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A COBORDISM OBSTRUCTION TO EMBEDDING MANIFOLDS
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1. Introduction

Let M be a smooth, compact, stably almost complex manifold and v a
complex normal bundle for M, of large dimension. Let RP denote real
projective space of dimension n and the nontdvial real line bundle over
RPn. Then the external tensor product v (R) is a bundle over M RP ", and
it is the real bundle underlying the complex bundle v (R)c ( (R) C); thus v (R)

is oriented in complex cobordism theory MU*( ). We shall prove:

THEOREM 1.1. If M embeds in euclidean space with codimension 21 and the
complex dimension of v is 1 + k, then the Euler class of v (R) in MU*(M
RP2k) vanishes, provided the natural map

MUV(M) @,MV MU*(RP2k) "* MUe(M X Re2k)

is an isomorphism.

It is well known that if M immerses in codimension 21 then the Euler class
e(v (R) ) vanishes over M RP2k-x. For if v0 is the normal bundle of an
immersion then one has v -= o0 2k as real bundles, imd thus

v(R)--Vo(R) 1 (R) 2k;

this implies that v (R) has a nonvanishing section over M x RP2k- 1, because
2k has a nonvanishing section over RP2k-x. The content of (1.1) is then that,
under appropriate hypotheses, if M embeds in codimension 21 then e(v (R) )
must vanish over the larger space M RP2k. In the case of Euler classes in
singular cohomology with Z2 coefficients this amounts to the fact that the
highest Stiefel Whitney class of the normal bundle of an embedding is zero. In
Z2 cohomology one always has the Kiinneth theorem in its strong form, and
all manifolds are oriented; in this light the hypotheses of (1.1) seem reasona-
ble. The map (1.2) is injective by the Kiinneth theorem for MU theory [6]; the
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hypothesis on (1.2) is then that the Tor term in the Kiinneth sequence should
vanish in even degrees. This is satisfied, for example, if M has integral
homology free of torsion, or if it is a real projective space.
Theorem 1.1 implies the classical result of Atiyah and Hirzebruch [4] that

complex projective space of dimension n does not embed with codimension
2n 2a(n) where a(n) is the number of ones in the binary expansion of n.
A more interesting example is that of real projective space. If M RPn

with n odd then (1.1) applies and yields a strong nonembedding result via
Davis’s recent calculations [5]. However, Davis’s results are best for projective
spaces of even dimension. To take better advantage of these calculations we
work a little harder and stretch (1.1) a bit to make it apply to even dimen-
sional projective spaces, which are not stably almost complex manifolds. Let
a(m) denote the number of ones in the binary expansion of m.

TI-mOREM 1.3. Real projective space of dimension 2(rn + a(rn) 1) does
not embed in euclidean space of dimension 4m 2a(m) + 1.

This is the nonembedding version of Davis’s nonimmersion Theorem [5].
The author wishes to acknowledge the benefit of Martin Bendersky’s lecture

"BP obstructions to embeddings" at the International Conference in Honor of
Solomon Lefschetz, in Mexico City, in December of 1984.

2. Proofs

We shall work in the category of CW spectra as described in Part III of [1].
Recall that a complex oriented spectrum is a commutative ring spectrum E

equipped with a ring map

MU ---, E.

Examples of such spectra are MU itself, the spectrum bu for complex
connective K theory, and the smash product bu ^ MU, as well as the spectra
for singular integral and mod 2 cohomology. We shall have occasion to use all
these in this section.

Let CP denote complex projective space of (complex) dimension n. From
(2.5) of Part II of [1] we have

E*(Cp) r.(E)[y]/(y+1)
where y /2(Cp) is the Euler class of the canonical complex line bundle /
over CP. Let x denote the Euler class

e( (R) C) /2(Rp2).

and q: RP2 ---, CP the natural map. Since q*/= (R) C we have q*y x.
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LEMiA 2.1. If 2 is not a divisor of zero in r,(E) and qrodd(E ) 0 then

here pE(X) q *e( @c ). In particular,

q*. E*(CP")
is onto.

