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WEIGHTED SOBOLEV INEQUALITIES AND UNIQUE
CONTINUATION FOR THE LAPLACIAN PLUS LOWER

ORDER TERMS

BY

B. BARCELO, C.E. KENIG1, A. RuIz AND C.D. SOGG2

I. Introduction

We are going to consider Sobolev inequalities in L’-spaces with the weights
e*(), where (x)= x + x2x2 is the functions used in Hormander [1] to
prove unique continuation properties. Here x (x’, xn) Rn. The first type
of inequality concerns to the gradient

(1) e*<) Vu )11 e’t’<x) Au uniformly in z (z0, oo),

for the Sobolev range 1/p 1/2 < 1/n. The point in this inequality is to
control the dependence of the exponent a and constants on the weight
parameter . These exponents happen to be non-positive for 1/p- 1/2 <
2/(3n 2); hence in this range (1) is a Carleman estimate. The second type of
inequality

(2)

holds for (1/p0, l/q)in the open triangle ABC in Figure 1.
Our motivation to study inequality (2) for this range of p’s and q’s is the

following unique continuation result for the Laplacian (corollary), which put
together first and zero order perturbations:

Assume v LroeRnX), w LoeR), r (3n 2)/2, s > n/2 and let u

H for t 2(3n 2)/(3n + 2) be a solution of the inequality

(3)

Then if u vanishes in an open non-empty set, it must be zero everywhere.
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EDc x-Y= .3n_ 2

This unique continuation result was proved by Hormander [1] for elliptic
equations with Lipschitz coefficients and r > (3n 2)/2, s (4n 2)/7, so
our corollary is an extension for the Laplace operator of this result.

Jerison and Kenig [4] also proved strong unique continuation for the
solution of (3) without the gradient term and with s n/2. Jerison [3] gave a
new proof of Jerison-Kenig’s result using a discrete restriction theorem for the
Fourier transform.

Kenig, Ruiz and Sogge [5] obtained the weaker unique continuation for the
same range of exponents as a consequence of the uniform Sobolev inequality

(4) Ilull cll(P(O) + v +

which holds for any lower order perturbation with constant coefficients of the
second order constant coefficient differential operator p(D); (4) implies Carle-
man inequality (2) for the weight ex- and it suffices to obtain the unique
continuation property.
One can wonder if (1) holds for the same weight function (x) xn, that

would be a particular case of a uniform Sobolev inequality

(4’)

Unfortunately the answer is negative; it can be shown that (1) for ,(x) x
is true uniformly in z { } oo only for p q 2. The counterexamples
are similar to those used in Fourier transform restriction theorems.
We approach inequalities (1) and (2) in this direction; we give a reinterpre-

tation of them as uniform Sobolev inequalities similar to (4), but for the
one-parameter family of variable coefficients perturbation of Laplace operator

ID + i’rk’(x)(O, 0,..., 1)12.
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In this direction, Theorem 2 shows that for any regular function (x), the
best range of p’s and q’s which gives a uniform inequality

]]e  < )vullq < c(n, P)lle Aul[ 
must reduce to lip 1/q < 2/(3n 2). In this sense, inequality (1) is sharp
and consequently unique continuation property for solution of

3n- 2IAu(x)l < Io(x) ’()l, o Lo, r < 2

cannot be obtained by using Carleman’s method, the classical tool to prove
uniqueness.

Inequality (1) involves the same geometry as Carleman estimates for the
Dirac operator in Jerison [3]. In any case, restriction theorem are the comer
stone, either Sogge’s version or Stein-Tomas’ one (see [7] and [10]).

Finally we remark, as can be seen in the proof of (2), that we could state this
inequality with c replaced by c#<’), where 8 is a negative number which
decreases with the difference 1/po 1/q and becomes -3/2 for P0 q 2.

II. Statement of theorems and consequences

Let x (x’, x,) R", x. R; eventually we will write y x.. Let Hi2&
denote the space of functions with two derivatives locally in L’.
We denote by c(n, p) any constant depending only on n or p, which may

change at any occurrency.
D: will be 0/i Ox:, D (DI,..., Dn), and D’ (D1,..., Dn_l).
9’ is the class of symbols of pseudodifferential operators p(x, D), with

estimates
0 0

o  p(x, < / I l) t-I l,

S-I(t) will denote the sphere of radius in R".

