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I. Introduction

Henri Cartan [2] illustrated the appeal of factors of automorphy as a general
approach to automorphic forms, and Gunning [12] gave other applications of
these factors. Several contributions to the area of factors of automorphy were
recently summarized in [14], but to these must be added the work of Rankin
[17, p. 70 ft.] and of Christian [3], [4], [5], [6] in the Siegel upper half plane of
degree n > 1, and of Gunning [11].
A factor of automorphy v(z, q,) on D F satisfies the consistency condi-

tion

o(z, ,) o(z, ,)o(,z,

for all q and ,I, in a group F of homeomorphisms of D onto itself. In this
paper we consider the specific case in which D is the complex plane and
F c SL(2, R). For each M in F there is associated the homeomorphism

Mz (az + b)/(cz + d).

The consistency condition becomes

v(z, MN) v(z, N)v(Nz, M) for all M, N in F.

Two familiar factors of automorphy are v identically equal to one, and

v(z, M)= u(M)(cz + d) k frallM=( ac b)inF’d
Given a factor of automorphy v, there is customarily an associated function
f(z) with the property that f(Mz) o(z, M)f(z) for all M in F. In the first
case, f(Mz) f(z) so f is an (unrestricted) automorphic function, and, in the
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second, f(Mz)= u(M)(cz + d)’f(z) so f is an (unrestricted) automorphic
form of weight k/2.

Siegel [18, p. 39] has pointed to the deficiency of knowledge concerning
factors of automorphy other than the two just mentioned. For instance, in the
specific case F c SL(2, R) and z in the complex plane, results in several
papers apply, but only when stringent hypotheses are imposed. In [16] the only
group F allowed is so large that it fails at each point to be discontinuous, a
situation not calculated to permit a corresponding f(z) with f(Mz)=
v(z, M)f(z). In [9], smaller F are permitted, but the only factors of auto-
morphy v(z, M) considered are those extendable to a much larger group while
maintaining certain properties for (e.g., v analytic). Such extensions can fail
to exist if these properties are incompatible with the consistency conditions on
the large group. Results in [10] and [12] can be applied to subgroups F of
SL(2, R), however only for nonvanishing analytic factors of automorphy. The
analysis also requires the fundamental region D/F to be compact in the
quotient topology. Finally, in [17] the focus has been considerably narrowed
by requiring Iv(z, M)[ Icz + d[ ’.

In this paper, we consider general meromorphic v and make almost no
requirements upon the subgroup F of SL(2, R)--only that it possess a certain
minimum number of matrices. We determine all possible factors of auo-
morphy and find the corresponding f(z).

II. v (z, M) meromorphic

We examine factors of automorphy v(z, M) which for all M in F c
SL(2, R) are meromorphic on the complex plane.

THEOREM 1. Suppose F contains

L ( ac bd) with c 4: 0.

Then any factor of automorphy v( z, M) meromorphic on the complex plane must
be rational in z for all M in F.

Proof If o(z, L) were not rational, it would have an essential singularity
at infinity, but then the condition v(z, L2) o(z, L)o(Lz, L) would force
v(z, L2) to have an essential singularity at z -d/c, a contradiction. So
o (z, L) is rational.

Let A, B, C,... generate F. Without loss of generality, none of these has
lower left entry zero, since for example if A did, it could be replaced in the list
of generators by L and LA. Thus v(z, A), v(z, B),... are all rational. Taking
N I in the consistency condition yields v(z, I) 1, so that I v(z, AA -1)
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v (z, A x) v (A Xz, A). Therefore v (z, A 1) and similarly v (z, B- 1),... are
all rational. Any matrix M can be written as a product of the generators and
their inverses, so repeated use of the consistency condition shows every
v(z, M) is rational.
A fixed point for

M=( ac db)
is a solution to Mz z. When c 0 and a 4: + 1 the finite fixed point is

For a given

x ab/(1 a2).

(ab)0 1/a

and a given v(z, M), we form w(z, M)= cE(z)/F(z) where E(z) is the
Weierstrass product for the zeros of v(z, M) and F(z) is that for the poles,
and c is selected to make w(x, M)= v(x, M), where x is the fixed point.
Extend w inductively via

w(z, Mk) w(z, M)w(Mz, M)w(M:z, M) w(Mk-z, M)

and via w(z, M-k) 1/w(M-kz, M) and w(z, I) 1. Then w is a factor of
automorphy for the cyclic group generated by M, and for that group, v/w is
an entire nonvanishing factor of automorphy.

THEOREM 2. Suppose F is cyclic, generated by

0 1/a
witha 4 +_1.

For any factor of automorphy v meromorphic on the complex plane, there is an
entire nonvanishing h (z) such that

v(z N)=w(z N) h’Nz’(
for all N in F

(where w is the auxilliary function above).

