AN ASYMPTOTIC RESULT FOR SUBGROUPS OF SL(2, Z) OF LEVEL 2

BY

MORRIS NEWMAN

In memoriam Irving Reiner

Introduction

Let $\Gamma = SL(2, \mathbb{Z})$. Let E stand for the euclidean matrix norm, so that if

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma,$$

then

$$E(A)^2 = a^2 + b^2 + c^2 + d^2.$$

In a previous paper [2] the author considered the problem of determining the number of solutions $N(\Gamma, x)$ of the inequality $E(A)^2 \le x$, $A \in \Gamma$. It was shown in [2] that $N(\Gamma, x) \sim 6x$; that is, $N(\Gamma, x)/x$ approaches 6 as x approaches ∞ . This result also appears as Exercise 8, p. 267, of [3]. Furthermore, the following conjecture was made in [2]:

Conjecture. Let G be a subgroup of Γ of finite index μ . Let N(G, x) be the number of solutions of the inequality $E(A)^2 \le x$, $A \in G$. Then $N(G, x) \sim (6/\mu)x$.

The purpose of this note is to prove the conjecture for all subgroups of Γ of level 2; that is, for all subgroups of Γ containing the principal congruence subgroup $\Gamma(2)$, which consists of all matrices $A \in \Gamma$ such that $A \equiv I \mod 2$. $\Gamma(2)$ is a normal subgroup of Γ of index 6, and $\Gamma/\Gamma(2)$ is isomorphic to the symmetric group S_3 . Thus if G is any proper subgroup of Γ containing $\Gamma(2)$, $G/\Gamma(2)$ is either the trivial group, the cyclic group C_3 .

Received July 6, 1987.

© 1988 by the Board of Trustees of the University of Illinois

Manufactured in the United States of America

The principal analytic result required is a theorem of T. Estermann [1], which we state as a lemma:

LEMMA 1 (Estermann). For any positive ε and any positive integer k,

(1)
$$\sum_{1 \le h \le n} r(h)r(h+k) = c_k n + O(n^{\alpha}\log^{\beta} n), \quad \alpha = 11/12, \beta = 17/6 + \varepsilon,$$

where

$$c_k = 8 \sum_{d|k} (-1)^{d+k} d/k.$$
 (2)

Here r(n) is the number of representations of n as the sum of 2 squares, and is the coefficient of x^n in the power series for $\theta^2(x)$, where $\theta(x)$ is the theta-function $\theta(x) = \sum_{-\infty}^{\infty} x^{n^2}$. We also require the function $r^*(n)$, which is the coefficient of x^n in the power series for $\theta(x)\theta(-x)$. This function satisfies

$$r^*(n) = 0$$
, $n \text{ odd}$, $-r(n)$, $n \equiv 2 \mod 4$, $r(n/4)$, $n \equiv 0 \mod 4$. (3)

We also note that

$$r(4n) = r(n), \quad r(4n+2) = r(2n+1), \quad r(n) = 0 \text{ if } n \equiv 3 \mod 4.$$
 (4)

The full error term of (1) will not be required; all that is needed is the fact that it is o(n).

The theorem and its proof

We will prove:

THEOREM. Let G be a subgroup of Γ of level 2 and index μ . Let N(G, x) denote the number of solutions of $E(A)^2 \le x$, $A \in G$. Then $N(G, x) \sim (6/\mu)x$.

Note that $6/\mu$ is the order of $G/\Gamma(2)$.

Proof. We break the proof up into cases, depending on the value of μ . The case $\mu = 3$ is the hardest, and depends (in part) on the case $\mu = 6$, so this will be done last.