THEOREM 1 Let 0(x) x. + " 2
2x., n > 2, and all R"-tx[-1/2,1/2] c

R". Then there exist constants ci(n, p, q) and o such that for > o and
u

(1)

for

and

(2)

1 1 1 a( ) (3n- 2),- 2
px 2 <" l,’ 4
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for (1/po, l/q) in the open triangle ABC of Figure I with vertices

A (1/2,1/2), ( . 1)B= 2(n 1)’ qb c=(n2+2n-4 1)2n(n- 1) ’qc

where

n 1 n 2 + 2n 4 1 2
2(n- 1) qb 2n(n- 1) qc n

The proof will be postponed until Section III.

2tCOtOLLAtY. Let X c R" be an open set, u HI (X), 6n 4/(3n +
2). Suppose u satisfies the inequality

(3) IAu(x) Iv(x) Vu(x) + Iw(x)u(x)l

where o (vx,..., oj), oj Loc(R") for r (3n 2)/2, and w Lo(Rn)
for s > n/2. Then u =- 0 if u vanishes in an open non-empty set contained in X.

Proof. Let us write 1/s 2/n e. From (1) we obtain

(4) 6n-4
forp= 3n+2

(i.e. lip- 1/2 2/(3n- 2)).
From (2),

with the same p and 1/p 1/q 2/n e (in fact

6n 4 0()q--"
3n- IOn + 8

in the range of (2)’ in Theorem 1).
As in [5] the corollary is an easy consequence of the following lemma:

L.MMA 1. Let X, U, v w be as in the corollary, such that inequality (3) is

satisfied in a neighborhood ofS-x. Then u =- 0 in a neighborhood of S- if this
is true on one side.

Proof We are going to take first the case where u vanishes in an exterior
neighborhood of S’-x. We may suppose S"- is centered in 1 (0,..., 1)
and 0 X; it suffices to prove that u is zero in a neighborhood of 0.
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Let e>0 be small enough such that u(x)=0 for [(x+l) >1 and
[xl < e, and , is an increasing function for xl < e, e < 1/2. Take g(x)
n(Ixl)u(x) where / C([-e, el) is such that /(x) 1 if s < e/2.

Let us take S (x; [x[ < p), p < e/2 to be fixed later.
From (4) and (5) we get

Since v Lo, w L]o we can choose p small enough to get

1 1
IIvlIL%) < -, IIwlILo,) < 2--"

Insert this in the above inequality; the corresponding terms can be absorbed
by the left hand side and give

Since g--0 for Ix + 11 > 1 there exists a p’ < 0, such that g(x)--0 on
(R \ St, ) (x:x,, > p’). Then

Ile*<x)gllz.q<r) / lie*<) x7gllv<) -< clle* Ag II,.,<\s)
for T S, (x: x,, > p’/2}.

If x supp g \ Sp, $(x) < $(p’) p’ + (1/2p,)2 then

or

for > %. Since qb(x) (x,) > (p’/2) on T, this is possible only in case
g=0onT.
The case when u vanishes in an interior neighborhood is reduced to the

above by reflection (see [5]).
The range of r in the first order terms cannot be improved via Carleman

estimates, as we can see from:
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THEOREM 2. Let U be an open set in Rn and e# a regular real valuedfunction
not identically zero. If

holds for eoery f C (U) uniformly for any { k } o0, then

1 1 2
p 4 < 3n-2;

in particular if q 2, then p > (6n 4)/(3n + 2).

Proof. We construct a counterexample as in [3].
We may assume V(0) (1, 0,..., 0) and 0 U. By writing g(x)

e*<)f(x) we have

Take

where

tlrX (T1/2X1, ’i’1/2X2, ’r3/4X’) and I-I (x,), C(R").
i-1

Then

-2 "r-2g i’rg + X/2eiX2 0ep

>_. c,rl-1/p(1 +(3/4)(n-2))

for big enough. The fight hand side of (6) is

+,20(Ixl) 2,g- 2,3/2ei*X20tk (-(o,x)- 2*O(Ixl) i,g(x)



236 n. BARCELO, C.E. KENIG, A. RUIZ AND C.D. SOGGE

where dots denotes harmless terms. Hence this is bounded above by
c’r3/2-a+3<n-2)/4)/q since Ixl < c’r-/2 in support of g. By comparison we
prove the claim.

