MINIMAL ASYMPTOTIC BASES WITH PRESCRIBED DENSITIES

BY

PAUL ERDÖS AND MELVYN B. NATHANSON¹

Dedicated to the memory of Irving Reiner

Let $h \ge 2$. The set A of integers is an asymptotic basis of order h if every sufficiently large integer can be represented as the sum of h elements of A. If A is an asymptotic basis of order h such that no proper subset of A is an asymptotic basis of order h, then the asymptotic basis A is minimal. It follows that if A is minimal, then for every element $a \in A$ there must be infinitely many positive integers n, each of whose representations as a sum of h elements of A includes the number a as a summand. Stöhr [6] introduced the concept of minimal asymptotic basis, and Härtter [2] proved that minimal asymptotic bases of order h exist for all $h \ge 2$. Erdös and Nathanson [1] have reviewed recent progress in the study of minimal asymptotic bases.

For any set A of integers, the counting function of A, denoted A(x), is defined by $A(x) = \operatorname{card}(\{a \in A | 1 \le a \le x\})$. If A is an asymptotic basis of order h, then $A(x) > c_1 x^{1/h}$ for some constant $c_1 > 0$ and all x sufficiently large. For every $h \ge 2$, Nathanson [3], [4] has constructed minimal asymptotic bases that are "thin" in the sense that $A(x) < c_2 x^{1/h}$ for some $c_2 > 0$ and all x sufficiently large.

Let A be a set of integers. The lower asymptotic density of A, denoted $d_L(A)$, is defined by $d_L(A) = \liminf_{x \to \infty} A(x)/x$. If $\alpha = \lim_{x \to \infty} A(x)/x$ exists, then α is called the asymptotic density of A, and denoted d(A). Nathanson and Sárközy [5] proved that if A is a minimal asymptotic basis of order h, then $d_L(A) \le 1/h$. In this paper we construct for each $h \ge 2$ a class of minimal asymptotic bases A of order h with d(A) = 1/h. This result is best possible in the sense that it gives the "fattest" examples of minimal asymptotic bases. We also prove that for every $\alpha \in (0, 1/(2h-2))$ there exists a minimal asymptotic basis A of order h with $d(A) = \alpha$.

Received January 4, 1988.

¹The research of the second author was supported in part by a grant from the PSC-CUNY Research Award Program of the City University of New York.

DEFINITIONS. Let N denote the set of nonnegative integers. Let A be a subset of N. The h-fold sumset hA is the set of all integers of the form $a_1 + a_2 + \cdots + a_h$, where $a_i \in A$ for $i = 1, 2, \dots, h$. Let

$$n = a_1 + \cdots + a_h = a_1' + \cdots + a_h'$$

be two representations of n as a sum of h elements of A. These representations are disjoint if $a_i \neq a'_i$ for all i, j = 1, ..., h.

The set B of nonnegative integers is a B_k -sequence if it satisfies the following property: If $u_i, v_i \in B$ for i = 1, ..., k with $u_1 \le \cdots \le u_k$ and $v_1 \le \cdots \le v_k$, and if $u_1 + \cdots + u_k = v_1 + \cdots + v_k$, then $u_i = v_i$ for i = 1, ..., k. If B is a B_k -sequence, then B is also a B_i -sequence for every j < k.

Let |S| = card(S) denote the cardinality of the set S. Let $\{x\}$ denote the fractional part of the real number x.

LEMMA. Let $k \ge 2$, and let $B = \{b_i\}_{i=1}^{\infty}$ satisfy $b_1 > 0$ and $b_{i+1} > k \cdot b_i$ for all $i \ge 1$. Then:

- (0.1) B is a B_k -sequence.
- $(0.2) \quad B(x) = O(\log x).$
- (0.3) If $\delta \in (0,1)$ and $k^{-t} \leq \delta$, then $B(x) \leq B(\delta x) + t$ for all $x \geq 0$. In particular, $B(x) \leq B(x/k) + 1$.

Proof. Let $u_i, v_i \in B$ for i = 1, ..., j, where $j \le k$, $u_1 \le \cdots \le u_j$, and $v_1 \le \cdots \le v_i$. Suppose that

$$u_1 + \cdots + u_j = v_1 + \cdots + v_j.$$

Let $v_j = \max\{u_j, v_j\}$. If $u_j < v_j$, then

$$u_1 + \cdots + u_j \le j \cdot u_j \le k \cdot u_j < v_j \le v_1 + \cdots + v_j$$

which is absurd. Therefore, $u_i = v_i$, and so

$$u_1 + \cdots + u_{j-1} = v_1 + \cdots + v_{j-1}.$$

It follows that $u_i = v_i$ for i = 1, ..., j. In particular, B is a B_k -sequence. This proves (0.1).