- (i) $\mu = 1$. Then $G = \Gamma$, and the theorem has already been proved in [2] for this case.
- (ii) $\mu = 2$. Then $G/\Gamma(2)$ is isomorphic to C_3 and $G = \Gamma^2$, the subgroup of Γ generated by the squares of all elements of Γ . Γ^2 is a normal subgroup of Γ

(in fact, a fully invariant subgroup of Γ), and

$$\Gamma = \Gamma^2 + T\Gamma^2, \quad T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

is a left coset decomposition for Γ modulo Γ^2 . If we now note that for any matrix $A \in \Gamma$, E(A) = E(TA), the result is a consequence of case (i), since the number of solutions of $E(A)^2 \le x$, $A \in \Gamma^2$, is the same as the number of solutions of $E(A)^2 \le x$, $A \in T\Gamma^2$; and both together constitute the number of solutions of $E(A)^2 \le x$, $A \in \Gamma$. It follows that

$$N(\Gamma^2, x) = N(\Gamma, x)/2 \sim 3x,$$

the desired result.

(iii) $\mu = 6$. Then $G = \Gamma(2)$. Let S(G, n) denote the number of solutions of $E(A)^2 = n$, $A \in G$. Then $S(\Gamma(2), n)$ is just the number of solutions of

$$a^2 + b^2 + c^2 + d^2 = n$$
, $ad - bc = 1, b, c$ even. (5)

As in [2], put A = a + d, D = a - d, B = b + c, C = b - c. Then

$$A^2 + C^2 = n + 2$$
, $B^2 + D^2 = n - 2$, A, B, C, D even. (6)

Conversely, if A, B, C, D satisfy (6) then

$$a = (A + D)/2$$
, $b = (B + C)/2$, $c = (B - C)/2$, $d = (A - D)/2$

are integers satisfying (5). Since A, B, C, D are even, we may write

$$A = 2A_0, B = 2B_0, C = 2C_0, D = 2D_0,$$

so that

$$a = A_0 + D_0, b = B_0 + C_0, c = B_0 - C_0, d = A_0 - D_0.$$

Then (6) becomes

$$A_0^2 + C_0^2 = (n+2)/4$$
, $B_0^2 + D_0^2 = (n-2)/4$, $B_0 + C_0$ even,
 $A_0 + D_0$ odd.

Thus for solutions to exist at all, n = 4N + 2.

Since $A_0 + D_0$ odd follows from the facts that $B_0 + C_0$ is even and

$$A_0^2 + B_0^2 + C_0^2 + D_0^2 = n/2 = 2N + 1$$

we need the number of solutions

$$A_0^2 + C_0^2 = N + 1$$
, $B_0^2 + D_0^2 = N$, $B_0 \equiv C_0 \mod 2$.

This is the coefficient of $x^{N+1}y^N$ in the power series

$$\sum_{a,b,c,d} \frac{1}{2} (1 + (-1)^{b+c}) x^{a^2 + c^2} y^{b^2 + d^2}$$

$$= \frac{1}{2} \{ \theta^2(x) \theta^2(y) + \theta(x) \theta(-x) \theta(y) \theta(-y) \}.$$

This readily implies that the number of solutions $S(\Gamma(2), n) = S(\Gamma(2), 4N + 2)$ is given by

$$\frac{1}{2}\{r(N+1)r(N)+r^*(N+1)r^*(N)\}.$$

But $r^*(N+1)r^*(N) = 0$, since one of N, N+1 is odd (formula (3)). It follows that the number of solutions is $\frac{1}{2}(r(N+1)r(N))$. Hence

$$N(\Gamma(2), x) = \frac{1}{2} \sum_{4N+2 \le x} r(N+1)r(N)$$

$$= \frac{1}{2} \sum_{N \le (x-2)/4} r(N+1)r(N)$$

$$= \frac{1}{2}c_1x/4 + o(x)$$

$$= x + o(x),$$

by Lemma 1. This completes the proof in this case.

(iv) $\mu = 3$. There are 4 subgroups of Γ of index 3; namely, $\Gamma_0(2)$, $\Gamma^0(2)$, K, Γ^3 . Here $\Gamma_0(2)$ is the subgroup consisting of all elements $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of Γ such that $c \equiv 0 \mod 2$; $\Gamma^0(2)$ is the subgroup consisting of all elements $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ of Γ such that $b \equiv 0 \mod 2$; K is the "theta subgroup", generated by

$$T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad \text{and} \quad S^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix};$$

and Γ^3 is the fully invariant subgroup generated by the cubes of all elements of Γ . However, Γ^3 does not contain $\Gamma(2)$ as a subgroup, and so must be omitted. The remaining 3 are conjugate groups. The proof for $\Gamma^0(2)$ is precisely similar to the proof for $\Gamma_0(2)$, and will be omitted. It is thus only necessary to prove the result for $\Gamma_0(2)$ and K.