Proof Since v/w is nonvanishing entire, it equals exp(H(z, M)) for some
entire H. Let H(z, M)= Ek=oa(z- x) where x is the fixed point of M.
Since v(x, M)= w(x, M) it follows that a 0 0. Suppose h(z)=
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exp(=obk(Z x)k) so

h(Mz)
h(z) exp

exp

oo_, bk(aZz + ba- x) k

k=0 )y’bk(z-x) k

k=0

y’. bka2k(z x) k

k=0
Ebk(Z--X) k

k=0

where we have used x Mx, that is, x a
equal exp(H(z, M)), we define bk ak/(a 2k

arbitrary.) Thus for M,

2X + ba. To make h (Mz)/h (z)
1) for k 1, 2,... (b0 can be

v(z,M) h(Mz)
w(z, M) h(z)

Since

v(z, Mk) v(z, M)v(Mz, M) v(Mk-’z, M),
v(z,I)=l,

v(z, M-k) 1/o(M-kz, Mk),

and the analogous three relations hold for w(z, M), it follows that

v (z, Mk) h (Mkz) for all integers k
w(z, Mk) h(z)

Theorem 2 can also be proved by applying results in [12] to v/w.
One might hope to omit the w(z, N) term in Theorem 2 by allowing h(z) to

have zeros and poles. But suppose such a meromorphic h(z) did exist in the
case where v(z,M)= z-x and v(z,Mk) is found via the consistency
conditions. So

Write

h(Mz)/h(z) z x.

h(z) (z-- x)k(z) where’(x)

Then at z x, v(z, M) 0 but h(Mz)/h(z) a 2k, a contradiction.

THEOREM 3. Suppose F is cyclic, generated by

(1M=-+ 0 1
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For any factor of automorphy v meromorphic on the plane, there is an entire
nonvanishing h ( z ) such that

v(z N) w(z, N) h(Nz)
h (z) for all N in F

Proof For such a F, Appell [1, Chapter 1, Section 4] proved that to any
entire nonvanishing factor of automorphy u, there corresponds an entire
nonvanishing h (z) such that u(z, N) h(Nz)/h (z) for all N in F. We apply
this result to v/w.
Theorems 2 and 3 show if a cyclic F contains only matrices with lower left

entries zero, then any factor of automorphy for F has a particularly nice form.
If F is not cyclic, no such theorem exists, because if M and N are unrelated
generators for F, then v(z, M) and v(z, N) are independent of one another,
so that h(z) for M need have no relation to the h(z) for N. However for
discrete F we can prove:

THEOREM 4. Suppose all matrices in F have lower left entries zero and F is
discrete. Then corresponding to any factor of automorphy v meromorphic on the
plane, there is an entire nonvanishing h(z) such that

v(z N) w(z, N) h(Nz)
h(z) for all N in F.

Proof By Theorem 2H of [15], F must be cyclic when considered as a
linear fractional transformation group, so either I" (M) or ( I, M). The
former case is covered by Theorems 2 and 3. In the latter case, let h(z) be the
function produced for the subgroup (M) so the theorem holds for powers of
M. For powers of -M we must extend the definition of w by

w(z,-I) v(z,-I) and w(z,-Mk) w(z,-I)w((-I)z, Mk).

Note that (-I)z z so v(z,-I) +_ 1. Therefore

v(z,-M’) =v(z, -I)v((-I)z, Mk) v(z, -I)v(z, M)

w(z, -I)w(z Mk) h(Mkz) M h((-Mk)z)
h(z) =w(z ) h(z)

since (- M)z Mz.
For discrete I’, Theorem 4 completely characterizes factors of automorphy

when all matrices have lower left entries zero, and Theorem 1 shows all other
factors of automorphy must be rational.
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III. v (z, M) rational

DEFINITION. f(z, M) is proportional to g(z, M), denoted f(z, M)
g(z, M), means f(z, M) cg(z, M) for some nonzero constant c c(M)
independent of z.

DEFINITION. By a rational factor of automorphy with respect to F, we
mean, as Petersson did [16], a v(z, M) with the consistency condition

v(z, MN) v(z, N)v(Nz, M) for all M, N in F,

and satisfying:
(,) v(z, M) I-Ii%1(z xi)/I-Ii=l(z Yi) where a, fl do not exceed some

fixed interger n. The complex x and yi as well as the a and fl may depend on
M, but n does not.

Temporarily we also assume:
(, ) No x or y is in F, the orbit of infinity.
Theorem 5 will show that (, ) implies a fl for each M, so that (,) can

be replaced by:
(*)’ v(z, M) I-I((z xi)/(z Yi)) with a a(M) <_ n where n is the

largest occurring a(M) in F.

THEOREM 5. (a) Every rational factor of automorphy has the form

v(z, M) 1-I((z xi)/(z Yi)) where a a(M) <_ n

(b) Iffurther, v(z, N) 1-IV((z- zi)/(z i)), then

3,

v(z, MN) I-I ((z zg)l(z ,)) fi ((z N-lx,)l(z N-ly,)).

LEMMA 1. Let

If v(z, M) 1-I(z- xi)/1-I(x- yi) and v(z, N) 1-I(z- zi)/I-I(z-
), then

v(z, MN) l-I(z z,) I(z ,)

x u-lx /
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Proof Assumption (, ,) implies a cx 4: 0, so

Nz- x [(a- cxi)z + (b- dx,)l(cz + d) ---(Z- N-lxi)(cz + d) -1

and similarly for Yi in place of x i. The lemma follows from the consistency
condition.

DEFINITION. X is in the M-orbit of if x Mko for any integer k.