Note that $b_j > k \cdot b_{j-1} > k^2 \cdot b_{j-2} > \cdots > k^{j-1} \cdot b_1 = c \cdot k^j$, where $c = b_1/k$. Let $x \ge c \cdot k$. Choose j such that $c \cdot k^j \le x < c \cdot k^{j+1}$. Then

$$B(x) \le j \le \log(x/c)/\log k \le c'\log x$$

for some c' > 0 and x sufficiently large. Thus, $B(x) = O(\log x)$. This proves (0.2).

If
$$x/k < b_1$$
, then $x < k \cdot b_1 < b_2$, and $B(x) \le 1 = B(x/k) + 1$. If $x/k \ge 1$

 b_1 , choose $i \ge 2$ such that $b_{i-1} \le x/k < b_i$. Then $x < k \cdot b_i < b_{i+1}$ and so

$$B(x) \le i = B(x/k) + 1.$$

Let $1/k^t \leq \delta$. Then

$$B(x) \le B(x/k) + 1 \le B(x/k^2) + 2 \le \cdots \le B(x/k^t) + t \le B(\delta x) + t.$$

This proves (0.3).

THEOREM 1. Let $h \ge 2$. Let A be an asymptotic basis of order h of the form $A = B \cup C$, where B and C are disjoint sets of nonnegative integers. Let r(n) denote the cardinality of the largest set of pairwise disjoint representations of n in the form

$$n = b'_1 + b'_2 + \cdots + b'_{h-1} + c, \tag{1}$$

where $c \in C$, $b'_1, \ldots, b'_{h-1} \in B$, and $b'_1 < b'_2 < \cdots < b'_{h-1}$. Let W be the set of all integers $w \in hA$ such that if $w = a_1 + \cdots + a_h$ with $a_i \in A$ for $i = 1, \ldots, h$, then $a_i = c \in C$ for at most one j. Let

$$\Omega(n) = \{c \in C | n - c \in (h-1)B\}.$$

Suppose that for some $\delta \in (0,1)$ the following conditions are satisfied:

- (1.1) $B = \{b_i\}_{i=1}^{\infty}$, where $b_{i+1} > (2h-2)b_i$ for $i \ge 1$.
- $(1.2) \quad r(n) \to \infty \text{ as } n \to \infty.$
- (1.3) For every $c \in C$ there exist infinitely many choices of $b'_1, \ldots, b'_{h-1} \in B$ such that $w = b'_1 + b'_2 + \cdots + b'_{h-1} + c \in W \setminus B$ and $c' > \delta w$ for all $c' \in \Omega(w) \setminus \{c\}$.
- (1.4) For every $b_1' \in B$, at least one of the following holds: (1.4a) there exist infinitely many choices of $b_2', \ldots, b_{h-1}' \in B$ and $c \in C$ such that $w = b_1' + b_2' + \cdots + b_{h-1}' + c \in W \setminus hB$ and $c' > \delta w$ for all $c' \in \Omega(w) \setminus \{c\}$; (1.4b) there exist infinitely many choices of $b_2', \ldots, b_h' \in B$ such that $w = b_1' + b_2' + \cdots + b_h' \in W$ and $c' > \delta w$ for all $c' \in \Omega(w)$.

Then there exists $C' \subseteq C$ such that $A' = B \cup C'$ is a minimal asymptotic basis of order h and $(C \setminus C')(x) \le 2B(x)^{h-1}$ for $x \ge w_1$. In particular, $d(C \setminus C') = 0$ and $d_L(A') = d_L(A)$.

Proof. We shall construct the minimal asymptotic basis A' by induction. Choose t such that $(2h-2)^{-t} \le \delta$. Choose N_1 such that

$$(B(n) + t)^{h-1} < (3/2)B(n)^{h-1}$$
 (2)

and $r(n) \ge 2$ for all $n \ge N_1$. Let $A_0 = A$ and $C_0 = C$. Choose $c \in C_0$. Let

