,

* t’ * invariant if and only if (tg I)**6hence tg ( )** Thus tk (O)* is tg
0 where I is the identity.
(b) If G is a semigroup of maps g: D D and if G has no finite orbits in D

and Me ( /(G)*; Iltkll (1) 1, tff tk) then Me (3/I(D) ,
a known result that can be readily shown [8, p. 36].
As a proof of Theorem 2.1 we just note that A0 is a w*G-section of

A Me (w*cl Kx} w*seq cl K and apply our Theorem 1.4.
Comparing the above theorem with the Rosenblatt-Talagrand result (RT) we

have the following observations:
We have gained the fact that G need not be an amenable group of point

maps g: D D; rather, any countable set of linear bounded gn" /x(D)
IX(D) will do. The fact that the means qb considered are not o-invariant on the
set E(v" D D, a one to one map) can be replaced by the (much weaker)
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conditions k(vnf,) fin, fn an, n _> 1 where fn l(D), an, fin are scalars
(an fin is irrelevant), and vn: l(D) -* l(D) is a countable set of arbitrary
maps.
As noted in (RT), the 8 in (a) and (b) are the same. However the set E in (a)

of (RT) may be different from the set E in (b) of (RT). In our case the same set
E (identified with some fn) will appear in (a) and (b).

In comparison with the (RT) result, we have weaker results. We need G to
be countable and we do not get the elements of H isometric, rather only
isomorphic, to a canonical 11 basis. Furthermore, while (RT) gets a set E such
that (1E) 1 and (loE) _< 1 8 for each H, we do not seem to be
able to get a set E such that for all q H, E supports and (vE) <_ 1 .
This is one of the places where the fact that G is an amenable group seems to
be necessary (see [20, Lemma 1]).
We give two examples in which the amenability of G is not present and the

(RT) result does not seem to apply, for the purpose of illustration:

Example 1. Let G be a countable nonamenable group, Go c G a subgroup
such that D G/Go { gkGo } is an amenable coset space; i.e., l(D) admits
a G-invariant mean (where g acts on D from the left by g(gkGo) ggkGo).

Let o ME ( I(D)*; (1) 1 1111, t =--), E c D, let
on: D D be arbitrary maps and define +0(le.) &n, k0(lo,e.) fin.

COROLLARY 2.2. If D is infinite then the set

A0 {0 Me; O(le.) a,, O(lo.e.)= ft. for n > 1}
is big.

The reader will note that the maps vn can be assumed to be on I(D),
can be replaced by f, l(D) and G may just be a sequence of maps on
II(D).
To prove this corollary one only needs to note that G does not have finite

orbits in D if D is infinite (in fact Gd D for each d D).

Example 2. Consider an "inner amenable" countable group G, i.e., a group
such that if (txf)(y) f(x-lyx) for x, y G, f I(G) then l(G) admits
a mean such that (txf) th(f) for all x G and f I(G); in addition,

8e where Be(f)= f(e) for all f I(G), (e being the unit of G). Any
amenable group G { e } is inner amenable.

Inner amenability as well as the next example are taken from E.G. Effros,
Proc Amer. Math. Soc., vol. 47 (1975), pp. 483-486.
While the group F2, the free group on two generators, is not inner amenable,

the group G F2 x A, where A is a nontrivial abelian group, is inner amena-
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ble. For example, if a A is not the unit of A and we define (f) f(e, a)
for f l(F2 A) where e is the unit of F2, then the mean is t3 invariant
and nontrivial. Clearly F2 A is not an amenable group.
For any mean on I(A), if fo(a) f(e, a), then the mean fff--- Cfo is t3

invariant. The mean f--- 1/2[f(e, a) + f(e, a-l)] is t and inversion invariant
(i.e., 6f f * where f*(g, a) f(g- 1, a- 1)). Now, Theorem 2.1 yields:

COROLLARY 2.3. Let G be an inner amenable countable group. Let o be a

t invariant mean such that o q /1(G) and let E G be such that E " G but

tko(le.) ’. ’ T < 1.

Let f (G) and define ofn an, of* fin. Then the set

Ao { Ma; tkle. /n, f. an, tk(f*) fin forn >_ 1}
is big.

