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Introduction

Let I' = SL(2, Z). Let E stand for the euclidean matrix norm, so that if

then
E(A) = a*+ b* + ¢ + d>.

In a previous paper [2] the author considered the problem of determining the
number of solutions N(T, x) of the inequality E(4)?> < x, 4 € . It was
shown in [2] that N(T, x) ~ 6x; that is, N(I, x)/x approaches 6 as x
approaches co. This result also appears as Exercise 8, p. 267, of [3]. Further-
more, the following conjecture was made in [2]:

Conjecture. Let G be a subgroup of I of finite index p. Let N(G, x) be
the number of solutions of the inequality E(4)? < x, A € G. Then N(G, x)

~ (6/1)x.

The purpose of this note is to prove the conjecture for all subgroups of I' of
level 2; that is, for all subgroups of I' containing the principal congruence
subgroup I'(2), which consists of all matrices A € T' such that 4 = I mod 2.
I'(2) is a normal subgroup of I of index 6, and I'/T'(2) is isomorphic to the
symmetric group S;. Thus if G is any proper subgroup of I' containing
I'(2), G/T'(2) is either the trivial group, the cyclic group C,, or the cyclic group
G;.
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The principal analytic result required is a theorem of T. Estermann [1],
which we state as a lemma:

LemMA 1 (Estermann). For any positive & and any positive integer k,

(1)
Y, r(h)r(h+k)=cn+ O(n*loghn), a=11/12,8=17/6 +¢,

l<h<n

where

¢ =8% (=1)"" d/k. ()

dik

Here r(n) is the number of representations of n as the sum of 2 squares, and
is the coefficient of x" in the power series for 62(x), where (x) is the
theta-function (x) = X° oox"z. We also require the function r*(n), which is
the coefficient of x" in the power series for §(x)8(—x). This function satisfies

r*(n) =0,no0dd, —r(n),n=2mod4, r(n/4),n=0mod4. (3)
We also note that
r(4n) =r(n), r(@n+2)=r(2n+1), r(n)=0ifn=3mod4. (4)

The full error term of (1) will not be required; all that is needed is the fact that
it is o(n).

The theorem and its proof
We will prove:

THEOREM. Let G be a subgroup of T of level 2 and index p. Let N(G, x)
denote the number of solutions of E(A)? < x, A € G. Then N(G, x) ~ (6/p)x.

Note that 6/u is the order of G/T'(2).

Proof. We break the proof up into cases, depending on the value of u. The
case p = 3 is the hardest, and depends (in part) on the case u = 6, so this will
be done last.

(1)) = 1. Then G =T, and the theorem has already been proved in [2] for
this case.

(ii) p = 2. Then G/T'(2) is isomorphic to C; and G = I'?, the subgroup of T
generated by the squares of all elements of I. I'? is a normal subgroup of T’



586 MORRIS NEWMAN

(in fact, a fully invariant subgroup of I'), and

= T2 2 - 01]
'=T*+7TT* T -1 ol

is a left coset decomposition for I' modulo I'2. If we now note that for any
matrix 4 € T, E(A) = E(TA), the result is a consequence of case (i), since
the number of solutions of E(4)? < x, A € I'?, is the same as the number of

solutions of E(4)? < x, A € TT? and both together constitute the number
of solutions of E(4)? < x, A € T. It follows that

N(T?, x) = N(T,x)/2 ~ 3x,
the desired result.
(iii)) p = 6. Then G = I'(2). Let S(G, n) denote the number of solutions of
E(A)? = n, A € G. Then S(I'(2), n) is just the number of solutions of
a’?+b*+c*+d*=n, ad-bc=1,b,ceven. (5)
Asin[2,put A =a+d,D=a—~d,B=b+¢,C=b—c. Then
A+ C*=n+2, B*+D?*=n-2, A,B,C, D even. 6)
Conversely, if 4, B, C, D satisfy (6) then
a=(A+D)/2, b=(B+C)/2, ¢c=(B-C)/2, d=(A-D)/2
are integers satisfying (5). Since 4, B, C, D are even, we may write
A=24,,B=2B,C=2Cy,, D=2D,,
so that
a=Ay+ Dy,b=By,+ Cy,c=By,— Cy,d=A, — D,.
Then (6) becomes

A3+ C2=(n+2)/4, B+ D¢=(n-2)/4, By+ C,even,
Ay + D, odd.

Thus for solutions to exist at all, n = 4N + 2.
Since 4, + D, odd follows from the facts that B, + C, is even and

A3+ B} + C}+ D¢ =n/2=2N +1,
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we need the number of solutions
A2+ C}=N+1, B2+ D}=N, B,= C,mod2.

This is the coefficient of x¥*1y¥ in the power series

z 12_(1 + (_1)b+0)xa2+c2yb2+d2
a,b,c,d

= 3{0%(x)0%(y) + 0(x)0(~x)6(y)0(-y)}.

This readily implies that the number of solutions S(I'(2), n) = S(I'(2),4N + 2)
is given by

FH{r(N+1)r(N)+r*(N+1)r*(N)}.

But r*(N + 1)r*(N) =0, since one of N, N + 1 is odd (formula (3)). It
follows that the number of solutions is 4(r(N + 1)r(N)). Hence

N(T(2),x)=% Y r(N+1)r(N)

4N+2<x

=1 ¥ r(N+DAN)
N<(x-2)/4

=1ex/4 + o(x)
=x+ o(x),

by Lemma 1. This completes the proof in this case.