 $a_1 = c$. By condition (1.3), we can choose $b'_1, \ldots, b'_{h-1} \in B$ such that

$$w_1 = b_1' + b_2' + \dots + b_{h-1}' + c \in W \setminus hB, \tag{3}$$

and $w_1 \ge N_1$ and $c' > \delta w_1$ for all $c' \in \Omega(w_1) \setminus \{c\}$. Let $F_1 = \Omega(w_1) \setminus \{c\}$. Let $C_1 = C \setminus F_1$ and let $A_1 = B \cup C_1$. Then

$$C \setminus C_1 = F_1 \subseteq (\delta w_1, w_1]. \tag{4}$$

If $c' \in F_1$, then there exist integers $v_i' \in B$ for i = 1, ..., h - 1 such that $w_1 = v_1' + \cdots + v_{h-1}' + c'$. Since $v_i' \le w_1$, it follows that there are at most $B(w_1)$ choices for each v_i' , and so

$$(C \setminus C_1)(x) = |F_1| \le B(w_1)^{h-1}$$
 (5)

for $x \ge w_1$. Since $w_1 \in W \setminus hB$, it follows that, except for permutations of the summands, (3) is the unique representation of w_1 as a sum of h elements of A_1 .

Let $n \ge N_1$ and $n \ne w_1$. Since $r(n) \ge 2$ for $n \ge N_1$, it follows that n has at least two disjoint representations of the form (1) of hA. That is, there exist integers u_i' and $u_i'' \in B$ for i = 1, ..., h - 1, and $c', c'' \in C$ such that

$$n = u_1' + \dots + u_{h-1}' + c' \tag{6}$$

and

$$n = u_1'' + \cdots + u_{h-1}'' + c'', \tag{7}$$

where $c' \neq c''$ and $u'_i \neq u''_j$ for all i, j = 1, ..., h - 1. Either $c' \in C_1$ or $c'' \in C_1$. If not, then

$$c' \in \Omega(w_1) \setminus \{c\}$$
 and $c'' \in \Omega(w_1) \setminus \{c\}$,

and so there exist integers v_i' and $v_i'' \in B$ for i = 1, ..., h - 1 such that

$$w_1 = v_1' + \dots + v_{h-1}' + c' \tag{8}$$

and

$$w_1 = v_1'' + \dots + v_{h-1}'' + c''. \tag{9}$$

Subtracting (8) from (6) and (9) from (7), we get two representations of $n - w_1$, and these yield the relation

$$u_1'' + \cdots + u_{h-1}' + v_1'' + \cdots + v_{h-1}'' = u_1'' + \cdots + u_{h-1}'' + v_1' + \cdots + v_{h-1}'.$$

By Lemma 1, the growth condition (1.1) on the elements of B implies that B is a B_{2h-2} -sequence; hence

$$\{u'_1,\ldots,u'_{h-1},v''_1,\ldots,v''_{h-1}\}=\{u''_1,\ldots,u''_{h-1},v'_1,\ldots,v'_{h-1}\}.$$

Since the representations (6) and (7) are disjoint, it follows that $u'_i \neq u''_i$ for all i, j = 1, ..., h - 1, and so

$$\{u'_1,\ldots,u'_{h-1}\}\subseteq\{v'_1,\ldots,v'_{h-1}\}.$$

Since $u_1' < \cdots < u_{h-1}'$, it follows that

$$\{u'_1,\ldots,u'_{h-1}\}=\{v'_1,\ldots,v'_{h-1}\}.$$

Equations (6) and (8) imply that $n = w_1$, which is false. It follows that either $c' \notin F_1 = \Omega(w_1) \setminus \{c\}$ or $c'' \notin F_1 = \Omega(w_1) \setminus \{c\}$, and so

$$n \in h(B \cup C_1) = hA_1$$
 for all $n \ge N_1$.

Let $k \ge 2$. Suppose that for each j < k we have constructed

- an integer $w_i \in W$ with $w_{i-1} < \delta w_i$ for $2 \le j < k$,
- a finite set $F_j \subseteq C \cap (\delta w_j, w_j]$ with $|F_j| \leq B(w_j)^{h-1}$, a set $C_j = C \setminus (F_1 \cup \cdots \cup F_j)$ and an integer $a_j \in A_j = B \cup C_j$ such that w_i has a unique representation as a sum of h elements of A_i , and a_i is a summand that is used in this representation, and $n \in hA_i$ for all $n \ge N_1$.

To perform the induction, we choose N_k so large that

$$\begin{array}{ll} (1.8) & N_k > w_{k-1}, \\ (1.9) & B(N_k)^{h-1} > 4B(w_{k-1})^{h-1}, \text{ and} \\ (1.10) & r(n) \geq 2 + \sum_{j=1}^{k-1} |F_j| = 2 + |A \setminus A_{k-1}| \text{ for } n \geq N_k. \end{array}$$

Let $a_k \in A_{k-1} = B \cup C_{k-1}$. There are two cases.

