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WEIGHTED SOBOLEV INEQUALITIES AND UNIQUE
CONTINUATION FOR THE LAPLACIAN PLUS LOWER
ORDER TERMS
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B. BarceLo, C.E. KENIG, A. Ruiz! AND C.D. SoGGE?

1. Introduction

We are going to consider Sobolev inequalities in L”-spaces with the weights
e™™) where ¢(x)=x,+ 3x2 is the functions used in Hormander [1] to
prove unique continuation properties. Here x € (x/, x,,) € R". The first type
of inequality concerns to the gradient

(1) |e™*®wul, < crePrm||e™® Aul|, , uniformlyin 7 € (7, 00),

for the Sobolev range 1/p; — 1/2 < 1/n. The point in this inequality is to
control the dependence of the exponent a and constants on the weight
parameter 7. These exponents happen to be non-positive for 1/p; — 1/2 <
2/(3n — 2); hence in this range (1) is a Carleman estimate. The second type of
inequality

@) le*®ull, < clle™™ Au,,

holds for (1/p,, 1/q) in the open triangle ABC in Figure 1.

Our motivation to study inequality (2) for this range of p’s and ¢’s is the
following unique continuation result for the Laplacian (corollary), which put
together first and zero order perturbations:

Assume v € L (R"), we Ly, (R"), r=03n—2)/2, s>n/2 and let u €
HZ! for t = 2(3n — 2)/(3n + 2) be a solution of the inequality

®3) |Au(x)] < [o(x) - vu(x)] + [w(x)u(x)l.

Then if u vanishes in an open non-empty set, it must be zero everywhere.
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This unique continuation result was proved by Hormander [1] for elliptic
equations with Lipschitz coefficients and r > (3n — 2)/2, s = (4n — 2)/7, so
our corollary is an extension for the Laplace operator of this result.

Jerison and Kenig [4] also proved strong unique continuation for the
solution of (3) without the gradient term and with s = n/2. Jerison [3] gave a
new proof of Jerison-Kenig’s result using a discrete restriction theorem for the
Fourier transform.

Kenig, Ruiz and Sogge [5] obtained the weaker unique continuation for the
same range of exponents as a consequence of the uniform Sobolev inequality

(4) lull o < c|(P(D) + @- v + b)ullL,

which holds for any lower order perturbation with constant coefficients of the
second order constant coefficient differential operator p(D); (4) implies Carle-
man inequality (2) for the weight e™» and it suffices to obtain the unique
continuation property.

One can wonder if (1) holds for the same weight function ¢(x) = x,, that
would be a particular case of a uniform Sobolev inequality

@) Ivull, < c|(P(D) + Za,D; + b)u|,.

Unfortunately the answer is negative; it can be shown that (1) for ¢(x) = x,,
is true uniformly in 7 € {7, } = oo only for p = ¢ = 2. The counterexamples
are similar to those used in Fourier transform restriction theorems.

We approach inequalities (1) and (2) in this direction; we give a reinterpre-
tation of them as uniform Sobolev inequalities similar to (4), but for the
one-parameter family of variable coefficients perturbation of Laplace operator

|D + it¢'(x)(0,0,...,1)*.
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In this direction, Theorem 2 shows that for any regular function ¢(x), the
best range of p’s and ¢’s which gives a uniform inequality
le®®wul, < c(n, p)|e™™ Aull,

must reduce to 1/p — 1/q < 2/(3n — 2). In this sense, inequality (1) is sharp
and consequently unique continuation property for solution of

|Au(x)| <[o(x) - Vu(x)|, v € Ly, r < 2272,

cannot be obtained by using Carleman’s method, the classical tool to prove
uniqueness.

Inequality (1) involves the same geometry as Carleman estimates for the
Dirac operator in Jerison [3]. In any case, restriction theorem are the corner
stone, either Sogge’s version or Stein-Tomas’ one (see [7] and [10]).

Finally we remark, as can be seen in the proof of (2), that we could state this
inequality with ¢ replaced by c¢r#(?) where B is a negative number which
decreases with the difference 1/p, — 1 /q and becomes —3/2 for p, = q = 2.

II. Statement of theorems and consequences

Let x = (x/, x,) € R", x, € R; eventually we will write y = x,. Let HZ’
denote the space of functions with two derivatives locally in L*.