LEMMA 2. If V(Z, M) I-I’(z xi)/I-I(z -yi), then a ft. Specifically,

given any o, there are the same number of x as Yi which are in the M-orbit of o.

Proof. Assume false. Without loss of generality, let 0 be x and let
v(z, M) have at least one more numerator term in the M-orbit of xl than
denominator terms in the M-orbit of x. Repeated use of Lemma 1 with
M N shows v(z, Mn+l) has at least n + 1 more numerator terms than
denominator terms with this property. This violates (,).

Proof of Theorem 5.
and 7 i gives (b).

The second lemma gives (a), and the first with a fl

DEFINITION. O(Z, M) has size a means v(z, M) I-I((z xi)/(z -yi))
where no x is a yj, and a < n. The size a a(M) varies with M, and
v(z, M) achieves full size means a(M) n, the largest occurring size in F.

IV. Restrictions on the form of v(z, M)

In this and the next section, o(z, M) satisfies (,)’ and (, ) for every M in
F. It is proved that most o(z, M) have a nice form.

DEFINITION. The (matrix) order g of M is the smallest positive g for
which Mg I. The transformation order g’ of M is the smallest positive g’ for
which g’-fold composition M M Mz is the identity transformation.
Thus the matrix Mg’ must be I or -I, so that g’ either g or g/2.

THEOREM 6. Suppose v is a rational factor of automorphy with property
(, ). If M has infinite order then:

(i) There are disjoint lists of complex numbers (zi}= and (’i}/=x and
positive integers (k(i)}= and (/(i)}fl=l with Z,k(i) + 2l(i) n’ < n, such
that

U(Z, M) H((Z- Zi)/(Z m-k(i)zi)) H((Z- m-l(i)il/(z- i))"
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(ii) There are disjoint lists of complex numbers ( z }’=1 and (i)ff’ with
a’ + fl’ n’ <_ n such that

fl’
v(z, M) I-I ((z zi)/(z M-lz,))1-I ((z M-li)/(z i)).

Further, no z or i in either (i) or (ii) is a fixed point of M.

Proof The simplest possible form for v(z, M) is (z- x)/(z- y). By
Theorem 5(b) with M N, v(z, M2) has 2 numerators and 2 denominators.
Reapplication shows v(z, Mk+) v(z, MMk) has k numerators and de-
nominators. So the size of v for Mn/x would exceed the fixed bound n unless
either x Mky for some 0 < k _< n, or y Mix for some 0 < _< n, which
proves the theorem in this simplest case. Figure l(a) illustrates the case k 6

s-ax is

-5

-I0

-15

5 I0 15 m-axis
,++++-t-++++++++++++++++-+++++++++

-t++++++++4-4++++ +44
++4 +4+-t-44++ -t-4 +4 +-4-
++++++++4+-+++-t-44
++++++++++++-t-4 +

-10

-15

,++4-+
+-++-4 1-0 15 m-axs

+-+--+-+

4-+++
+4-4+

4-+4+
+4--4+

CASE (a) k(1) >_ /(1) CASE (b) /(1) > k(1)

FIG. Numerators (+) and denominators (-) of v(z, M") for m 1,2,3 given that

z- x z- M-4x
(Case b))v(z M)

z- M-6x (Casea)) or v(z, M) z x

To find v(z, MXS), for example, construct a vertical line at m 15. A "+" at height s indicates

(z Mx) is an uncancelled numerator term, and a "-" at height s indicates (z MSx) appears
as an uncancelled denominator term.
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and Figure l(b) illustrates 4. To find v(z, M15), for instance, one draws a
vertical line through m 15. A "+" at height s indicates (z- MSx) is an
uncancelled numerator term, and a "-" at that height signifies that (z MSx)
appears as an uncancelled denominator term.
Another simple case is v(z, M) 1-I((z xi)/(z Yi)) where all Xi’S and

yi’s are M-equivalent to a single xi (not a fixed point of M); that is,

1.)(Z, M) H ((z Mk(i)x1)/(z Ml(i)x1) ).
i1

We arrange terms so that k(i) >_ k(i + 1) and l(i) >_ l(i + 1). For such v we
have:

LEMMA. For large enough m, v(z, Mm) has size Ei=llk(i) l(i)l.

Proof If a 1, the situation corresponds to a vertical translation of Figs.
l(a) and (b) above, and the lemma is obvious. See Figs. 2(a) and (b).

If a 2, then

t)(Z, M) (z Mk(l’xl)(Z- Mk’2)x1)/(z- Ml’l)xl)(Z- MI’2)x1).

s-ax

20

k(1)

I(I)

I0

s-axis

+ + -t- +++++++++.++
+ + + t+.++++++++++.

++++++++++++/+/+

20

l(1)

I ++++
I "+++
I
/ ++++
5 ++4-

5 10
m-axis

CASE (a) k 6 CASE (b) 4

FIG. 2
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I(1)

:<(2)

I(2)

1(1.)

I(2)

x

k(1) > l(1) > k(a) > 1(2)

SUPERPOSITION PRINCIPLE

Itl)

k( k(2)

k(1) > l(1) > l(2) > k(2)
SUPERPOSITION PRINCIPLE

m-axis

FIG. 3 The rightmost figure for u(z, Mm) for m 1, 2, 3... illustrates the effect of combining the
two simpler factors of automorphy shown in the left and center figures. (Numerators (+) and
denominators (-)). The left figure corresponds to

v (z, M) ( z Mk(1)X1)/( Z MI’I)x ).