Case 1. Suppose $a_k = c \in C_{k-1}$. By condition (1.3) of the theorem, there exist integers $b'_i \in B$ for i = 1, 2, ..., h - 1 such that

$$b'_1+b'_2+\cdots+b'_{h-1}+c=w_k\in W\setminus hB,$$

where $\delta w_k > N_k$ and $c' > \delta w_k$ for all $c' \in F_k = \Omega(w_k) \setminus \{c\}$. Let

$$C_k = C_{k-1} \setminus F_k$$
 and $A_k = B \cup C_k$.

Then the element w_k has a unique representation (up to permutations of the summands) as a sum of h elements of A_k , and the integer $a_k = c$ is one of the summands in this representation.

Case 2. Suppose $a_k = b_1' \in B$. If condition (1.4a) is satisfied, there exist integers $b_i' \in B$ for i = 2, 3, ..., h - 1 and $c \in C$ such that

$$b_1' + b_2' + \cdots + b_{h-1}' + c = w_k \in W \setminus hB$$
,

where $\delta w_k > N_k$ and $c' > \delta w_k$ for all $c' \in F_k = \Omega(w_k) \setminus \{c\}$. If condition (1.4b) is satisfied, there exist integers $b_i' \in B$ for i = 2, 3, ..., h such that

$$b_1' + b_2' + \cdots + b_h' = w_k \in W,$$

where $\delta w_k > N_k$ and $c' > \delta w_k$ for all $c' \in F_k = \Omega(w_k)$. With either condition (1.4a) or (1.4b), let $C_k = C_{k-1} \setminus F_k$ and $A_k = B \cup C_k$. Then the element w_k has a unique representation (up to permutations of the summands) as a sum of h elements of A_k , and this representation includes the integer $a_k = b'_1$.

In both cases, $F_k \subseteq C_{k-1} \cap (\delta w_k, w_k]$ and $|F_k| \le B(w_k)^{h-1}$. Let $n \ge N_1$. We shall show that $n \in hA_k$. Since $n \in hA_{k-1}$ and $c' > \delta w_k > N_k > w_{k-1}$ for all $c' \in F_k = A_{k-1} \setminus A_k$, it follows that $n \in hA_k$ for $N_1 \le n \le \delta w_k$. Let $n > \delta w_k$ and $n \ne w_k$. Since $r(n) \ge 2 + |A \setminus A_{k-1}|$ for $n \ge N_k$ by condition (1.10), it follows that n has at least two disjoint representations of the form (1) in hA_{k-1} . That is, there exist integers u_i' and $u_i'' \in B$ for $i = 1, \ldots, h-1$, and $c', c'' \in C_{k-1}$ such that

$$n = u_1' + \cdots + u_{h-1}' + c' \tag{10}$$

and

$$n = u_1'' + \cdots + u_{h-1}'' + c'', \tag{11}$$

where $c' \neq c''$ and $u'_i \neq u''_j$ for all i, j = 1, ..., h - 1. If $c' \in F_k$ and $c'' \in F_k$, then there exist integers v'_i and $v''_i \in B$ for i = 1, ..., h - 1 such that

$$w_k = v_i' + \dots + v_{h-1}' + c' \tag{12}$$

and

$$w_k = v_1'' + \dots + v_{h-1}'' + c''. \tag{13}$$

Subtracting (12) from (10) and (13) from (11), we get two representations of $n - w_k$, and these yield the relation

$$u_1' + \cdots + u_{h-1}' + v_1'' + \cdots + v_{h-1}'' = u_1'' + \cdots + u_{h-1}'' + v_1' + \cdots + v_{h-1}'.$$

Since B is a B_{2h-2} -sequence, the argument used at the beginning of this proof shows that $n \in h(B \cup C_k) = hA_k$. Thus, $n \in hA_k$ for all $n \ge N_1$. This completes the induction.

We now define

$$C' = \bigcap_{k=1}^{\infty} C_k = C \setminus \bigcup_{k=1}^{\infty} F_k$$
 and $A' = B \cup C'$.

Let $n \ge N_1$. Choose $w_k > n$. Then $n \in hA_k$. Since

$$a' > w_k > n$$
 for all $a' \in A_k \setminus A' = \bigcup_{j=k+1}^{\infty} F_j$,

it follows that $n \in hA'$. Thus, A' is an asymptotic basis of order h.

Here is the critical idea in the proof: At the k-th step of the induction, we could choose any element $a_k \in A_k = B \cup C_k$. We must make these choices in such a way that if $a' \in A'$, then $a' = a_k$ for infinitely many k. This implies that for every $a' \in A'$ there are infinitely many integers w_k such that $w_k \in hA'$, but $w_k \notin h(A' \setminus \{a'\})$, and so A' is a minimal asymptotic basis of order h.