IIL Proof of Theorem I

A change of variable, u e-’*x)v, reduces inequalities (1) and (2) to

(Ta)

and

n), lllD + i,r(1 + y)Nl2(o)

(7b) Ilollaq<v) clllD + i,(1 + y)Nl2(o)I1o<)
where N (0,..., 0,1) R", and we have the same ranges of p’s and q’s.

1. We are going to take a left inverse of

n-1

( 0 _(1+ ))2ID + i(1 + ylNI2--- E D/- - y
i=1

Observe this operator has constant coefficients with respect to x’-variables
and variable coefficients with respect to the last one y. Then it is natural to
take the Fourier transform (^) With respect to R- variables. We get

0 (1 + y), O(y, ’)(ID + i(1 + y)Nl2(v))^(y, ’) I’12 -which is a Fourier multiplier in the x’-variable.
Then our aim is to invert the ordinary differential operator with parameters

’ and given by

We will take the composition of the left inverses of

n,=,--I*’1 + (-1) j - y j 1,2.

A left inverse of t] (d/dz) z (see [3] and [6] for all the claimed properties)
is given by the one-variable pseudodifferential operator with symbol

b(z, )= v/-(f0exp(-t- 2,)dt)exp(-iz-z2-12)2
2 t(z-il) dt, z,lR,
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which satisfies

(8)

(9)

-b(z,n),

(1 + Iz + il) i+j+k"

Our inverses are obtained by the change of variable z s(1 + y)+
(-1)-Xs-Xl’l with s 2 2, since

s--z(d ) =-d s2(1 + y) + (_ 1)j-x[,[ (_l)Jj,,.

Thus j, , has symbol

(10) Pj,,(y, /, [’l) (-1)Js-lb(s(1 + Y) + (-1)Js-ll’l,s-lrl).
From (9),

(11) < c,.(s + Is’(1 +y) + (-1)YI’{ + 11) -x-’l-

holds for any non-negative integer k, and mult’tindex a e N". Taking the
inverse Fourier transform R’-1 we have

o(x’, y) c + i(1 + y)Nl2v)^(l’, y)dli’

and a left inverse of ID + i(1 + y)NI 2 is given by

B2(Y D)BI(Y D), also Bl(Y D)B2(Y D),

where By(y, D) is the pseudodifferential operator with symbol

Pj,,(y, n, I’1) in Rn-I X [--3/4, 3/41

given by (10).
From (11) we see that P2,, is a classical symbol in the Kohn-Nirenberg class

oQa-1 n-1(Rx, x [- 3/4, 3/41).
2. Proof of (6a). We want the estimates

(12)

where T Dj j 1,..., n and T.+tv (1 + y)v.
Take h e C(U) with Ilhll,-- 1, and x e Co([-3/4,3/4]) such that

X2(t) --- 1 in [- 1/2,1/2].
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By duality, (12) is equivalent to

1i-- flnX2(y)T.B2(y, D)Bx(y, D)o(x’, y) h(x’, y) dx’dy

_< cllvll.
Since P2, s 5a- l(Rn- X 3/4, 3/4]), by the classical calculus of pseudo-

differential operators TiB2(y, 1)) is in 5a(R x [-3/4,3/4]), bounded in
L’(U) for any p, 1 < p < oo (see Taylor [9]), with operator norms indepen-
dent of s 2. The same is tree of their adjoints (TB2(y, D))*.
By the Schwartz inequality

Iy <_ cllx(y)nx(y, D)II..