We denote by c(n, p) any constant depending only on »n or p, which may
change at any occurrency.

D; will be d/i dx;, D = (Dy,..., D,), and D' = (Dy,..., D,_;).

&z Z is the class of symbols of pseudodlﬂ‘erenual operators p(x, D), with
estimates
aa

B 1-1B|
Ix afap(x §)| <cga(l+1E) "

S"~1(¢) will denote the sphere of radius ¢ in R”.

THEOREM 1. Let ¢(x) =x, + 3x2, n>2, and % =R""x[-1/2,1/2] C
R". Then there exist constants c,(n p,, q) and 7, such that for v > 7, and
u e CR(U),

(1) l|exp( T¢(x))V“"L2(qz) < o™ V| exp(ré(x) Au"Ll’l(‘tl)

for

1 1

1 In-2)y-2
Y=o -3 ;,a(ﬂ,7)=(———4-)1——

and

() llexp(r¢(x))u “L"(W) < c,flexp(7¢(x)) Au "Ll’o(qz)
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for (1/py,1/q) in the open triangle ABC of Figure 1 with vertices

n 1 n?+2n-4 1
4=, 2-(iyg) o= (St

where

The proof will be postponed until Section III.

COROLLARY. Let X C R" be an open set, u € HZ!(X), t = 6n — 4/(3n +
2). Suppose u satisfies the inequality

®3) lAu(x)| <lo(x) - vu(x)| +[w(x)u(x)]

where v = (Vy,...,0), U; € Lo (R") for r=(3n—2)/2, and w € Li.(R")
for s > n/2. Then u = 0 if u vanishes in an open non-empty set contained in X.

Proof. Let us write 1/s = 2/n — e. From (1) we obtain

6n — 4

) le™® vul 2w, < clle™® bul s, forp =577

(e 1l/p—1/2=2/(3n - 2)).
From (2),

(5) "e"ﬂx)u"L’(U) < c"ew(x) Au "L"(U)

with the same p and 1/p — 1/qg = 2/n — ¢ (in fact

6n —4

T —tonts 0

q ==
in the range of (2)’ in Theorem 1).
As in [5] the corollary is an easy consequence of the following lemma:

LeEMMA 1. Let X, U, v w be as in the corollary, such that inequality (3) is
satisfied in a neighborhood of S"~'. Then u = 0 in a neighborhood of S"~! if this
is true on one side.

Proof. We are going to take first the case where u vanishes in an exterior
neighborhood of S/'~!. We may suppose S”~! is centeredin —1 = (0,..., —1)
and 0 € X; it suffices to prove that u is zero in a neighborhood of 0.
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Let ¢ > 0 be small enough such that u(x)=0 for |(x + 1) > 1 and
|x|] <&, and ¢ is an increasing function for |x| <e, e <1/2. Take g(x) =
n(|x|)u(x) where n € C°([—e¢, ¢€]) is such that n(x) = 1if s < g/2.

Let us take S, = {x;|x] <p}, p <e/2 to be fixed later.

From (4) and (5) we get

le®g||Lecs,) + €™ Vg2,
< c"e"" Ag"u(k")
< clle®Agllr@ns,y + clle™v - VglLrs, + clle™w - g,
<cle™ Ag"u’(w\s,,) + cllvll )l V8l 2s,)

el s, 181 Lags, ) -

Since v € L, w € L. we can choose p small enough to get

1 1
ol s,y < ¢’ Wl s,y < brE

Insert this in the above inequality; the corresponding terms can be absorbed
by the left hand side and give

™™g ||Lecs,y + e vgllacs, < 2¢|e™ Ag |l r@ns,)-

Since g =0 for |x + 1| > 1 there exists a p’ <0, such that g(x) =0 on
R"\ S,) N {x: x, > p’}. Then

le™* gl ory +e™® Vgl 2ry < clle™ Agllrmens,)
for T=8,0{x:x,>p/2}.
If x € supp g\ S, $(x) < $(p") = p’ + (3p)* then
le™®g | ocry + €™ T8 207y < ce™ || Agll Loy
or
"efw(x)—ﬂp’))g "L"(T) < c||Ag||L,,(R..)

for 7 > 7,. Since ¢(x) = ¢(x,) = ¢(p’/2) on T, this is possible only in case
g=0onT.