Finally, we must prove that for $x \ge w_1$,

$$(C \setminus C')(x) \le 2B(x)^{h-1}. \tag{14}$$

By (5), $(C \setminus C')(w_1) \le B(w_1)^{h-1}$. Suppose that (14) holds for $w_1 \le x \le w_{k-1}$. Since $(C \setminus C') \cap (w_{k-1}, \delta w_k] = \emptyset$, then (14) holds for $x \le \delta w_k$. Let $\delta w_k < x \le w_k$. Then by (1.6), (0.3), (1.9), and (2) we have

$$(C \setminus C')(x) \le (C \setminus C')(w_k) = (C \setminus C')(w_{k-1}) + |F_k|$$

$$\le 2B(w_{k-1})^{h-1} + B(w_k)^{h-1}$$

$$\le 2B(w_{k-1})^{h-1} + (B(\delta w_k) + t)^{h-1}$$

$$\le \frac{1}{2}B(\delta w_k)^{h-1} + \frac{3}{2}B(\delta w_k)^{h-1}$$

$$= 2B(\delta w_k)^{h-1}$$

$$\le 2B(x)^{h-1}.$$

Thus, (14) holds for all $x \ge w_1$. Since the set B is a $B_{(2h-2)}$ -sequence, it follows from the lemma that $B(x) = O(\log x)$, and so $d(C \setminus C') = 0$ and $d_L(A') = d_L(A)$. This completes the proof.

We shall now use Theorem 1 to construct examples of minimal asymptotic bases of order h with prescribed positive densities.

THEOREM 2. Let $h \ge 2$. Let $B = \{b_i\}_{i=1}^{\infty}$ be a set of positive integers such that

- $(2.1) \quad b_{i+1} > (2h-1)b_i \text{ for } i \ge 1,$
- (2.2) $B_0 = \{b_i \in B | b \equiv 0 \pmod{h}\}$ is infinite,
- (2.3) $B_1 = \{b_i \in B | b \equiv 1 \pmod{h}\}$ is infinite,
- (2.4) $B = B_0 \cup B_1$.

Let $C = \{c \ge 0 | c \equiv 0 \pmod{h}\} \setminus B_0$. Then there exists a set $C' \subseteq C$ such that $A' = B \cup C'$ is a minimal asymptotic basis of order h, and d(A') = 1/h.

Proof. The set $A = B \cup C$ is an asymptotic basis of order h, and d(A) = 1/h. We shall show that conditions (1.1)–(1.4) of Theorem 1 are satisfied with $\delta = 1/(h+1)$. Note that condition (1.1) in Theorem 1 follows immediately from condition (2.1) in Theorem 2. The lemma implies that $B(x) = O(\log x)$.

To show condition (1.2), choose a large integer m. Let

$$e \in \{0, 1, \ldots, h-1\}.$$

By (2.2) and (2.3), we can choose m + 1 pairwise disjoint sets

$$\{b_{j,1},\ldots,b_{j,h-1}\}\subseteq B$$

such that $b_{j,1} < \cdots < b_{j,h-1}$ and $b_{j,h-1} < b_{j+1,1}$ for $j = 1, \dots, m$ and

$$e_i = b_{i,1} + \cdots + b_{i,h-1} \equiv e \pmod{h}$$

for j = 1, ..., m + 1. Then $e_1 < \cdots < e_{m+1}$. Choose

$$b_k > \max\{e_1, \ldots, e_{m+1}\}.$$

Let $n \equiv e \pmod{h}$ and $n \ge b_{k+1}$. Then $n - e_j > 0$ and $n - e_j \equiv 0 \pmod{h}$ for $j = 1, \ldots, m+1$. Suppose that $n - e_i = b_u \in B$ and $n - e_j = b_v \in B$ for some i < j. Then $b_u > b_v$ and

$$b_v = n - e_j > b_{k+1} - b_k > b_k > e_j > e_j - e_i = b_u - b_v > b_v$$

which is absurd. Therefore, $n - e_j \in C$ for at least m different e_j , and so $r(n) \ge m$ for all sufficiently large $n \equiv e \pmod{h}$. It follows that $r(n) \to \infty$ as $n \to \infty$, and condition (1.2) is satisfied.

Next we show that (1.3) holds. Since $c \equiv 0 \pmod{h}$ for all $c \in C$, it follows that if $n \equiv h - 1 \pmod{h}$, then $n \in W$. Fix $c \in C$. Choose $b_t \in B$ with $b_t > c$ and $b_t \equiv 1 \pmod{h}$. Let $w = (h - 1)b_t + c$. Then $w \equiv h - 1 \pmod{h}$ and $w \in W$.