So we are reduced to proving

IIBOIIL(U) C"IIOIIL,(U)

where Bo(x) is given by

(13)

fx(y)-1 fan_,b(s(1 + y) s -Xl$’ s-Xn) ($’, ,1)e ’’’x’ d’ e’ny dy

and denotes, the Rn-Fouder transform. Now, roughly, for y, ,/fixed, [y[ <
3/4, we will decompose the above R-LFourier multiplier, and will bound
each piece by means of Fourier transform restriction theorems. To do so, we
take q C’([3/4, 2]) such that q(t) 1 in [1,3/2] and E.:e(t/2k) 1 for
t > 1. Let

o

(t)q0=l Eq
k-0

Then

(14)

where L log s log 20 and

(15) 1 1kL(t) =-- l for > ]-, L(t) =-- O for < -.
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Define Pk(Y, ’, 7) and Pz(Y, ;’, 7) as the terms in (14) and let Bk(Y, 1, D’)
be the corresponding Fourier multiplier operators in R-x with symbols Pk,
k 0,..., L 1. Then

(16)
L-1

Su(x) E fx(y)S (y, n, B’)a(x’, d + Bzu
k-O

where denotes the y-variable Fourier transform in R.
Observe that for and y fixed, Pk(Y, *1, ’) is in C(Rn-l) and supported

on

(’ R-t, s-lls2(1 + Y)- I’1 + ill < 2k ),
i.e., the strip around the sphere sn-l(s2(1 + y)) and width s2k. By (11), this
multiplier has L-norm bounded by 2-ks -1. It is natural to use the following
Stein-Tomas result (see [10]).

LtA 2. If/is L(R-t) for some p, 1 < p < 2n/(n + 2), then

Then for v(x’) f(x’, 1) cfe-inYu(x’, Y) dy we have

which is bounded by Lemma 2, for y [-1/2,1/2], by

n-1

for p 2n/(n + 2). Finally, by dilating we have

(17) Ils (y,
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Using the bounds for derivatives in (11), a similar argument, proves

(8)

-Bk(Y, , D’)v < CS-X/22k/2(s2k)-t-YS(-t)(2/’-t)IIOIIL,<d,).
L2(dx’)

Define

Kk(Y, z) fnx(Y)Bk(Y, *1, D’)e’ dl.

From (16), Bu is given by a sum of operators:

If we notice that Bk(l, y, D’) 0 if [1[ > cs2k, then integration by parts
gives

O y 1K(y z) c ( y, D’) ei’ d.

Then

rk(Y, z) v I1-<,,<.) < Cy(2ksz

So for any non-negative integer N,

(19)
IIK,(y, )o11.(,) c(1 +

Interpolation with the obvious estimates

(20) lira(y, :)o11.<<,.<.) c(2ksz)-41vllz<<,<,)

allows us to claim that

for

1 t n+2
p---- -- + (l-t) 2n O<t<l.

The following lemma allows us to obtain bounds in both y and x’ variables.
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L7, 3. Let H(y, z y) be a bounded operator from L(Rn- x) to
Lq(Rn-I) with operator norm bounded by h(z y) for each y, z R. Suppose
h L(R) for 1/r + 1/p 1 + 1/q. Then

o
Tf(y, x’) H(y, z y)f(z, .)(x’) dz

satisfies

The proof is an application of Minkowski’s and Young’s inequalities.
Lemma 3 gives our case

1+ 1 _1=
1 2n

7 Px
and p n+2"

Hence the sum in (16) has L2-norm bounded by

L-1

E (2ks)is’’-i2(s-12+2t’-’)i"2l-)’-11ull t,,,<ts),
k-O

1 n+2
p-- - + (1 t) 2n

which converges for all the range of t, 0 < t < 1, n > 2, and is bounded by

CstO"-2)v-2)12llull .,,w) for
1 1 1

0<,=
Px 2 < ,s=.

Only the Bz term in (16) remains to be bounded; it has symbol

g’L(S-ils:(1 + Y)- If’l + illl)s-lb(s(1 + Y)- s-lf’l, s-xn)= PL

which, by (11) and (15), satisfies the following estimates, with C., indepen-
dent of s:

OJ O
(s + If’l + llll) y+l:l+l"

Hence it behaves like the .corresponding fractional integral, and is bounded
Le ---> L9- for lipx 1/2 < lln.



242 B. BARCELO, C.E. KENIG, A. RUIZ AND C.D. SOGGE

3. Proof of (7b).
inequality

As for (7a) our first aim is to get rid of B2(Y, D) in the

(17) IlBx(y, D) B2(y, D)vI[Lq(v < CIIolIL<V).