The case when u vanishes in an interior neighborhood is reduced to the
above by reflection (see [5]).

The range of r in the first order terms cannot be improved via Carleman
estimates, as we can see from:
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THEOREM 2. Let U be an open set in R* and ¢ a regular real valued function
not identically zero. If

le™*vf "L"(U) <cle™Af |IL"(U)

holds for every f € Cg°(U) uniformly for any v € {7, } — oo, then

1_1__2 .
P 3 =<3m-2’

in particular if ¢ = 2, then p > (6n — 4)/(3n + 2).
Proof. We construct a counterexample as in [3].

We may assume V¢(0) = (1,0,...,0) and 0 € U. By writing g(x) =
e™Xf(x) we have

d d
© |(o% - 32

Take

< c|Ag + 12| vo|’g — TAdg — 27(V$, VgD,
J4

g(x) = e'™¢(0,x)

where
0, x = (1'1/2x1, ™/2x,, 1'3/4x’) and ¢= [[v(x;,), ¢e€CCR).
jm1

Then
ag d¢

ax, " 0x,%

4

irg + /%™

d
7 (0,x) = 70(x|)g

> erl—1/pA+G/4(n-2)

P

for 7 big enough. The right hand side of (6) is

2
dx;

itx = 82¢
Te (; axiz(o,x)

n—-1 52
4 /2t (Zi%(o,x) + Y i’—“’(a,x))

+720(|x]) — 27g — 272%™

72 (a,x) = 200(x1)irg(x)

+,,.1/Zeirx22 g_.(xp + .. )

q
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where dots denotes harmless terms. Hence this is bounded above by
c73/2-A+3(=D/41/4 since |x| < cr~/? in support of g. By comparison we
prove the claim.

HI. Proof of Theorem 1

A change of variable, u = e~ ™™y, reduces inequalities (1) and (2) to
(7a) I(p+ i@ +y)'rN)v||L2(U)
< c(p,n)ID + ir(1 + )N P*(0) | 1oy
and
(7b) Noll Lowy < cf||P + ir(1 + y)N|*(v) "LPo(U)

where N = (0,...,0,1) € R*, and we have the same ranges of p’s and ¢’s.
1. We are going to take a left inverse of

n—1 »
, a 2
|D +ir(1 +y)N|2= Y D2 - (3—); -1 +y)7) .

im]1

Observe this operator has constant coefficients with respect to x’-variables
and variable coefficients with respect to the last one y. Then it is natural to
take the Fourier transform (") with respect to R*~! variables. We get

. ~ ’ d 2 /
(D + 12+ )NE@) (0 8) = [ = (5 - @+ o) o0 0)
which is a Fourier multiplier in the x’-variable.

Then our aim is to invert the ordinary differential operator with parameters
¢’ and T given by

, d , d
(181 2 + @enr)ofier + 25 - @),
We will take the composition of the left inverses of
, i( .
Q=18+ (—1)’(5 -1 +y)7), j=1,2.

A left inverse of Q@ = (d/dz) — z (see [3] and [6] for all the claimed properties)
is given by the one-variable pseudodifferential operator with symbol

b(z,m) = ﬁ(/owexp(—tz —21) dt)exp(—jzn _ z? '2‘ "12)

—-f exp(—7 —t(z - i'q)) dt, z,n€R,
0
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which satisfies

(8) b(—Z, "1) = —b(z’ "1;’
ak Cix
©) 9z anb(z,'n)‘ s @+ |z + i) 7 F

Our inverses are obtained by the change of variable z =s(1 + y) +
(—=1)/71s71¢’| with s? = 72, since

s(??z‘ - 2) - ';7 =21 +y) + (D)7 = (-9,
Thus , ;. has symbol
(10) B (y,m 1€1) = (~1)’s7b(s(@ +y) + (=) s7g), s7).
From (9),

ak 9
2y 9t

(11) agab),s| < ¢, a(s + |s2(1 +y) + (- 1)1|€/| + 'nl) 1-|a| -k

holds for any non-negative integer k, and multiindex a € N”. Taking the
inverse Fourier transform R"~! we have

v(x’, y) = cfe”‘"'ﬂz"lelﬂf,le,QD +ir(1 + y)N|zv)A(£’, y)d¢’
and a left inverse of |D + it(1 + y)N|? is given by
B,(y, D)By(y, D), also B,(y, D) B,(y, D),
where B,(y, D) is the pseudodifferential operator with symbol
P, (y,m, 1€1) inR7'x[-3/4,3/4]
given by (10).