Part II. Now we apply Theorem 1.4 to jointly continuous actions of a
locally compact second countable group G on the locally compact Hausdorff
space Z. Thus G Z ---, Z is a jointly continuous transformation group. We
also assume that Z supports a quasi invariant Radon measure v; this holds if Z
is second countable (see Greenleaf [11, p. 297]). We use notations and some
basic results from [11] in this section. If Go c G is a closed subgroup then
Z G/Go admits a unique such measure v, up to equivalence of null sets.
The following example [11, p. 304] shows the difficulties which may occur.

Let G be the discrete free group on two generators, Z G t3 (oo } the one
point compactification. Let v be the point mass at {oo}. Let v2 be the
counting measure on G c Z. We let G act by left translation on G c Z, and let
G (c ) ( o }. Then v and P2 are quasiinvariant measures whose supports in
Z are disjoint. Furthermore there is no G-invariant mean on L(Z, rE) -- l(G)but there exists a G-invariant mean on L(Z, vl) C.

Thus, let v be a fixed quasiinvariant measure on Z. The injection i:

C(Z) -> L(Z, v) may be many to one; see [11, p. 298].
The action of G on Z induces an action of M(G), the finite Borel measures

on G, on the function spaces UCBt(Z), C(Z), L(Z, v) by

iraf(z) ff(gz) d/x(g) for/ M(G)

(see [11, p. 297-298]). The usual action M(G) M(Z) M(Z) denoted by
a. B has the property that LI(Z, ) is a closed M(G) submodule. Further-
more

(/xraf, ) (f,/ ) for f L(Z, v), I M(G), LI(Z, v)
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and (Sgrqf)(z) f(gz) loc. a.e. v for each f L(Z, ,), g G (see [11, pp.
298-299]). Let PI=Pi(G)= (qL(G); q>0fqdX=l} where G is
equipped with a fixed left Haar measure X.

Let

M= {k L(Z)*; I111 q(1) 1}

be the set of means, let

IM ( p c M; q M; q (lsr-if) p(f) for all f L(Z), g G)
be the set of invariant means and let

TIM ( M, t(ar-lf ) apf for all P, f L(Z, i,))

be the set of topologically invariant means. As proved in [11, p. 303],
TIM c IM. Let {a,}] be a norm dense subset of P1 Lx(G) (G is second
countable) and let t,: L(Z) LI(z) be given by tn(q) a*q. Then
t*,(f) arqf if f L(Z). Since IItrnfl _< IItll Ilfll for each/ M(G) and
f L(Z, v) [11, p. 297], whenever q M and t,**q k for all n > 1 it
follows that k TIM. Let

+ >_ 1}
and note that since LI(Z, ,) is weakly sequentially complete, K when
imbedded in L(Z, ,)* satisfies w*seq cl K K1. Furthermore M w*cl K
see [11, p. 302]. The action G Z - Z is said to be an amenable action if
IM 4 for some quasiinvariant measure , on Z, or equivalently if there
exists a mean k on

UCBt(Z) { f C(Z); g 6gOf from G to (C(Z), II IIoo) is continuous}
such that p(arqf) f for each a P1 and f UCBt(Z) (see [11, p. 299
and p. 302] for equivalent conditions).

THEOREM 2.4. Let G be second countable, Z locally compact such that
G Z Z is an amenable action with respect to the quasiinvariant Radon
measure ,. Let

K c_KI= (+t_ LI(z, l,); gl >_ 0 and fgl dl,= 1)
be convex and let o (w*cl K } N TIM. Let f,
Ao (w’el K) (q, riM; tf, ,8,,).

L(Z, ’), +of, and
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If Z does not admit afinite Randon G-invariant measure or if TIM ( LI(z, v)
and even ifA o norm el K , then Ao is big, (hence card Ao > 2 and

Ao does not have WRNP).