Take (1 h)-x/2 the pseudoditferential operator with symbol

and also consider its inverse (1 A):/2 whose principal symbol is

(1 + 1 ’12 + 1/12)x/2"

then we write the left hand side of (17) as

II ,(y, D)(1 A)-’/2(1 A)X/2B2(y, D)oll ,q( ,
--I1,(, D). (1 A) -,/2ull.‘:, for u (1 A)X/2B2(Y, D)o.

Since we expect (1 A)t/2B2(Y D) to be bounded from LP(U) to LP(Rn),
we are going to bound the operator Bt(1 A) -t/2 which has the advantage of
being a composition of a Fourier multiplier in Rn and a pseudodifferential
operator. Hence following the line of the proof of (7a), we obtain a decom-
position of the symbol given by

(14b)

The supports of qk are the same as the support of qk in part 3, but the
L-norms of qk are bounded by 2-ks-3, since 1(6)1 < 4s-2 for (’, 7)
in the support of g.

Let denote Qk(Y, /, D’), k 0,..., L 1, the corresponding Rn-X-Fouder
multipliers. By taking the dilation u(x’) f(s2x’), we obtain a R-X-Fouder
multiplier with symbol supported in a strip of width s-X2k around the sphere
of radius 1 + y. Now, as above, we are going to use a restriction theorem, in
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particular, Sogge’s version:

L]MMA 4.

for 8 > 0 and

and

iq )
1/q

fse_/(’)e’"" aa(’) ax’

1 1 2=-+p q n

2n(n- 1) 2(n- 1)<< f S".
n z + 2n 4 n

(See [7]; actually it is obtained from Corollary 5.! in [7] using duality and
interpolation.)

In the dilated variable we have

and recovering the old variable we have

IIQ(y, n, D’)u II,,<,)
From estimates (11) we can again prove that

(18b)
o_, ,) (2ks) -x-isOrlj Qk(Y, rl, D Ull <

Lq(lln-l)

Repetition of above arguments and using Lemma 3 again we have

II Qkull<) C’(2ks)-X/rs-3+2f"-X)fX/’-X/q)2kllull,<.)
for 1/q 1/r + 1/p 1. Hence

E Q(y, D)u
k’-O Lq(I)

log s- log 20 ): C E 21/p-1/q S-4+(1/p-1/q)(2n-1)ll UIIL,<U)
k=O
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since 1/p 1/q 2/n + . Now take/ small enough and use interpolation
with the obvious estimate coming from

(20b)

which is

E Qk(Y, D)u < E(2ks)-ts-211ullz.2w).
k-0 L2(Rm)

In this way we can gain some power of s which gives the desired estimates
for 1/ 1/ 2/n e. This is the claim of the theorem.
The remainder can be bounded again for the corresponding fractional

integral, which is bounded from Lp --, Lq, 1/ 1/t < 2/n.
Finally we have a comment to convince the reader that(1 A)/2 B2(y D)

is bounded from L’(U) --, L(Rn), 1 < p < oo.
B2(Y D) is a classicaJ pseudodifferential operator with symbol in

Sa-x(R-x X [- 3/4, 3/4]);

it is a multiplier in the R- variable so its composition with (1 A)/2 has a
symbol in Sa(R- x [- 3/4, 3/4]) which also is a multiplier in the non-com-
pact variable x’. Then it must be bounded from L’(U) to L’(R) since
U R-x x [-1/2,1/2]. (We refer to Taylor [9].)

IV. Further comments and open questions

(a) We obtain our Sobolev inequalities by taking an exact inverse of the
perturbated operators ID + i(1 + y)NI 2. This is one of the key ingredients
in the proof, and one of the obstacles to generalize the theorem to variable
Lipschitz coefficients as in Hormander [1].

(b) Are unique continuation properties also true for worse potentials o
and w? As we can see, Carleman inequalities are false outside of r > (3n
2)/2, s > n/2, but we do not know about unique continuation; the counterex-
amples, as far as we know, are for the stronger unique continuation property,
that makes identically zero solutions which are zero at order infinity in a point
(see [4]).

(c) Inequality (1) is false for weights ,(x)= x. Nevertheless we obtain
some range for the convex function ,l,(x)--" x + x2/2; this is related to
uniform Sobolev inequalities as in [5]. For what lower order perturbations
,a(x)D + b(x) of the Laplacian does inequality (4’) hold? For this and
related topics see Hormander [2] and Strtimberg [8].
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