The center figure corresponds to

O(Z, M) (Z Mk(2)Xl)/(Z MI(2)Xl).

And the rightmost figure corresponds to the combination of the two,

V(Z, M) (Z Mk(1)Xl)(Z Mk(2’Xl)/(z MI(1)Xl)(Z Ml(2)Xl).
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k(1)

4- ;<() k(

](2) ](2)

k(1) >_ k(2) >_ /(1) >/(2)
SUPERPOSITION PRINCIPLE

FIG. 3 (Continued)

To find u(z, Mm) as m varies, we superimpose the contributions which stem
from

(Z- Mk(1)Xl)/(Z- MI(I)xI)
upon those which stem from

( Z Mk(2)X1)/(X Ml(2)x1).
Since l(1) > l(2) and k(1) > k(2), there are six relative arrangements for these
four integers. The three cases where k(1) > l(1), illustrated in Figs. 3(a), 3(b),
3(c), show how two diagrams combine. The other three cases are similar.

If the point (m, s) lies in a region of "+ ", this indicates that o(z, Mm) has,
after all cancellation, a numerator term (z MSxl).

)2 appears in theIf (m s) lies in a region of "+ +", then (z- Mxl
numerator. The regions of "-" and "- -" refer similarly to denominators.
The interference between two contributing parts "stabilizes" at the m-value

which corresponds to the rightmost crossing of a horizontal line by a slanting
line. To the right of this point, the behavior of 01(Z Mm) is very simple, and
the lemma is obvious.
For a > 2 the situation is similar, and the behavior of o(z, Mm) is very

simple for m to the right of where the interference "stabilizes." The lemma
follows immediately.

Proof of Theorem 6. o(z, M) can be dissected into products

v(z, M)v2(z, M) Or(Z M)
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where each vj contains all original x and yi which are M-equivalent to a given
xj. Each vj itself must be a factor of automorphy, at least to the extent that
vj(z, MN)--oj(z,N)oj(Nz, M) and this is sufficient hypothesis to apply
Theorem 5(a), so

i=I

where indices are relabelled so that k(i, j) > k(i + 1, j) and l(i, j) >
l(i + 1, j). By the lemma, for large enough m, oj(g,Mm) has size
F."(J)lk(i, j) l(i, J)l Since there can be no cancellation between the variousi=1

vj, the v(z, Mm) has size

a(j)

_
Ik(i, j) l(i,

j=l i=1

which by assumption, does not exceed n. We call each

an atom of v, and note that each atom can be expressed both as

(Z Zi)/(Z- Ml(i’j)-k(i’J)zi) for some zi,

and as

(Z- uk(i’J)-l(i’J)i)/(Z- i) for some ’i-

If k (i, j) > l(i, j), choose the first, and if k(i, j) < l(i, j) choose the second.
This produces the z and ’ in the theorem. For each z, the corresponding
k(i) is k (i, j) l(i, j), and for each ’, the corresponding l(i) is l(i, j)
k(i, j). If k(i, j)= l(i, j) the atom disappears. Finally, the sum of all the
k(i) and l(i) equals the double sum mentioned above and thus does not
exceed n. This proves (i), and clearly (ii) is equivalent.

THEOREM 7. If M2= -I or M has finite order g > 4n 4

conclusions of Theorem 6 are valid.
then the two

Proof Let M2 -I and v(z, M) I-l"(z xi)/(z Yi). Since M2z z,

+1 v(z, M2) v(z, M)v(Mz, M)

H(Z Xi)/(X y,)1-I (z M-ix )/(z M-lyi)
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Thus each M-lxi equals a yj, and each M-lyi equals an xj. The theorem
follows.

For M with finite matrix order g > 4n 4, we know the transformation order
is g’ >_ 2n 4. As in the proof to Theorem 6,

v(z, M) el(z M)v2(z, M) v,.(z, M)

where each vj. satisfies (.). Figs. 1, 2, and 3 are no longer planar; instead they
are wrapped on a torus, because both axes are periodic with period g’ > 2n 4.
For v we locate all 2a(1)< 2n of the k(i, 1) and /(i, 1) on the s-axis.
Trivially, there must be a segment of length at least (n3- 1) on the s-axis
containing no k or values. See Fig. 4.
We relabel if necessary so k(1,1) and l(1, 1) are the smallest k and values

lying above the (n 1) gap, and k(2, 1),/(2, 1) are the next smallest, and so
forth. All k’s and l’s lie within g’ units (actually g’ n + 1) above the gap.

LEMMA. Ik(i, 1) l(i, 1)l < n for all 1, 2,..., a(1).