From (11) we see that P, | is a classical symbol in the Kohn-Nirenberg class
PR X [-3/4,3/4).

2. Proof of (6a). We want the estimates
(12) |Z;B,(y, D)By(», D)o 12y, < erlI0ll o)
where T,=D; j=1,...,nand T, v = 7(1 + y)o.

Take h € CP(U) with ||h||» =1, and x € C°((—3/4,3/4]) such that
x*(1)=1in[-1/2,1/2].
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By duality, (12) is equivalent to

5= [ X*()TB(y, D)Bi(y, D)o(x', y) - h(x', y) d' dy

a
< ct¥vlf,.

Since P, , € S Y(R*"! X [—3/4,3/4]), by the classical calculus of pseudo-
differential operators T;B,(y, D) is in ¥°(R" X [—3/4,3/4]), bounded in
LP(U) for any p, 1 < p < oo (see Taylor [9]), with operator norms indepen-
dent of 7 = s2. The same is true of their adjoints (T;By(y, D))*.

By the Schwartz inequality

I; < c||x(y)Bi(y, D) | 2.

So we are reduced to proving

| Boll 2y < eT®||0l| (v

where Buv(x) is given by

(13)

LX)~ [ b(s(1+ ) = 57,57 n)a(g m) et dg e dy
R R1

and " denotes, the R™Fourier transform. Now, roughly, for y, n fixed, |y| <
3/4, we will decompose the above R"~!-Fourier multiplier, and will bound
each piece by means of Fourier transform restriction theorems. To do so, we

take ¢ € C5°([3/4,2]) such that ¢(¢) = 1in[1,3/2] and I2_,6(z/2%) = 1 for
t>1. Let

& t
o =1- 24’(?)

k=0
Then
(14) s, , .= s7(s(L+y) — s, 57 1)
L-1 —11.2 1+ — 1+
- L[l )
k=0
+57% (s72s2(1 +y) = 1&] + iml)b,,,, (&)

where L = log s — log20 and

1 1
(15) o.(t)=1fort> 10" ¢,(t)=0forz < 30
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Define P,(y, §',m) and P,(y, £, n) as the terms in (14) and let B,(y,n, D’)
be the corresponding Fourier multiplier operators in R*~! with symbols P,
k=0,...,L — 1. Then

19 Bu(x)= T [x()Bulrm DI, m)e dn + By

where " denotes the y-variable Fourier transform in R.
Observe that for n and y fixed, P,(y, 7, §) is in C(R*™!) and supported
on

{¢ eR7Ls7Hs2(1 + p) — |&] +in| <2k},
i.e., the strip around the sphere $"~(s%(1 + y)) and width s2*. By (11), this

multiplier has L*®-norm bounded by 2~ %s~1. It is natural to use the following
Stein-Tomas result (see [10]).

LemMma 2. Iffis LP(R""Y) for some p,1 < p < 2n/(n + 2), then

2
[, )] a0 < c,ufi;.
Then for v(x’) = @i(x’, n) = cfe” ™ u(x’, y) dy we have

" B,(y,n, D")a)(x',n) "Lz(dx')

, 2
- (Lm0 es@ra)
R"

2 k N
(e [ ipom s i) o)
s2(1+y)—s2* i~

1

-1k

172
— | fA+»)+sTls 20\ Al 208 [220n—1),n—2
(L +y)—s~12k (L{_J}’k(y,n,s ) 6(s’) [ s t do(f)) dt)

12
< c(s-’z-k)‘”( [ 16(s%) s do(:))
Sl+y
which is bounded by Lemma 2, for y € [—1/2,1/2], by
L R 1/P
c(s7327k) (f |s=2n=Dy(s72x") | dx’) snt
Rn—!