We start with K. K has the following coset decomposition modulo $\Gamma(2)$:

$$K = \Gamma(2) + T\Gamma(2), \quad T = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

We now argue along the lines of case (ii). The number of solutions of $E(A)^2 \le x$, $A \in \Gamma(2)$, is the same as the number of solutions of $E(A)^2 \le x$, $A \in T\Gamma(2)$; and these together constitute the number of solutions of $E(A)^2 \le x$, $A \in K$. Since $N(\Gamma(2), x) = x + o(x)$ by case (iii), it follows that

$$N(K, x) = 2N(\Gamma(2), x) = 2x + o(x),$$

the desired result.

We now come to the last case: $G = \Gamma_0(2)$. We first prove:

LEMMA 2.

$$\sum_{n \le (x-1)/4} r(4n+1)r(4n+5) = 8x + o(x).$$

Proof. By Lemma 1, we have

$$f = \sum_{n \le x} r(n)r(n+4) = c_4x + o(x) = 10x + o(x).$$

Considering *n* modulo 4, we find that $f = f_0 + f_1 + f_2 + f_3$, where

$$f_i = \sum_{n \le (x-i)/4} r(4n+i)r(4n+i+4), \quad i = 0,1,2,3.$$

We have $f_0 = \sum_{n \le x/4} r(4n)r(4n+4) = \sum_{n \le x/4} r(n)r(n+1)$, because of (4). Hence $f_0 = c_1x/4 + o(x) = 2x + o(x)$, by (1). Next, we have

$$f_1 = \sum_{n \le (x-1)/4} r(4n+1)r(4n+5),$$

$$f_2 = \sum_{n \le (x-2)/4} r(4n+2)r(4n+6) = \sum_{n \le (x-2)/4} r(2n+1)r(2n+3),$$

$$f_3 = \sum_{n \le (x-3)/4} r(4n+3)r(4n+7).$$

But one of 2n + 1, 2n + 3 must be congruent to 3 modulo 4, and 4n + 3 is

congruent to 3 modulo 4. Hence because of (4), f_2 and f_3 are both 0. Thus

$$f = f_0 + f_1$$
, $f_1 = f - f_0 = 10x + o(x) - \{2x + o(x)\} = 8x + o(x)$.

This completes the proof of the lemma.

Now let $S(\Gamma_0(2), n)$ be the number of solutions of $E(A)^2 = n$, $A \in \Gamma_0(2)$. This is just the number of solutions of

$$a^2 + b^2 + c^2 + d^2 = n$$
, $ad - bc = 1$, c even.

As before, set A = a + d, D = a - d, B = b + c, C = b - c, so that

$$a = (A + D)/2$$
, $b = (B + C)/2$, $c = (B - C)/2$, $d = (A - D)/2$.

Then because a, d are odd and c is even, we have $B \equiv C \mod 4$, and A and D even. Then arguing as before, $S(\Gamma_0(2), n)$ is just the number of solutions of

$$A^2 + C^2 = n + 2$$
, $B^2 + D^2 = n - 2$, $B \equiv C \mod 4$, A, D even.

We note that $C \equiv n \mod 2$. Put $A = 2A_0$, $D = 2D_0$, so that

$$4A_0^2 + C^2 = n + 2$$
, $B^2 + 4D_0^2 = n - 2$.

There are 2 cases:

Case 1. n even. Then $C = 2C_0$, $B = 2B_0$,

$$A_0^2 + C_0^2 = (n+2)/4$$
, $B_0^2 + D_0^2 = (n-2)/4$, $B_0 \equiv C_0 \mod 2$.