Proof The n 1 case is (6) and (7) of Theorem 2 in (14). Consider n > 1.
If the lemma were false, there would be an h such that k(h, 1) and l(h, 1) are
more than n units apart on the s-axis. Select the smallest such h. Without loss
of generality k(h, 1) > l(h, 1). We have observed (Fig. 2(a)) that the contribu-
tion to Ol(Z M") from the (z Mk(h’l)Xl)/(Z MI(h’I)Xl) term grows with
m, and by m n + 1, it would produce more than n denominators (and
numerators), a contradiction unless there is interference, i.e., cancellation
between numerator and denominator terms. (See Figs. 3 and 4.) In general, to
keep the slanting "-" region which begins on the s-axis at height l(h, 1) from
attaining its potential width of more than n units, the k’s below l(h, 1) must
be spaced not more than 2n units apart, and furthermore k(h 1, 1) must be
not more than n units below l(h, 1). But below the smallest positive k k(1, 1)
there can be no such k within 2n units, due to the (n3- 1) gap, so for
m l(h, 1) k(1,1) + (n + 1), Vx(Z, Mm) has at least n + 1 denominators,
a contradiction. Thus the lemma cannot be false.

LEMMA. For m 1, 2,..., 2n4, the Vl(g, Mm) has size less than

a(1)

E Ik(j, 1) l(j, lll
j=l

at most n

__
l’l
2 times.

Proof When there is no interference between
collection of terms which stem from a single

"+" and "-" regions, the

(Z- Mk’i’l’x1)/(z- Ml’i’l’xl)
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s-axis

vx(z, M"’) for finite order M

FIG. 4 In this typical example both rn and s have period g’= 32. Numerator (+) and
denominator (-) regions which are truncated by the right edge in the chart above reenter on the
left at the same height, and regions leaving the bottom edge reappear at the top. To find
o (z, M42 ), for instance, construct a vertical line through rn 10 42 (mod 32) to read off which
numerators + and denominators (-) are present.

in Ol(Z, Mm) is of size [k(i, 1) l(i, 1)]. So to prove the lemma we need show
there is interference for a total of at most n + n 2 different values of rn as rn
goes through one period of length g’. Since there are at most n horizontal
strips (each of height < n) and since each such strip interfers with any given
slanting strip (including its own companion slanting strip) for at most 2n
values of rn, there are at most

n + 112n n + n 2

2

values of m for which interference can take place.
To prove (i) of Theorem 7 for M of finite order, the two lemmas are applied

to each vi(z, M). Since o(z, Mm) is the product of vj(z, Mm) for 1 < j < r,
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and the oj do not interfere with one another, o(z, Mm) has size less than

a(j)

Y’ Ik(i, j) l(i, J)l
j=l i=1

for at most r(n + n 2) of the rn 1, 2,..., 2n 4. Now 2n 4 >_ r(n
r < n, so rn can be chosen such that o(z, Mm) has size at least

q_ n 2) since

E Ik(i, j) l(i, J)l.
j=l i=1

By (*) of Section III, this is at most n. We choose Z,i, i, k(i) and l(i) in (i) of
Theorem 7 in precisely the same method as in the case that M had infinite
order. Trivially (ii) follows from (i).

V. Uniformity within groups

Given a matrix, we have lists (zi} and (ffi}’ and a,/3 guaranteed by
Theorems 6 and 7.

THEOREM 8. Suppose o is a rational factor of automorphy with property (**).
If M and N have identical lists (z ), ( i), t, and fl, then any L in the group
M, N) also has the same lists and same , ft.

Proof Let

and the same hold for N in place of M. It is sufficient to show the same lists
are retained under products MN and inverses M-x. Apply Theorem 5(b),
simplify, and use N-1M- (MN)- to verify

,(z MN) I-I(z zi) z (MN) -x -zi)i-i(z- (MN) (Z- i)"

For inverses, 1 v(z, MM-a) o(z, M-)v(M-lz, M). In the proof of
the first lemma to Theorem 5, we found for any L that (Lz- xi)--
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(z- L-lxi)(cz + d) -, so

v(M-lz, M)- fi(M-lz zi)/(M-lz M-Iz,)

X I-I(M-lz M-i)/(M-lz i )

yI(z- Mzs)/(z- zs)l-I(z ,)/(z-
Thus

v(z, M-) I-[(z zi)/(z Mzi)l-I(z- Mf,)/(z- i).

COROLLARY. If

o(z, I-I(z- z,)/(z

then

v(z, L) I--I(z z,)/(z- L-*zi)l-I(z L-,)/(z- ,) for all k.

By (8), every subgroup of SL(2, R) is in one of four classes:
Class 1. Groups generated by hyperbolic matrices, not all of which have

the same pair of fixed points.
Class 2. Groups which consist of at most two types: hyperbolics all of

which have identical fixed points x and y, and elliptics with trace zero which
interchange x and y and which when squared equal -I.

Class 3. Groups which consist of parabolics, all of which have the same
fixed point.

Class 4. Groups which consist of elliptics, all of which have the same two
fixed points.

THEOREM 9. Suppose v is a rational factor of automorphy with property
(, ). Suppose F is in class 1, 3, or 4, and contains a matrix of infinite order.
Then F has a set of generators each of which has (1) infinite order and (2) factor
of automorphy achieving full size n.

Proof For some N, v(z, N) has full size. By Theorem 4 of [8], a set of
generators for F is selected, all having infinite orders. For each generator M,
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Lemma 1 below couples with either Lemma 2 or 3 to produce a k so both
MkN and M’+ iN have (1) infinite orders and (2) factors of automorphy of
full size. In the list of generators, M can be replaced by M+1N and MN
since M is generated by these two. When this process is repeated for each
generator, the theorem is proved.