for p = 2n/(n + 2). Finally, by dilating we have

A7) |Be(y,m, D) a(x’, ) | agaxry < C(s73275) 25 =D@P=D)1p]| 11 1o,
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Using the bounds for derivatives in (11), a similar argument, proves
(18)

a’ _ “1=j (n— -
ua_,q,-Bk(y,'fl, D')v < Cs™1/22%2(s2k) 72 s (= DR/PD) 0| Ly gy,

L¥(dx’)

Define
K (y,2) = fo(y)Bk(y, n, D')e*" dy.
From (16), Bu is given by a sum of operators:
(Ba)(x', y) = [Kily, 2 =y)o(z,)(x) .

If we notice that B,(n, y, D") = 0 if |n| > Cs2*, then integration by parts
gives

1
(iz)’

3] ’ izm
Kk(y9z)=cjl;a_7,jBk(n9y9D) e d'ﬂ-

Then
" Kk( s Z) v "Lz(dx’) < Cj(2"sz ) 512k 25 (= D@/p= D) lloll LP(dx")*

So for any non-negative integer N,

(19)

" Kk(y’ Z)U"z}(dx') < CN(l + |2ksz|)_Ns_l/zzk/zs("_1)(2/”_1)“v“LP(dx')-
Interpolation with the obvious estimates
(20) " K, (y,z)v "Lz(dx’) <C (2ksz ) -j|| Ul 22 (axr)
allows us to claim that
1K (y, 2)0li2caxy < Cu(L + 128s2]) ™" (722 2= D@/2 =) o) 1y,
for

1 t
—_ =4+ (1-t
P 2 ( )

n+2
T 0<tx<1.

2

The following lemma allows us to obtain bounds in both y and x’ variables.
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LeMMA 3. Let H(y,z —y) be a bounded operator from LP(R*™1) to
L(R"~') with operator norm bounded by h(z — y) for each y, z € R. Suppose
heL'R) forl1/r+1/p=1+1/q. Then

0

(r,x) = [ H(pz =) ) %) dz

satisfies
NTA Lomxcre-ty < AN @yl 2o vy

The proof is an application of Minkowski’s and Young’s inequalities.
Lemma 3 gives our case

Byl 20y < (2%s) ™ [s72/2+=DR/P=D2k 2 Yy Ly,

1 1 1 2n
7+P—1—1=‘i‘ and p=n+2.
Hence the sum in (16) has L2-norm bounded by
=t 1/p1—3/2 1-1
Z (2kS) P (s—1/2+2(n—l)/n2k/2) "u"L"l(U)’

k=0

1 t n+2
7=zt

which converges for all the range of 1, 0 < ¢ < 1, n > 2, and is bounded by

1 1 1
(Bn—2)y-2)/2 = — - = = o=
Cs lull gy for 0<vy 7. " 2 S yas=T

Only the B, term in (16) remains to be bounded; it has symbol
(725> +y) — 1] + iml)sTb(s(L +y) —s7HE), 5710) = B,

which, by (11) and (15), satisfies the following estimates, with C, ; indepen-
dent of s:

_ai_a:_P < Ca,j
! ITELT (s 4 gy + i)

Hence it behaves like the corresponding fractional integral, and is bounded
Lh > L% for1/p, —1/2 <1/n.
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3. Proof of (7b). As for (7a) our first aim is to get rid of B,(y, D) in the
inequality

(17) "Bl(ya D) - B,(y, D)UIIL"(U) < C"U"LP(U)-

Take (1 — A)~1/2 the pseudodifferential operator with symbol

W(®) = @+ 1817+ 277
and also consider its inverse (1 — A)!/? whose principal symbol is
(L+ 1812+ In12)"%
then we write the left hand side of (17) as

"Bl(y’ D)(l - A)—l/z(l - A)l/sz()’, D)U“L,,(U)

=|B.(y, D) - (1 - 8)" for u=(1-28)"By(y, D)o

u"L"(U)
Since we expect (1 — A)Y/2B,(y, D) to be bounded from L?(U) to LP(R"),
we are going to bound the operator B;(1 — A)~1/2 which has the advantage of
being a composition of a Fourier multiplier in R" and a pseudodifferential
operator. Hence following the line of the proof of (7a), we obtain a decom-
position of the symbol given by

(14b) 575, , (E)9(®)
L-1 -1]42 Y. ;
= T[T L, @)

+¢L : b:,y,-y' ° ‘P(s) :

L-1
kquk(y, 7,¢) +q.(y,m, §).