We shall prove that $w \in W \setminus hB$. Suppose that there exist $b'_1, \ldots, b'_h \in B$ such that $w = b'_1 + \cdots + b'_h$. Since

$$(h-1)b_t \le w < hb_t \le (2h-2)b_t < b_{t+1},$$

it follows that $b_i' \le b_i$ for all i = 1, ..., h, but $b_i' \ne b_i$ for some i = 1, ..., h. If $b_j' \ne b_i$ for exactly one $j \in \{1, ..., h\}$, then

$$b_i' = c \in B \cap C = \emptyset,$$

which is absurd. If $b'_i \neq b_t$ and $b'_k \neq b_t$, then

$$w = b'_1 + \cdots + b'_h \le (h-2)b_t + 2b_{t-1} < (h-1)b_t \le w,$$

which is also absurd. Therefore, $w \notin hB$.

Let $c' \in \Omega(w) \setminus \{c\}$. Then there exist $b'_i \in B$ for i = 1, ..., h - 1 such that $w = b'_1 + \cdots + b'_{h-1} + c'$ and $b'_i \neq b_i$ for some j. Then $b'_i \leq b_{t-1}$. Since

$$(h-1)b_t \le (h-1)b_t + c = w \le (h-2)b_t + b_{t-1} + c'$$

it follows that

$$c' \ge b_t - b_{t-1} > ((2h-2)/(2h-1))b_t > ((2h-2)/h(2h-1))w \ge \delta w.$$

Thus, condition (1.3) of Theorem 1 holds.

Finally, we consider condition (1.4). Let $b_u \in B = B_0 \cup B_1$. If $b_u \in B_0$, we shall show that (1.4b) holds. Choose $b_t \in B_1$ with $b_t > b_u$. Let

$$w = b_u + (h-1)b_t.$$

Then $w < hb_t < b_{t+1}$. Since $w \equiv h-1 \pmod{h}$, it follows that $w \in W$. Let $c' \in \Omega(w)$. There exist $b'_i \in B$ such that $w = b'_1 + \cdots + b'_{h-1} + c'$, where $b'_i \leq b_t$ for all i and $b'_j \leq b_{t-1}$ for some j. The same argument as above implies that

$$c' > \big((2h-2)/h(2h-1)\big)w \geq \delta w.$$

If $b_u \in B_1$, we shall show that (1.4a) holds. Choose $b_t \in B_1$ with $b_t > b_u$. The interval $(2b_t - b_u, 3b_t - b_u)$ contains $b_t/h + O(1)$ multiples of h, and so $b_t/h + O(\log b_t)$ elements of C. There are at most $B(3b_t)^2 = O(\log^2 b_t)$ integers of the form $b_t + b_t - b_u$ in this interval. It follows that for b_t sufficiently large there exists an integer $c \in C$ such that

$$2b_t < b_u + c < 3b_t$$
 and $b_u + c \notin 2B$.

Let $w = (h-2)b_t + b_u + c$. Then $w \equiv h-1 \pmod{h}$, hence $w \in W$. If $w \in hB$, there exist $b_1', \ldots, b_h' \in B$ such that $b_1' + \cdots + b_h' = w$, but this is impossible, since

$$hb_t < w < (h+1)b_t \le (2h-1)b_t < b_{t+1}.$$

Therefore, $w \in W \setminus hB$.

Let $c' \in \Omega(w) \setminus \{c\}$. There exist b'_1, \ldots, b'_{h-1} such that

$$w = b'_1 + \cdots + b'_{h-1} + c'.$$

Then $b'_i \le b_i$ for i = 1, ..., h - 1 and so

$$c' \ge w - (h-1)b_t > b_t > w/(h+1) = \delta w$$
.

This completes the proof of Theorem 2.

COROLLARY. For every $h \ge 2$ there exists a minimal asymptotic basis A' of order h with asymptotic density d(A') = 1/h.

THEOREM 3. Let $h \ge 2$. For every $\alpha \in (0, 1/(2h-2))$ there exists a minimal asymptotic basis A of order h with asymptotic density $d(A) = \alpha$.