There is a minor problem in the proof if a generator M is in class (iii) of
Lemma 3; however replacing M in the list of generators by the M and M2

given in the lemma and beginning again bridges this problem.

LEMMA 1.
at most 2 n 2

If M has infinite order and o(z, N) has full size, then for all but
values of k, o(z, M’N) has full size.

Proof The corollary above gives v(z, M), so by Theorem 5(b)

v(z, MkN) v(z, N)v(Nz, M)

H(Z Xi)/(Z Yi)H(z N- lzi)/(z N-1M- kzi)

I-I (z N-1M-ki)/(z N-li ).

Let k be chosen so there is no cancellation involving any term in which k
appears; then o(z, MkN) has full size n.

LEMMA 2. Let F be in class 3 or 4. For M of infinite order, MkN has infinite
order for all but at most one value of k.

Proof In class 3, every matrix has infinite order. For class 4, select T so in
the conjugate group TFT-l, the two fixed points common to all matrices are
and i. Then

TNT-
cos 2rq) sin 2rq) )sin 2rq) cos 2

which has order m exactly when 4) k/m with (k, m) 1. Order is invariant
under conjugation, and M has infinite order, so

TMT_I=( cos 2r0 sin 2r0 )sin 2r0 cos 2r0

with 0 irrational. So

TM,NT-1 (TMT- 1) ’TNT- cos2r(k0 +
-sin2rr(k0 + )

sin2r(k0 + q)) ]
cos 2r(k0 +
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which has infinite order except when kO + q is rational, which can happen for
at most one k.

LEMMA 3. Let F be in class 1. For hyperbolic M, at least one of the following
holds:

(i) M’N has infinite order for all sufficiently large positive k;
(ii) MkN has infinite order for all sufficiently large negative k;
(iii) (MkN ) 2 I for all k.

For M satisfying (iii), there is an L and such that M
are hyperbolic and satisfy either (i) or (ii).

MiL and M2 M + 1L

Proof Select T so 3/= TMT- has fixed points 0 and oo, so

with real X 4= + 1. If

then

trace(MkN) trace(

If not both c and 6 are zero, then either all large positive k make Itr(MN)]
> 2, or all large negative k do. For such k, MkN is hyperbolic and thus of
infinite order. If however a 6 0 then , -1/fl and (/g) -I, so
(M/N)2-- -I for all k.

For M satisfying (iii), select a hyperbolic L having different fixed points
than M. Then, as above,

and

0 1/ and /=

L TLT-1 (ac

o
-1/[3

b
d’

nondiagonal. A necessary and sufficient condition that the square of a matrix
in SL(2, R) be -I is that its trace be zero. Now

tr(M*L tr( fl,) *a + d/?
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and

tr(MkLN tr( lflk, ) b/ + c/h

So it is simple to select so M MiL and M2 Mi+IL are both hyperbolic
(I trl > 2) and also both satisfy (MtN) 2 4: I and (MN)2 4: I. So Mt and
M2 must satisfy (i) or (ii).

THEOREM 10. Suppose v is a rational factor of autornorphy with (, ). If F
contains only matrices of infinite order, then F has a set of generators each of
which has (1) infinite order and (2) factor of automorphy achieving full size n.

Proof Theorem 9 suffices for classes 1, 3, and 4. For class 2, all elliptics
must be absent, and the proof is identical with the first part of the proof of
Theorem 9 together with Lemma 1.

THEOREM 11. Suppose v is a rational factor of autornorphy with (, ,).
Suppose F contains no matrix of infinite order. If F contains a matrix of order at
least 4n 4, then F has a set of generators each of which has (1) order at least 4n 4

and (2) factor of automorphy achieving full size n.

Proof If there is a bound on the order of matrices in F then F is cyclic [8],
and its generator M has order rn > 4n 4. For n 1, v(z, M) must have size 1;
otherwise all v(z, Mk) 1. For n > 2, Mk also generates F whenever k is
relatively prime to m, and there are q(m)> v > 2n 2 such possible k’s.
(The first inequality holds for all rn > 6.) By the corollary to Theorem 8,
v(z Mk) has full size if no M-z equals any zj. and no M- equals any ’..,
and there are at most 2ct + 2fl 2 _< 2n such equalities for k 1, 2,..., m. So
there will be a k such that M generates and o(z, Mk) is full.

If there is not a bound on the orders of matrices in F, then F is in class 4
and there is a set of generators all having finite orders as high as we wish [8].
Let M be a generator of order j and let N have factor of automorphy of full
size. In the notation of Lemma 2, 0 2ri/j and q, 2rl/m, where j can be
assumed as large as we wish. The argument of Lemma 1 shows that for all but
a few values of k, o(z, MkN) achieves full size. The order of MkN appears as
the denominator of the fraction ik/j + I/m (ikm +jl)/jm reduced to
lowest terms. Thus by choosing j large enough, k can be found so both MN
and Mk+N have orders at least 4n 4 and have factors of automorphy which
achieve full size. In the list of generators, M can be replaced by Mk +N and
MN. The process is repeated for each generator.