Thus n = 4N - 2 and

$$A_0^2 + C_0^2 = N$$
, $B_0^2 + D_0^2 = N - 1$, $B_0 \equiv C_0 \mod 2$.

The number of solutions is

$$\frac{1}{2} \sum_{a^2+c^2=N, b^2+d^2=N-1} (1+(-1)^{b+c})$$

$$= \frac{1}{2} \{ r(N)r(N-1) + r^*(N)r^*(N-1) \} = \frac{1}{2} r(N)r(N-1),$$

since one of N, N-1 is odd.

Case 2. n odd. Then B and C are odd, which implies that n = 4N - 1. As before, put $A = 2A_0$, $D = 2D_0$. We have

$$4A_0^2 + C^2 = 4N + 1$$
, $B^2 + 4D_0^2 = 4N - 3$, $B \equiv C \mod 4$. (7)

We note that

$$\frac{1}{4} \{ 1 + i^t + i^{2t} + i^{3t} \} = 1 \quad \text{if } t \equiv 0 \mod 4$$
= 0 otherwise

Using this, the number of solutions of (7) becomes

$$f = \frac{1}{4} \sum_{\substack{4a^2 + c^2 = 4N + 1, \\ b^2 + 4d^2 = 4n - 3}} \left\{ 1 + i^{b-c} + i^{2(b-c)} + i^{3(b-c)} \right\}$$
$$= \frac{1}{4} \left(f_0 + f_1 + f_2 + f_3 \right), \text{ say.}$$

We have

$$f_0 = \sum_{\substack{4a^2 + c^2 = 4N + 1, \\ b^2 + 4d^2 = 4N - 3}} 1 = \frac{1}{4}r(4N + 1)r(4N - 3),$$

since

$$\sum_{4u^2+v^2=2M+1} 1 = \frac{1}{2} \sum_{u^2+v^2=2M+1} 1.$$

Next,

$$f_1 = \sum_{\substack{4a^2+c^2=4N+1,\\b^2+4d^2=4N-3}} i^{b-c} = \sum_{\substack{b^2+4d^2=4N-3\\}} i^b \sum_{\substack{4a^2+c^2=4N+1\\}} i^{-c}.$$

Since b is odd, it is readily seen that the contributions to the first factor for b positive and for b negative are negatives of each other, which implies that it is 0. Thus $f_1 = 0$ as well. A similar argument shows that f_3 is also 0. As for f_2 , we have

$$f_{2} = \sum_{\substack{4a^{2} + c^{2} = 4N + 1, \\ b^{2} + 4d^{2} = 4N - 3}} (-1)^{b-c}$$

$$= \sum_{\substack{b^{2} + 4d^{2} = 4n - 3}} (-1)^{b} \sum_{\substack{4a^{2} + c^{2} = 4N + 1}} (-1)^{c}$$

$$= \frac{1}{4}r(4N - 3)r(4N + 1),$$

since b and c are both odd. Hence $f = \frac{1}{4} \{ f_0 + f_2 \} = \frac{1}{8} r (4N - 3) r (4N + 1)$. Putting together cases 1 and 2, we finally get that the desired sum is

$$\frac{1}{2} \sum_{N \le (x+2)/4} r(N) r(N-1) + \frac{1}{8} \sum_{N \le (x+1)/4} r(4N-3) r(4N+1);$$

and by Lemmas 1 and 2, this becomes

$$\frac{1}{2} \cdot 8x/4 + \frac{1}{8} \cdot 8x + o(x) = 2x + o(x),$$

the desired result. This completes the proof.

REFERENCES

- T. ESTERMANN, An asymptotic formula in the theory of numbers, Proc. London Math. Soc., Vol. 34 (1932), pp. 280-292.
- 2. M. NEWMAN, Counting modular matrices with specified euclidean norm, J. Combin. Theory Ser. A, to appear.
- A. Terras, Harmonic analysis on symmetric spaces and applications I, Springer-Verlag, New York, 1985.

University of California Santa Barbara, California