Proof. Let $\alpha \in (0, 1/(2h-2))$. Let $\Theta > 0$ be irrational. Let $B = \{b_i\}_{i=1}^{\infty}$ be a set of positive integers so that $\{b_i\Theta\}$ is dense in the interval (0, 1/(h-1)) and $b_{i+1} > (2h-2)b_i$ for all $i \ge 1$. Let

$$C = \{c \ge 0 | \{c\Theta\} < \alpha\} \setminus B.$$

Let $A = B \cup C$. Then d(B) = 0 and $d(A) = d(C) = \alpha$. We shall prove that A is an asymptotic basis of order h and satisfies conditions (1.1)–(1.4) of Theorem 1 with $\delta = (2h - 3)/h(2h - 2) \le 1/4$.

Clearly, B satisfies (1.1). To show that condition (1.2) holds, we first fix an integer $N > 2/\alpha$. Choose m large. For i = 1, ..., h - 1, and j = 1, ..., m + 1, and k = 1, ..., N, we choose pairwise distinct integers $b(i, j, k) \in B$ such that

- (3.1) $b(1, j, k) < b(2, j, k) < \cdots < b(h 1, j, k)$ for all j, k,
- (3.2) b(h-1, j, k) < b(1, j+1, k) for j = 1, 2, ..., m and all k,
- $(3.3) \quad \{b(i, j, k)\Theta\} \in [(k-1)/((h-1)N), k/((h-1)N)).$

Let

$$s(j,k) = \sum_{i=1}^{h-1} b(i,j,k) \in (h-1)B.$$

Conditions (3.1) and (3.2) imply that $s(1, k) < s(2, k) < \cdots < s(m + 1, k)$. Also, condition (3.3) implies that

$$\{s(j,k)\Theta\} \in [(k-1)/N, k/N) \text{ for } j=1,...,m+1.$$

Let

$$n > 2 \cdot \max\{s(j, k) | j = 1, ..., m + 1, k = 1, ..., N\}.$$

If $\{n\Theta\} \in [1/N, 1)$, then $\{n\Theta\} \in [k/N, (k+1)/N)$ for some k = 1, ..., N-1, and

$$\{(n-s(j,k))\Theta\} \in [0,2/N) \subset [0,\alpha)$$

for j = 1, ..., m + 1. If $\{n\Theta\} \in [0, 1/N)$, then

$$\{(n-s(j,N))\Theta\} \in [0,2/N) \subset [0,\alpha).$$

In all cases, $n - s(j, N) = c_j \in B \cup C$ for j = 1, ..., m + 1, and $c_1 > c_2 > ... > c_{m+1}$. Since $s(j, k) \in (h-1)B$ and since B is a B_h -sequence, it follows that $c_j \in B$ for at most one j, and so n has at least m pairwise disjoint representations of the form (1). Thus, A is an asymptotic basis of order h, and $r(n) \to \infty$ as $n \to \infty$. Condition (1.2) is satisfied.

Let W be the set of all integers $w \in hA$ such that if $w = a_1 + \cdots + a_h$ with $a_i \in A$ for $i = 1, \ldots, h$, then $a_j \in C$ for at most one j. Let

$$\beta = (h-2)/(h-1) + 2\alpha.$$

Since $0 < \alpha < 1/(2h - 2)$, it follows that $0 < \alpha < \beta < 1$. Let n be a positive integer such that $\{n\Theta\} \ge \beta$. We shall show that $n \in W$. If not, then there exists a representation

$$n = b'_1 + \cdots + b'_k + c_{k+1} + \cdots + c_h,$$

where $b_i' \in B$, $c_j \in C$, and $0 \le k \le h-2$. Since $\{b_i'\Theta\} < 1/(h-1)$ and $\{c_j\Theta\} < \alpha$, it follows that

$$\{n\Theta\} < k/(h-1) + (h-k)\alpha$$

$$= h\alpha + k(1/(h-1) - \alpha)$$

$$\leq h\alpha + (h-2)(1/(h-1) - \alpha)$$

$$= (h-2)/(h-1) + 2\alpha$$

$$= \beta,$$

which contradicts $\{n\Theta\} \ge \beta$. Therefore, k = h or k = h - 1, and so $n \in W$.

We now prove that condition (1.3) holds. Let $c \in C$. Then $\{c\Theta\} < \alpha < \beta$. The set $\{\{b_i\Theta\}|b_i \in B\}$ is dense in (0,1/(h-1)), and so there exist infinitely many $b_i \in B$ such that $b_i > c$ and

$$(\beta - \{c\Theta\})/(h-1) < \{b_t\Theta\} < (1 - \{c\Theta\})/(h-1).$$

Let $w = (h-1)b_t + c$. Then

$$\beta < \{w\Theta\} = (h-1)\{b_t\Theta\} + \{c\Theta\} < 1$$

and so $w \in W$. Since $(h-1)b_t \le w < hb_t < b_{t+1}$, it follows that $w \notin hB$, hence $w \in W \setminus hB$. Let $c' \in \Omega(w) \setminus \{c\}$. Then there exist $b'_i \in B$ such that

$$w = b'_1 + \cdots + b'_{h-1} + c',$$

where $b'_i \le b_t$ for all i and $b'_j \le b_{t-1}$ for at least one j. Then

$$(h-1)b_{i} \leq w \leq (h-2)b_{i} + b_{i-1} + c',$$

and so

$$c' \ge b_t - b_{t-1}$$
> $((2h-3)/(2h-2))b_t$
> $((2h-3)/h(2h-2))w$
= δw .