This is well known and its proof is as in (3.5) of [3].

Proof of (1.1). We assume M embeds in euclidean space with codimension
2/; let 0 be the normal bundle of an embedding. Then

v -- vo 2k (2.2)

as real bundles. Thus v0 is a stably complex bundle, so it is oriented in MU
cohomology. Note that vo (R) is also stably complex. Indeed, adding a trivial
bundle of dimension 2v- 2k to equation (2.2) and then taking tensor
product with we obtain

(v (2- 2k)) (R) --- v0 (R) 1 (R) 2 (2.3)

over M RP2k. Since the left hand side of (2.3) is a complex bundle and 2u
is trivial when N is large, vo (R) is stably complex. Thus from (2.2) we have,
after taking tensor product with and taking Euler classes in MUcohomology

e(v (R) ) e(vo (R) )e(1 (R) 2k)

Now, 2k is the real bundle underlying k (R) C, so its Euler class is x k, in the
notation of (2.1); thus

e(v (R) li,) e(vo (R) I)xk (2.4)

in MUeO(M x Rp2k). By Lemma 2.1 and the hypotheses of (1.1) we have

MU’(M Re2k) MUeO(M)[x]/(xTM, p(x)).

Thus we may write

k

e(vo (R) li,) E a,x’ (2.5)
i=0

e(v (R) I) aoxk (2.6)

with a MUe(M). Clearly (2.4) becomes
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because xk+ t 0. Now consider the inclusion

j. M-, M RP2k

defined using a base point in RP2k. We have j*(vo (R) ) Vo, so

j*e(vo (R) ) e(vo).

But from (2.5) it is clear that j*e(vo (R) ) a 0, so that (2.6) turns into

e(v(R)) e(vo)x k. (2.7)

Since v0 is the normal bundle of an embedding in euclidean space, e(vo) is
zero. The proof of this is exactly as in (11.3) and (11.4) of [7], replacing H by
MU throughout. This concludes the proof of (1.1).
Next we must prove (1.3). We shall deduce it from the results of Davis [5]

and from Proposition 2.8 below.
Let N be a large positive integer and let v (2- 2n- 1). This is a

normal bundle for RP2. It is not orientable, even in singular cohomology, but
v has a complex structure, so it is oriented in MU cohomo!ogy.

PROPOSITION 2.8. Suppose RP2n embeds in euclidean space with codimen-
sion 21- 1. Then

e((v) (R)) 0

in MU *(RP 2n RP2k), where k 2- n I.

Proof. Let vo be the normal bundle of an embedding. The argument used
in the proof of (1.1) to justify (2.7) is valid, replacing v by v and v0 by
vo . Thus

e((v ) (R) ) e(uo )x

in MU*(RP2 Rp2k), where x is the Euler class of (R) C over RP2k. The
class of xk has order 2; we will show that

e(vo ) MUZl(RP2n)

is even. We will prove this first for the Euler class

et,(Vo ) bu2t(RP2n) (2.9)

of vo in connective K theory.
Under the standard map into integral cohomology

bu*(Rp2’) H*(RP2n) (2.10)
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the class eb(Vo ) goes into the cohomology Euler class e,v(vo li,). It is easy
to see that this is zero. Indeed, modulo 2 one has

e/(u0 ) W21(v0 {) ) /’2/_l(V0)Wl() 0;

W21_x(Vo) vanishes because v0 is the normal bundle of an embedding. This
means that e/(uo ) is zero, because H21(Rp2n) has order 2. Now, by Bott
periodicity r.(bu) is a polynomial ring over the integers on one generator of
degree minus two, and by (2.1),

bu*(Rp") r,(bu)[x]/(x"+X,2x + tx).