(iv) p = 3. There are 4 subgroups of I' of index 3; namely, I(2),
I°(2), K, T°. Here T(2) is the subgroup consisting of all elements 4 = [ *
of T such that ¢ = 0 mod?2; I'°(2) is the subgroup consisting of all elements
A= [: Z] of T such that b = 0 mod 2; K is the “theta subgroup”, generated

by
_[ o 1 2=[1 2]_
T [_1 O] and S o 1’

and T3 is the fully invariant subgroup generated by the cubes of all elements
of T. However, I'* does not contain I'(2) as a subgroup, and so must be
omitted. The remaining 3 are conjugate groups. The proof for I'°(2) is
precisely similar to the proof for I';(2), and will be omitted. It is thus only
necessary to prove the result for I';(2) and K.
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We start with K. K has the following coset decomposition modulo I'(2):
_ _| 0 1
K=TQ2)+TrQ2), 7= -1 ol

We now argue along the lines of case (ii). The number of solutions of
E(A)? < x, A € T(2), is the same as the number of solutions of E(A4)? <
x, A € TT'(2); and these together constitute the number of solutions of
E(A)? < x, A € K. Since N(T'(2), x) = x + o(x) by case (iii), it follows that

N(K,x) =2N(T(2),x) =2x + o(x),

the desired result.
We now come to the last case: G = I[;(2). We first prove:

LEMMA 2.

Y r(4n+1)r(4n+5) =8x + o(x).
n<(x—1)/4

Proof. By Lemma 1, we have

f= Y r(n)r(n+4)=cux+o(x)=10x + o(x).

n<x

Considering n modulo 4, we find that f = f, + f; + f, + f;, where

f= Y r@n+i)yr(4n+i+4), i=0,1,2,3.
n<(x—i)/4

We have fy,= Y r(dn)r(4n+4)= Y r(n)r(n+ 1), because of (4).
n<x/4 n<x/4
Hence f, = ¢;x/4 + o(x) = 2x + o(x), by (1). Next, we have

fi= Y r(4n+1)r(4n +5),
n=(x—1)/4

fHh= Y r(4n+2)r(4n+6) = Y r@2n+1)r(2n +3),
n<(x—2)/4 n<(x—2)/4

fi= Y r(4n+ 3)r(4n+17).
n<(x—3)/4

But one of 2n + 1, 2n + 3 must be congruent to 3 modulo 4, and 4n + 3 is
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congruent to 3 modulo 4. Hence because of (4), f, and f; are both 0. Thus
f=fo+fi, fi=f—fo=10x+o(x) — {2x + o(x)} = 8x + o(x).

This completes the proof of the lemma.

Now let S(T,(2), n) be the number of solutions of E(4)? = n, A € T(2).
This is just the number of solutions of

a?+b*+c?+d*=n, ad—-bc=1,ceven.
As before,set A =a+d, D=a—d,B=b+ ¢,C=b — ¢, so that
a=(A+D)/2, b=(B+C)/2, ¢=(B-C)/2, d=(4-D)y2.

Then because a, d are odd and c is even, we have B = C mod 4, and 4 and
D even. Then arguing as before, S(Iy(2), n) is just the number of solutions of

A>*+ C*=n+2,B2+ D?*=n-2, B=Cmod4, A, D even.

We note that C = n mod 2. Put 4 = 24, D = 2D, so that
443+ C*=n+2, B +4D}=n-2.
There are 2 cases:
Case 1. n even. Then C = 2C,, B = 2B,,

A2+ C}=(n+2)/4, B+ DZ=(n-2)/4, B,= C,mod2.

Thus n = 4N — 2 and
A3+ C2=N, B}+D?=N-1, B,= C,mod2.

The number of solutions is

N =

Z (1 + (__1)b+c)

a®+c*=N,P*+d*=N-1

= 1{r(N)r(N = 1) + r*(N)r*(N - 1)}

3r(N)r(N = 1),

since one of N, N — 1 is odd.
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Case 2. n odd. Then B and C are odd, which implies that n = 4N — 1.
As before, put 4 = 24,, D = 2D,. We have

442+ C*=4N+1, B>+ 4D}=4N-3, B=Cmodd4. (7)
We note that

H{1+i"+i¥+} =1 ift=0mod4
=0 otherwise

Using this, the number of solutions of (7) becomes

f= % Z {1 + ib—c + l-2(b—c) + i3(b—c)}

4a%+2=4N+1,
b +4d*=4n-3

o+ttt f),say.

We have
fo= Yy 1= 4r(4N + 1)r(4N - 3),

442+ c*=4N+1,

b +4d*=4N-3
since

Y 1=% Y L
4ul+v*=2M+1 W+ ?=2M+1

Next,

f= L = %@ T

42+ r=4N+1, P +4d?=4N—-3 4a’+c?=4N+1
b?+4d*=4N-3

Since b is odd, it is readily seen that the contributions to the first factor for b
positive and for b negative are negatives of each other, which implies that it is
0. Thus f; = 0 as well. A similar argument shows that f; is also 0. As for f,,
we have

h= Y (-n
4g%+2=4N+1,
b +4d*=aN-3

= ¥ (- X (-

b +4d*=4an-3 4a%+c*=4N+1

ir(4N = 3)r(4N + 1),
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since b and ¢ are both odd. Hence f = }{f, + f,} = §7(4N — 3)r(4N + 1).
Putting together cases 1 and 2, we finally get that the desired sum is
% Y r(N)H(N-1)+ % Y r(4N - 3)r(4N + 1);
N<(x+2)/4 N<(x+1)/4

and by Lemmas 1 and 2, this becomes
1-8x/4+ % -8x+o(x)=2x+ o(x),
the desired result. This completes the proof.
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