Thus, A satisfies condition (1.3).

We show next that (1.4b) holds. Let $b_u \in B$. Suppose that $\{b_u\Theta\} < \beta$. Note that this is always true for $h \ge 3$, since

$$\{b_u\Theta\} < 1/(h-1) < (h-2)/(h-1) + 2\alpha = \beta.$$

Then there exist infinitely many $b_t \in B$ such that $b_t > b_u$ and

$$(\beta - \{b_u\Theta\})/(h-1) < \{b_t\Theta\} < (1 - \{b_u\Theta\})/(h-1).$$

Let $w = (h-1)b_t + b_u$. It follows as in the case above that $w \in W$ and $c' > \delta w$ for all $c' \in \Omega(w)$.

Finally, we consider the case h = 2 and

$$0 < 2\alpha = \beta \le \{b_u\Theta\} < 1.$$

There exist infinitely many $b_t \in B$ such that $b_t > b_u$ and

$$0 < \{b_{\nu}\Theta\} < 1 - \{b_{\nu}\Theta\}.$$

Let $w = b_t + b_u$. Then $b_t < w < 2b_t < b_{t+1}$, and

$$\beta \le \{b_u\Theta\} < \{w\Theta\} = \{b_t\Theta\} + \{b_u\Theta\} < 1,$$

hence $w \in W$. Let $c' \in \Omega(w)$. Then there exists $b'_1 \in B$ such that $w = b'_1 + c'$, where $b'_1 \leq b_{t-1}$. Then

$$b_t < w \le b_{t-1} + c',$$

and so

$$c' > b_t - b_{t-1} > b_t/2 > w/4 = \delta w.$$

Thus, condition (1.4) is satisfied. This completes the proof of the theorem.

COROLLARY. If A is a minimal asymptotic basis of order 2, then $d_L(A) \le 1/2$. For every $\alpha \in (0, 1/2]$, there exists a minimal asymptotic basis A with d(A) = 1/2.

Proof. This follows immediately from Theorems 2 and 3 and the result of Nathanson and Sárközy [5].

Open problems. It should be possible to generalize the corollary to Theorem 3 to bases of order $h \ge 3$. If $\alpha \in (0, 1/h)$, prove that there exists a minimal asymptotic basis A of order h with asymptotic density α .

The minimal asymptotic basis $A = \{a_i\}_{i=1}^{\infty}$ of order 2 and density 1/2 constructed in Theorem 2 has the property that $a_{i+1} - a_i \le 4$ for all i and $a_{i+1} - a_i = 4$ for infinitely many i. It is easy to show that there does not exist a minimal asymptotic basis A of order 2 with $\limsup(a_{i+1} - a_i) = 2$. Does there exist a minimal asymptotic basis A of order 2 with $\limsup(a_{i+1} - a_i) = 3$?

REFERENCES

- 1. P. ERDÖS and M.B. NATHANSON, "Problems and results on minimal bases in additive number theory" in *Number theory*, New York, 1985–86, Lecture Notes in Mathematics, vol. 1240, Springer-Verlag, New York, 1987, pp. 87–96.
- E. HÄRTTER, Ein Beitrag zur Theorie der Minimalbasen, J. Reine Angew. Math., vol. 196 (1956), pp. 170-204.
- 3. M.B. NATHANSON, Minimal bases and maximal nonbases in additive number theory, J. Number Theory, vol. 6 (1974), pp. 324–333.
- 4. _____, Minimal bases and powers of 2, Acta Arith., vol. 51 (1988), pp. 95-102.
- M.B. NATHANSON and A. SARKÖZY, On the maximum density of minimal asymptotic bases, Proc. Amer. Math. Soc., to appear.
- A. STÖHR, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe, II, J. Reine Angew. Math, vol. 194 (1955), pp. 111-140.

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, HUNGARY

LEHMAN COLLEGE OF THE CITY UNIVERSITY OF NEW YORK

NEW YORK