The fact that #bu(x)= 2x + tx 2 follows from (2.9) of Part II of [1]. Thus
buEl(Rp 2n) is cyclic Of order 2n+l-t and it is generated by x1. The relation
2x + txt+ 0 shows that all multiples of t lying in this group are divisible
by 2. But the kernel of the map (2.10) consists precisely of the multiples of t.
Thus the Euler class (2.9) is even, as claimed.
To show that the MU Euler class is even consider now the maps of ring

spectra aM and ab defined to be the compositions

------ iA1
MU SO A MU.-* bu ^ MU

and

bu- bu A S1^ibuAMU

where the maps are the unit maps of bu and MU. It is the map aM that
makes bu ^ MU a complex oriented spectrum. These maps give rise to a
diagram

MU*(RP2n)
au

(bu A MU)*(RP2n)

bu*(Rp2n).

A map of ring spectra sends Euler classes in one theory into Euler classes in
the other theory. Thus aMe(vo li,) and abeb(vo ) are both Euler classes
for vo in the theory bu ^ MU. These correspond to two (very likely
different) orientations. By virtue of the existence of Thorn isomorphisms, any
two orientations are the same up to multiplication by a unit, and therefore the
same is true of any two Euler classes. Since we have shown that Otbeb(V0 )
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is even, we conclude that

aMe(vo I) . (bu A MU)* (RP2n)
is also even.
Now we claim that

aM: MU*(Rp2’) -o (bu /x MU)*(RP’) (2.11)

is an injection onto a direct summand. Clearly if this is true we will have
finished the proof of (2.8). To prove this consider

tM

MU*(CP") (bu A MU)*(CP")

q* q*

otM
MU*(RP’) (bu A MU)*RP’)

Both maps q * are onto by (2.1). Let gM and KbM denote the kernels of these
maps q*. It follows from (2.1) that KM is free over r.(MU) and that

#(y), yl(y),..., y"-lt(y)

forms a basis. Analogously, KbM is free over r.(bu/x MU) with basis

aM(#(y)), aM( yn-l#(y)).
The theorem of Hattori and Stong [2] asserts that

aM: r,(MU) -o r,(bu /x MU)

is an injection onto a direct summand. Let fl be a left inverse; this is a
homomorphism of abelian groups. Extend/3 to

fl: (bu ^ MU)* (CP") MU*(CP") (2.12)

by fl(EaiaM(Yi))= Y’.fl(ai)Y i. Because we have explicit bases for KM and
KbM it is easy to verify that KbM goes into KM under (2.12). Then (2.12)
induces a left inverse for (2.11), so that (2.11) is an injection onto a direct
summand, as advertised. This concludes the proof of (2.8).
To deduce (1.3) from (2.8) we need the following result of Davis [5].

r + s) is divisible by 2 but notTHEOREM 2.13. If the binomial coefficient n s
by 2s+x then the Euler class of 2r, (R) is nonzero in MU*(Rp2" Rp2k),
where k r- n + 3s.
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Proof of (1.3). Apply (2.13) with n m + a(m) 1 and r 2-and s a(m) 1, and combine with (2.8).
--n

3. Appendix

This appendix contains a conjecture concerning the desuspension of Thom
complexes. Let a be a (real) vector bundle over a CW complex X. As
indicated following the statement of Theorem 1.1 we have:

LEMMA 3.1. If a admits k everywhere linearly independent sections over X
then a (R) admits a nonvanishing section over X RP-1.

The Thom complex analogue of this lemma is:

CONJECTURE 3.2. If the Thorn complex of a is a k fold suspension then the
Thom complex of the bundle a (R) over X RPk- is a suspension.

Observe that since the Euler class is essentially the square of the Thorn class,
it must vanish for a bundle whose Thorn complex is a suspension. Then
Conjecture 3.2 and Davis’s theorem (Theorem 2.13 above) together imply:

r + s) is divisible by 2 but not by 2s+l then theCONJECTURE 3.3. If n s
truncated realprojective space Rp2r+2n/RP2r-1 is not a 2r- 2n + 6s + 1 foM
suspension.
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