THEOREM 12 (FUNDAMENTAL THEOREM). Suppose v is a rational factor of
automorphy with (, ,). If F contains either a matrix of infinite order, or a
matrix of order > 4n 4, then there exist disjoint lists (z) and (), and a fixed
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integer a such that for every M in F,

v(z, M) 1-I(z zil/(z M-zi) 1-I (z M-li)/(z i).

Proof Suppose F contains M of infinite order, and F is not in class 2. Let
M and N be two of the generators guaranteed by Theorem 9 having factors of
automorphy of full size n. If we write (xi/yi} as shorthand for (z- xi)/
(z y;), then by Theorem 6(ii),

U(Z, M) fi ( zi/M-1zi } na ( M-li/i }

and

fl fl
v(z N)--- I-I{xi/N-xi} I-I {N-lyi/Yi},

so that

Choose j so no N-kM-zi cancels with any N-kzi or N-’y, and no N-’M-Jf
cancels with any N-ki or N-kxi The value of k is clearly irrelevent in this
choice. Then k is chosen so no x cancels with any N-kx or N-KM-zi, and
no y cancels with any N-’y or N-’M-. The number of j’s to be avoided
is at most 2n 2 n, and the number of k’s to be avoided is likewise 2n n,
but since M has infinite order, there are infinitely many j’s to choose from,
and similarly for k. Therefore the only way for the size of v(z, MNk) to not
exceed n, is for the list of xi’s to be identical with the list of z’s, and the list
of y;’s to match the list of ’;’s. We repeat the process for every pair of the
particular generators mentioned above, and then apply Theorem 8 repeatedly
to conclude Theorem 12.

If F contains only matrices of finite order, including one of order at least
4n 4, then Theorem 11 guarantees a set of generators for which the argument
just given is valid, since there are at least 4n 4 j’s to choose from, and similarly
for k, and only a few k’s and j’s to avoid.
There remains only the case that F is in class 2 containing an M with

infinite order. If we delete from F all N such that N - -I then all matrices
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in the resulting group F’ have infinite order, and Theorem 10 produces a set of
generators for F’ with infinite orders which have factors of automorphy
achieving size n’, the largest size occurring in F’. The argument above is
applicable to F’ and shows there are two lists (z ) and (’i) and an integer a,
such that for each M in F’,

v(z, M) 1-I(z- zil/(z M-1zi) E (z- M-l[i)/(z- [i)"

If there is no N in F with N2 -I, then n’ n, and the theorem is proved.
If there is an N in F with N - -I, then there must be one with factor of
automorphy which achieves full size n. The reason is that if not, there would
be an infinite order L with this property, and Lemma 1 of Theorem 9 would
imply v(z, L’N) has size n for large enough k, and further it is automatic in
class 2 that (L’N) I.

Select M in F’ and N in F, with factors of automorphy having maximal
size for F’ and F respectively (these sizes are denoted by n’ and n respec-
tively) and N 2 I. Theorem 7(ii) implies

v(z, N) fi(z xi)/(z N-lxi)

because the size is n and each (z N-li)/(z i) term can be expressed as

(z x)/(z N-lxg) where xg N-I’,
so N-lxi N- (-I) i. By (,) and the corollary to Theorem 8,

v(z, Mi’U) v(z, N)o(Nz, M’)

fi (Z Xi)/(Z N-lxi) fi (Z N-1zi)/(z N-1M-kZi)

H (Z N-1m-ki)/(z N-li)

for all k. We vary k to ascertain properties about the x, z;, and ’g. Let k be
selected so no term with a k cancels with any other term. Each of the a
denominator terms (z N-1M-’zi) must have a companion numerator term
(z z;) by Theorem 7 since (MkN)2 -I. Since the size can be at most n,
each N-ix; must cancel with some N-lz. Thus

V(z, MkN) 1-I(z zi)/(z N-1M-kzi) YI (z xi)/(z N-1xi)

X I-I (z N-1M-ki)/(z N-li).
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Similarly each of the (n’ a) numerators (z N-1M-ki) requires a compan-
ion (z ’i) denominator. Again the size can be at most n, so each N-li must
cancel with an xi. If N-li xj, then N-lxj N-2’ ’ since N2= -I.
Thus for all k,

v(x, MkN) I-I( z zi)/(z N-IM-kzi) H (z N-M-ki)/(z i)

On the other hand, since (MkN)= -I, the last product must be (by
Theorem 7)

n--n’

1-I (z xi)/(z N kxi )

for all k. If any x were not a fixed point of M, then k could be chosen so

N-XM-rx would be different from all the N-xi, a contradiction. So all the
x’s in the last product satisfy M-lxi--xi. We have therefore shown (*) is
equivalent to

v(z, M) (z z,)/(z M-z,) 1-I (z M-,)/(z ,)
n--n’

X H (z- Xi)/(z- M-1xi)

for all matrices M of infinite order. Taking k 0 in the previous equation, we
see (, ,) holds for M N with the same x, z, and ’. If L is any other
matrix in F, (so L2 -I), then LN-1 has infinite order, and L (LN-1)N,
so Theorem 8 can be applied to show (, ,) also holds for M L.

COROLLARY. If F is any infinite subgroup of SL(2, R) then the conclusion of
Theorem 12 remains valid.