Proof. It is enough to prove the theorem under the assumption

Ao normcl K .
Since LI(Z, v) is weakly sequentially complete we have norm cl K w*seq cl K
in L(Z, v)*. Thus A0 c w*cl K- w*seqcl K.
Our Theorem 1.4 applied to the maps sn I: LI(Zv) LI(z, v) given

by sn(g, ) an g, where (an} is dense in Px(G) implies that there is a
sequence { uk } K isomorphic to a canonical basis such that the map t:
L(Z, v) ---, 1 given by (tf)(n) (f, u) is continuous linear onto,

t*" 1* L(Z, )*

is a norm isomorphism into and t*o*’c A0. Thus A0 is big.
Now we restrict ourselves to a second countable group G and a closed

subgroup GO and let Z--- G/Go { gGo }. Then Z admits a unique (up to
equivalence) quasiinvariant measure v; in this case, for any a Px(G) and
f L(Z, ), at:If C(Z), and, whenever gi -’ g in G,

IIg,t2araf- gt2at:]fll<z) 0

(see [11, p. 306, proof of Theorem 3.3]. Thus P(G)t2L(Z, v) c UCBt(Z) in
this case. Furthermore the map j: C(Z)--, L(Z, v) is an injection in this
case.

In addition, assume that G Z Z is an amenable action. G need not be
amenable for this to happen. For example if G SL(2, R), Go--- SL(2, Z)
then both G and GO are not amenable; however G GIGo - G/Go is an
amenable action (see [6, p. 18]. In fact G/Go even admits a finite invariant
measure but is not compact. However if G SL(2, C), Go SL(2, R) and
Z G/Go then G Z ---} Z is not an amenable action (see [6, p. 56].

Let fn UCBt(Z) be arbitrary, 0 TIM and let ft, 60fn.
Consider the onto map t: L(Z, v) ---, 1 of Theorem 2.4. It is given by

(tf )(,,) <f u,,>
where u K c (O LI( Z, v); O > O, f, dv 1) with

IIsull- II *u ullz -o 0 as k --, oo for each n

and

for each n.
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Thus t(s*f)(k)= (f, su) -o 0 if k for each fixed n and f L(Z).
Thus

However s*f arf-f and if a P(G) there is a subsequence a such
that Ila alltz> -o 0. Thus II(a a)fllooz> -o 0. Since is continuous
linear it follows that

t(atf f) lat(a,,rf f) Co.

Thus t(ar-]f f) co for each a PI(G) and f L(Z).

THEOREM 2.5. Let G be second countable GO c G a closed subgroup, Z
G/Go and assume that G Z Z is an amenable action. Let f, UCBt(Z),
o TIM and let K c KI be any convex set such that o w*cl K. Let

Fo normcllin{f- aOf; a e. P(G); f e. UCB,(Z)),
Kg ( f UCB,(Z); (f, K) 0}.

If W is any closed linear subspace of

Ro norm cl lin ( C1 + F0 + { f }o + KvO }
then UCBt(Z)/W has as a continuous linear image provided G/Go does not
admit a finite invariant measure.

Proof. Define fl k0(f). Let u, e K be the sequence constructed above
for (f, fin ) and let t" L(Z, v) -o 1, (tf)(n) (f, u,) be the onto map
defined above. Let r: l -o lO/c be the canonical map. If f L(Z, v),

t(at3f f ) e. co C c.

Thus rt(arf) rtf. But aDf e UCBt(Z)). Thus rt(UCBt(Z))= l/c.
Clearly t(Fo) co c, hence rt(Fo) 0. Also (tf)(k) (f, Uk) -o , as
k -o o for each n. Thus tfn c and rtf 0 for all n. Furthermore (tl)(k)
(1, Uk) 1; thus rt(C1) 0. Let (rt)u be rt restricted to UCBt(Z). It then
follows that W c R0 c (rt)S(0). Clearly UCBt(Z)/(rt)S(O) is isomorphic
to l/c by the map (rt)u (see [13, p. 40]). Let

rw" UCBt(Z)/W -o UCBt(Z)/(rt)t (O)

be the canonical map and let rx (rt)rw: UCBt(Z)/W -o l/c and let Y0
be a subspace of l/c which is an isometric copy of (see the remark after
Lemma 1.5).
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If Y h-XY0 then ,q: Y Y0 is an onto continuous linear map which has
a continuous bounded linear extension onto Y0 [3, p. 106].

Remarks. (a) Note that UCBt(Z)/(rrt)SI(O), whichis isomorphic to l/c,
contains an isomorphic copy of (see the remark after Corollary 1.5).

(b) The difference between Corollary 1.5 and Theorem 2.5 is that UCBt(Z)
is not usually a dual space as is X* in Corollary 1.5.