The supports of g, are the same as the support of g, in part 3, but the
L®-norms of g, are bounded by 27%S~3, since |¢(§)| < 4s~2 for (¢,m) = ¢
in the support of ¢,.

Let denote Q,(y,n, D), k =0,..., L — 1, the corresponding R"~1-Fourier
multipliers. By taking the dilation u(x") = f(s%x’), we obtain a R"~'-Fourier
multiplier with symbol supported in a strip of width s~!2* around the sphere
of radius 1 + y. Now, as above, we are going to use a restriction theorem, in
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particular, Sogge’s version:

LeMMa 4.
q 1/q
(fn"-l j;r_lf(ﬁ’)e'x dog)| ax'| < clfll Lo (axn

for 8 > 0 and

1 1

- - E =7 + 4
and

2n(n-1) _  2n-1)
w4 P 0 I

(See [7]; actually it is obtained from Corollary 5.1 in [7] using duality and
interpolation.)
In the dilated variable we have

10k (», 1, DYu(s72%) || aaery < 5~ (s ™2%) ||,
and recovering the old variable we have
"Qk()” n, D,)u"Lq(dx') < CS—HZ("-IXVP_IM)”“||Lv(dx')-
From estimates (11) we can again prove that

(18b)

d’ , —1-j _ - _
PN I e S S

LI®Y)

Repetition of above arguments and using Lemma 3 again we have
-1/ - -
1 Qxull Loy < Cj(2ks) TgT3rAR—DA/P 1/‘1)2"”“”LI’(U)

forl/qg=1/r+1/p — 1. Hence

L-1 log s—1log 20
2 Qi(y, D)u sC| X 2/ Va4 laen by ), g,
k=0 LI(R") k=0

< G2 0ull e
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since 1/p — 1/q = 2/n + 8. Now take § small enough and use interpolation
with the obvious estimate coming from

(20b) " If'k(y, z)v "L’(dx') = CS—Z(zksz) —j" Ul £2(axr)

which is

L-1
Z Q«(y, D)u

k=0

-1 _
< Y (2%)7 s 2||“||L2(n")~
L*(R")

In this way we can gain some power of s which gives the desired estimates
for 1/p — 1/q = 2/n — &. This is the claim of the theorem.

The remainder can be bounded again for the corresponding fractional
integral, which is bounded from L? - LY, 1/p - 1/G < 2/n.

Finally we have a comment to convince the reader that (1 — A)/2 - B,(y, D)
is bounded from L?(U) - L?(R"),1 < p < co.

B,(y, D) is a classical pseudodifferential operator with symbol in

SR x [-3/4,3/4));

it is a multiplier in the R*~! variable so its composition with (1 — A)}/2 has a
symbol in #O(R"~! X [—3/4,3/4]) which also is a multiplier in the non-com-
pact variable x’. Then it must be bounded from L?(U) to L?(R") since
U=R""!xX[-1/2,1/2]. (We refer to Taylor [9].)

IV. Further comments and open questions

(a) We obtain our Sobolev inequalities by taking an exact inverse of the
perturbated operators |D + it(1 + y)N|% This is one of the key ingredients
in the proof, and one of the obstacles to generalize the theorem to variable
Lipschitz coefficients as in Hormander [1].

(b) Are unique continuation properties also true for worse potentials v
and w? As we can see, Carleman inequalities are false outside of r > (3n —
2)/2, s = n/2, but we do not know about unique continuation; the counterex-
amples, as far as we know, are for the stronger unique continuation property,
that makes identically zero solutions which are zero at order infinity in a point
(see [4]).

(c) Inequality (1) is false for weights ¢(x) = x,. Nevertheless we obtain
some range for the convex function ¢(x) = x, + x2/2; this is related to
uniform Sobolev inequalities as in [5]. For what lower order perturbations
Ya;(x)D; + b(x) of the Laplacian does inequality (4') hold? For this and
related topics see Hormander [2] and Strémberg [8].
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