A THEOREM ON MODULAR ENDOMORPHISM RINGS

 \mathbf{BY}

J.A. GREEN

In memory of Irving Reiner

1. Introduction

The object of this note is to present a new version¹ (Theorem (4.2)) of R. Brauer's well-known "reciprocity theorem" for modular decomposition numbers [2, p. 257], [4, p. 434], and to show its application to a theorem of G.D. James (see Section 5).

Let R be a complete discrete valuation ring with quotient field K, maximal ideal πR , and residue class field $F = R/\pi R$. Both K and F can be regarded as R-modules. If k is one of K, F, and if M is any object which (like Λ and X, see below) is a free, finitely-generated R-module, we shall write kM for the k-space $k \otimes_R M$, and $\theta_k : M \to kM$ for the R-map which takes $m \to 1_k \otimes m$ ($m \in M$). The map θ_K is injective, and may be used to identify M with a sub-R-module of kM. The map θ_F is surjective and has kernel πM ; hence $FM \cong M/\pi M$. It is clear that

$$\dim_{\kappa} KM = \dim_{\kappa} FM,$$

both sides of (1.1) being equal to the R-rank of M.

Now let Λ be an R-order, i.e., Λ is an R-algebra with 1, which is free and finitely-generated as R-module. Then $k\Lambda$ is naturally a k-algebra ($k \in \{K, F\}$); Λ is usually regarded as a subring of $K\Lambda$ via θ_K : $\Lambda \to K\Lambda$. A (left) Λ -lattice is, by definition, a (left) Λ -module X which is free and finitely-generated as R-module. Then kX is naturally a finitely-generated (left) $k\Lambda$ -module.

We shall need the following notation and terminology.

Received October 8, 1987.

¹In the original version of this paper, Theorem (4.2) was described as a "generalization" of Brauer's theorem. However, E.C. Dade has kindly pointed out that Theorem (4.2) is deducible from Brauer's formula (1.3). I am indebted to Professor Dade for permission to use his proof of Theorem (4.2), which is shorter than mine.

Notation. If X, Y are Λ -lattices, then $(Y, X)_R$, $(Y, X)_\Lambda$, E(Y) denote $\operatorname{Hom}_R(Y, X)$, $\operatorname{Hom}_\Lambda(Y, X)$, $\operatorname{End}_\Lambda(Y)$, respectively. If $k \in \{K, F\}$ and if X', Y' are $k\Lambda$ -modules, then $(Y', X')_k$, $(Y', X')_{k\Lambda}$, E(Y') denote $\operatorname{Hom}_k(Y', X')$, $\operatorname{Hom}_{k\Lambda}(Y', X')$, $\operatorname{End}_{k\Lambda}(Y')$, respectively; also $e(Y') := \dim_k E(Y')$.

Components. A Λ -lattice Y_1 is said to be a component of Y, if it is isomorphic to a direct Λ -summand of Y. A similar definition holds for components of $k\Lambda$ -modules.

R-forms. If **X** is any finitely-generated $K\Lambda$ -module, it is always possible to find a Λ -lattice X such that $KX \cong \mathbf{X}$ as $K\Lambda$ -modules; such a Λ -lattice X is called an *R-form* of **X**. (See [4], pp. 409, 410, or [12], p. 55. If X is contained in **X**, Curtis and Reiner call it a *full* Λ -lattice in **X**.)

From now on we assume that $K\Lambda$ is a semisimple K-algebra. Let $\mathbf{X}_1,\ldots,\mathbf{X}_t$ be a full set of simple (= irreducible) left $K\Lambda$ -modules, and let E_1,\ldots,E_a be a full set of simple left $F\Lambda$ -modules. Take fixed suffices $i\in\{1,\ldots,t\}$, $\alpha\in\{1,\ldots,a\}$. We choose an K-form K-form K-form K-form K-form K-form K-form this means that K-form the full set of the left K-module form the left K-module form the left form the left form that K-form the left form the left form the left form the left form that K-form the left form that K-form the left form the

Brauer's proof. It will be useful to review Brauer's proof of his theorem. This rests on the equation

(1.2)
$$\dim_{K}(K\Lambda_{\alpha}, \mathbf{X}_{i})_{K\Lambda} = \dim_{F}(F\Lambda_{\alpha}, FX_{i})_{F\Lambda}$$

(see [2], (8), p. 257). The left side of (1.2) is easily calculated using Schur's lemma, since the $K\Lambda$ -module $K\Lambda_{\alpha}$ is semisimple: it is equal to $\delta_{i\alpha}^*.e(\mathbf{X}_i)$, where $\delta_{i\alpha}^*$ denotes the multiplicity of \mathbf{X}_i as component of $K\Lambda_{\alpha}$, and $e(\mathbf{X}_i)$:= $\dim_K E(\mathbf{X}_i)$ ($E(\mathbf{X}_i) := \operatorname{End}_{K\Lambda}(\mathbf{X}_i)$). Since $F\Lambda_{\alpha}$ is a projective cover of E_{α} , we may calculate also the right side of (1.2) [3, Thm. (54.19), p. 376]: it is equal to $\delta_{i\alpha}.e(E_{\alpha})$, where $\delta_{i\alpha}$ denotes the multiplicity of E_{α} as composition factor of the $F\Lambda$ -module FX_i , and $e(E_{\alpha}) := \dim_F E(E_{\alpha})$ ($E(E_{\alpha}) := \operatorname{End}_{F\Lambda}(E_{\alpha})$). Therefore (1.2) gives Brauer's "reciprocity theorem"

$$(1.3) \quad \delta_{i\alpha}^*.e(\mathbf{X}_i) = \delta_{i\alpha}.e(E_{\alpha}) \quad \text{for } i \in \{1,\ldots,t\}, \ \alpha \in \{1,\ldots,a\}.$$

This shows incidentally that the decomposition number $\delta_{i\alpha}$ is independent of the R-form X_i of X_i which has been used to define it, because the left side of (1.3) depends only on the $K\Lambda$ -isomorphism class of X_i .