(c) A stronger result than this is proved by Ching Chou in [1, Theorem 5.2]
for the case of a group G with property E (not a coset space G/Go) and W(G)
the space of weakly almost periodic functions on G. It is shown there that
UC(G)/W(G) contains an isometric copy of and hence is also a
continuous image of UC(G)/W(G) (see [3, p. 106]). This result of Chou was
improved to all locally compact G by Dzinotyiweyi in [5, Corollary 2.2, p.
226]. Theorem 2.5 is an improvement of our Theorem 14 in [9], for second
countable G.

(d) Note that R0 c (rt)S(0) (with notations as in the proof above). By
using the full force of Theorem 1.6 and Remark 2 before it, we obtain, as in
Theorem 2.5:

THEOREM 2.5’. Assume that G/Go Z does not admit a finite invariant
measure and G is second countable. Let R c be separable and

R cllin(AC + R).

Then for any subspace W c (,rt)l(R’o/C), UCBt(Z)/Whas as a continuous
homomorphic image.

Recall that AC C1 + cllin{f- slf; f } where (slf)(k) f(k + 1)
is the space of almost convergent sequences. As is well known, AC/c is not
norm separable; hence Theorem 2.5’ is a vast improvement on Theorem 2.5.

Part 111. We apply now Theorem 1.4 to the case where S is a countable
family of linear bounded maps s: Lx(XAau) --, LX(XAaI) where (X/) is a
o-finite measure space.
Ching Chou, in solving an open problem of Joe Rosenblatt [19, p. 628] has

proved the following in an unpublished paper.

THEOREM. If G is a countable group of measure preserving maps which act
ergodically on the nonatomic probability space ( X, 6a, p) and if there is some

rko M, the set of G-invariant means on L(X), such that rko p then there
exists an isometry into t*: I(X)* - L(X)* which is w*-w* continuous and
such that t*(-) M. Consequently if H t*(flN N) then card H 2c,
H is w* perfect and H is isometric to a canonical 11 basis.
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Remarks. By ergodicity, the assumption g}0 = P implies that

o L* L1;

in particular there are Xn c X such that Ix. ’ 1x a.e. and

g}0(lx.) 3’n T Y < 1 g}0(lx)

(by the RN theorem).
If K { k L; > O, f dp 1} then the assumption in Chou’s result

implies that if

A (w*cl K } 3 (g} Ma; g}lx. Yn for n > 1}
then

o A c {w*clK1) w*seqclK1.

In his proof Chou uses Theorem 1.4 of Rosenblatt. This in turn heavily uses
ergodicity, the fact that (X, 6a, p) is a nontatonic finite measure space and the
fact that G is a group of measure preserving point maps on X.
Our Theorem 1.4 yields the following"

Let

THEOREM 2.6. Let ( X, S, ) be o-finite, G a countable set of maps

x) -, X).

Ma ( 6 L(X)*; if(l) I1 11 1, G**6 ff ).
Assume that there is some o M N {L(X)* LI(x)) and then let X c X
be such that l x. T 1 a.e. and o(lx.) Yn 1’ Y < 1. Let

A {Ma;(lx.) =y, forn>_l)
Then for any nonvoid w*G-section Ao ofA there is a w*-w* continuous norm

isomorphism into t*: ---} L(X)* such that t*() Ao. If H t*(flN-
N) c Ao then card H 2, H is w* perfect and H is isomorphic to a canonical
1 basis. Thus Ao does not have the WRNP.

As proof we only note that the condition g}(lx.)T 3’ 1 which holds for
each Ao, implies that A0 c { w*cl Kx } w*seq cl K1.

Remarks. In comparison with Chou’s result, we lost the fact that H is
isometric to a canonical basis; we only have an isomorphism.
We gained the following: G need not be a group arising from point maps on

X; a countable set of bounded linear maps g: LX(X) --, L(X) will do. G
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need not act ergodically; (X#) may have atoms and is only o-finite (localis
able seems to be enough). Furthermore we could unify the applications I and
III by adding a sequence of maps tn: L(X) ---, L(X) and fn L(X). Let
Po(fn) an, 0(tnf) fin" Let K c K be any convex set such that tp0
w*cl K. Then the set A0 in Theorem 2.6 can be taken as

Ao { w* l r )
N { tp Ma; lx, "/n, tP(fn) an, tP(tnfn) fin for all n > 1}

Clearly o A0 and A0 is a w*G section of A included in { w*seq cl K }
w*seq cl K.