Proof Either F contains an infinite order matrix, or not. In the latter case,
F must contain matrices of arbitrarity high order, since if not, there would be
a uniform bound A on the orders, so F can be considered a period group of
period (2A)!, thus a special case of a theorem of Burnside [7, p. 251] would
imply F must be finite. In either case Theorem 12 applies.

VI. Conclusions

Theorem 12 and its corollary apply to any factor of automorphy which
satisfies (,) and (, ,) of Section III. Condition (, ) was adopted purely for
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computational convenience, and shall be done away with, resulting in Theo-
rem 13.

DEFINITION.

[z- w]*-- {Zl-W if
if z-o -[z-o],"

Suppose v(z, M) satisfies (*) of Section III. Given

let " T-1Z. The conjugate group for F is " (a3/. T-1MT, M F ).

Define (’, A2/) v ( T, TIIT-1) v ( z, M )

The consistency condition v(z, MN) v(z, N)v(Nz, M) becomes

and v(z, M) I-I(z xi)/I-I"(z -Yi) becomes

/ + d)"-"

T can be chosen so the factor of automorphy (’, 33/) satisfies both (*) and
(**) of Section III.

THEOREM 13. Suppose v is a rationalfactor of automorphy. If F is infinite or
contains an L of order at least 4n 4, then there exist lists (z } and (i), and a
number a such that for each M in F,

n--t

v(z, M) I-I [(z- zg)/(z M-Xz,)] * l-I [(z- M-lti)/(z ti)]*.

Proof With ’, A?/, , and " as above, v(z, M) (, 11). The order of
equalsthe order of M, so by Theorem 12 and its corollary there exist lists { 2i }
and { ’i }, and a number a such that

v(z, M) O(t, lI)
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We have

--__ T-lz -cz +a’

so for w arbitrary,

(- w) ((z- Tw)/(-cz + a) if

1/(-cz + a) if

Therefore

U(Z, M).-- H[(z- ri)/(z- r]/l-li)]*nfi [(z- r/l-lgi)/(z- rgi)]*

I-I [(z T.,)/(z M-1T,)I * "I [(z M-Tg,)/(z Tg,)]*

Define z T and ’i Tgi, and the theorem is proved.
In the case z (or ’i) is infinite, [(z zi)/(z M-lz */)] becomes

1/[z-M-lz] *

The question arises whether the few groups not covered by the proofs in this
paper might also satisfy the conclusions of these theorems. Unfortunately not,
as the following example shows. Let N 7 I, F (N), x be a nonfixed point
of N, and

v(z,N) (z- x)(z- N-:x)
(z- N-lx)(z- N-4x)

Then v(z, N") always has size two or less; however, v cannot be written in
the form which Theorem 12 (with n 2) guarantees. The theorem cannot be
applied in this case because the order 7 does not exceed 4n 4.

THEOREM 14. Let F be an infinite subgroup of SL(2, R) or contain a matrix

of order > 4n 4, and let D be a subset of the complex plane which has at least
one finite limit point. If f(Mz) v(z, M)f(z) for z D, and v(z, M) is
rational in the sense of (,) of Section III, then there is a rational function R(z )
such that R ( z )f( z ) is an unrestricted automorphic form of integral degree.

Proof Define R(z) 1-l(z zi)*/1-l"-(z i)* where the z and ’i are
those which arise in the previous theorem. Define g(z) R(z)f(z). Let
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belong to F. Then

g(Mz) R(Mz)f(Mz) R(Mz)v(z, M)f(z)
[R(Mz)/R(z)I v(z, M)g(z).

If ’i 4: oo, then Mz :i (z M-li)*(cz + d) -1, and if ’i oo, then
(z- ’:) fails to appear in R(z) so Mz- i fails to appear in R(Mz).
Analogous results hold for z; in place of ’:. Thus

[R(Mz)/R(z)]v(z, M)

])* (.z + d)

where I-I x contains the terms for which z is infinite, and YI’ contains the terms
for which ’ is infinite. If z oo, then M-lz -d/c so that

(Z- M-lzi) * (cz + d).

Likewise if ’i oo, then (z M- 1i), (C2 -b d). So

[R(Mz)/R(z)]v(z, M)".. (cz + d) "-2’.

We have shown g(Mz) (cz + d)n-2ag(z); that is, there is a function u(M)
such that

g(Mz) u(M)(cz + d) "-2"g(z),

and the theorem is proved.
The requirement in Theorem 14 on the set D is a minimal one. A stronger

hypothesis yields the following.

COROLLARY. Suppose F is infinite and D is the complex plane. Then f z)
has a rational factor of automorphy if and only ill(z) is itself rational.

Proof If f(z) is rational, then f(Mz)/f(z) is an obvious factor of
automorphy and is rational. Conversely, if f(Mz)- v(z, M)f(z) for v ra-
tional, then by Theorem 14, R(z)f(z) is an unrestricted automorphic form for
some rational R(z). Any unrestricted automorphic form for an infinite group
which is meromophic on the whole complex plane is known to be
u(M)(z- ,(lZ)"-- z2) b for integers, a, b, (see [13]), so R(z)f(z) must be ra-
tional, hence f(z) is rational.
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