Part 1V. We apply now Theorem 1.4 to the case of an algebra of operators
on L’(G), for second countable groups G and obtain definitive improvements
of results of Ching Chou [1] and of ours in [9] and [10]. The isometric methods
of Chou do not seem to work in this case.

Let G be a second countable locally compact group, with unit e, 1 < p <
and Ap(G) A, the Banach algebra of functions f Eun vv where un

LP’(G), on L’(G) (1/p + 1/p’= 1) such that Ellull,llvll < with
norm as the infinum of the last expression over all such representations of f.
All the notations and definitions in this application are those of [12] and
consistent with [10]. Let PM,(G) PM A,(G)* (the dual of A,). If p 2
and G is abelian then PMv_(G) L(G). If G is not abelian then PM(G) is
the W* algebra generated by the convolution operators (0f)(g) f * g, g
L(G), f Coo(G) operating on LZ(G). In general PMr can be identified with
an algebra of operators on L’(G) (see [12]).

Let S S. { u A,; u(e) 1 Ilull }. q PM is a topologically
invariant mean (TIM) if p(u. ) (q) for each u S, q, PM, where
(u q,)(v) q,(uv) for each u, v A,, q, PM,, and furthermore IIqll 1
p(1) where I is the identity of PM,. The set of TIM’s on PMp is denoted by
TIMp() TIM,. It is easy to see (due to the fact that SS S in the
notation of [10, Prop. 1]) that this definition is equivalent to that of [10]. If
p 2 and G is abelian then + TIM iff k is a topologically invariant mean
on

THEOREM 2.7. Let K c S be convex and A (w*cl K } N TIMe . Let
Ao :/: f be a w*G, section ofA. If G is second countable and not discrete then Ao
is big. In particular card Ao > 2c and Ao does not have the WRNP.

Proof We freely use results and notations of [10]. We claim that

{ w*cl K ) TIM, c { w*cl K } w*seq cl K.

If not, let v K, n >_ 1, and vo S have compact support E and assume
that v -, o in w* and 6o TIM,. Then VoVn -, vo 6o o in w* (see [10,
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Prop. 4]). This implies that VoV. is a weak Cauchy sequence in

A(G) ( v av; supp v E }.

But A is weakly sequentially complete by [10, Lemma 18]. Thus q:o A c
Ap. But then G is discrete (see end of proof of Theorem 16 in [10]) which
cannot be. Thus

A c w*cl K w*seq cl K.

If u, is norm dense in SA S and if t,.: Ap Ap is defined by t’,,.(v)
and I’: Ap A, is the identity then k (w*cl K } N TIM, iff q w*cl K
and (t,.- I’)**q 0 for each n > 1. A direct application of Theorem 1.4
finishes the proof.
A slightly better theorem, for p 2 and second countable G, has been

proved by Ching Chou [2, Theorem 3.3] using quite complicated W* algebra
methods (see the proofs of Theorems 3.3 and 2.4 of [2]) which are not available
in our ease anymore, since PMe, p 4: 2, is not a W* algebra. In his theorem,
Chou gets the set H t*(flN-- N) isometric (while we have it only isomor-
phic) to a canonical I basis in TIM2. We doubt that for p 4:2 one can get an
isometric result. Theorem 2.7 is an improvement on our Theorem 17 in [10].
We have defined [10] the algebra UC(G) as norm cl(A. PM }. If

Fo= normcl{ ( u q’i); qi UC, u A,, n > 1)
and if L v (k UC; supp q c G-- V} where V is a neighborhood of e
(see [10, remarks before Theorem 16]) then, as in Theorem 2.5, we can show
the following:

THEOREM 2.8. Let G be second countable nondiscrete and

Ro normcl(Fo + R + Lv).

Then for any separable subspace R c UC, any neighborhood V of e and any
closed subspace W c Ro, UC/W has l as a continuous homomorphic image.

This theorem is an improvement ofpart of our Theorem 16 in [10].
A result analogous to Theorem 2.5’ can be obtained in the UC(G) context.

We omit the details.
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