2. F-endostable Λ -lattices

Our "new version" of Brauer's theorem comes by replacing the Λ -lattice $_{\Lambda}\Lambda$ by an arbitrary (non-zero) Λ -lattice Y which is F-endostable, in the sense now to be defined.

If Y, X are Λ -lattices then $(Y, X)_{\Lambda}$ is an R-pure sublattice of the R-lattice $(Y, X)_{R}$, and it follows easily that, for $k \in \{K, F\}$, the k-isomorphism

$$k(Y, X)_R \rightarrow (kY, kX)_k$$

which takes $c \otimes f \to c(\mathrm{Id}_k \otimes f)$ ($c \in k$, $f \in (Y, X)_R$; Id_k denotes the identity map on k) induces a k-map

$$(2.1) \psi_k \colon k(Y, X)_{\Lambda} \to (kY, kX)_{k\Lambda}$$

which is injective. If k = K, then (2.1) is always an isomorphism, so that

(2.2)
$$K(Y, X)_{\Lambda} \cong (KY, KX)_{K\Lambda}$$
 as K-spaces

(see [12] Lemma 14.5, p. 57, or [4] (2.39), p. 36).

In general, ψ_F is not surjective. If it is, then

$$F(X,Y)_{\Lambda} \cong (FX,FY)_{F\Lambda}$$
 as F-spaces,

and we say that the pair Y, X is F-stable. This is clearly equivalent to the condition that the map

$$(2.3) \phi_F: (Y, X)_{\Lambda} \to (FY, FX)_{F\Lambda}$$

which takes $f \to \operatorname{Id}_F \otimes f$ $(f \in (Y, X)_{\Lambda})$ should be surjective. Notice that in any case ϕ_F has kernel $\pi(Y, X)_{\Lambda}$, for it is the composite of ψ_F with the natural map θ_F : $(Y, X)_{\Lambda} \to F(Y, X)$.

The proof of the next lemma is an easy exercise.

- (2.4) LEMMA. Let X, Y be Λ -lattices.
- (i) If the pair Y, X is F-stable, then so also is the pair Y_1 , X_1 , where Y_1 , X_1 are any components of Y, X, respectively.
- (ii) If Y is projective, the pair Y, X is F-stable for any X.

DEFINITION. We say that a Λ -lattice Y is F-endostable if the pair Y, Y is F-stable, i.e., if the map $\phi_F : E(Y) \to E(FY)$ (see (2.3)) is surjective.

It is clear that $Y =_{\Lambda} \Lambda$ is F-endostable. And if $\Lambda = RG$, for a finite group G, then any permutation RG-lattice Y is F-endostable [13], [12, p. 174].

From now on we assume that Y is a non-zero F-endostable Λ -lattice. Then we have $E(FY) \cong E(Y)/\text{Ker } \phi_F = E(Y)/\pi E(Y)$; and by (2.2) we may re-

gard E(Y) as an R-order in the K-algebra E(KY). Also E(KY) is a semisimple K-algebra, since KY is a $K\Lambda$ -module, and $K\Lambda$ is by assumption a semisimple algebra. Let $\mathbf{Z}_1, \ldots, \mathbf{Z}_s$ be a full set of simple E(KY)-modules, and let S_1, \ldots, S_l be a full set of simple E(FY)-modules. Then we may define decomposition number $d_{i\lambda}$ as the multiplicity of S_{λ} as an E(FY)-composition factor of FZ_i , where Z_i is an R-form for \mathbf{Z}_i ($i \in \{1, \ldots, s\}$, $\lambda \in \{1, \ldots, l\}$). By the argument used in the last section, we have

(2.5)
$$d_{i\lambda}.e(S_{\lambda}) = \dim_{F}(\bar{e}_{\lambda}E(FY), FZ_{i}),$$

where $e(S_{\lambda}) = \dim_F E(S_{\lambda})$, Z_i is any R-form of \mathbb{Z}_i , and \bar{e}_{λ} is a primitive idempotent of E(FY) so chosen that

(2.6)
$$\bar{e}_{\lambda}E(FY)/\operatorname{rad}\bar{e}_{\lambda}E(FY) \cong S_{\lambda}.$$

Because the discrete valuation ring R is complete, we may "lift" each \bar{e}_{λ} to a primitive idempotent $e_{\lambda} \in E(Y)$ such that $\phi_F(e_{\lambda}) = \bar{e}_{\lambda}$ [4, Thm. (6.7), p. 123]. A standard theorem [4, Prop. (6.17), p. 130] now tells us that

$$(2.7) e_1 E(Y), \ldots, e_l E(Y)$$

is a full set of indecomposable projective right E(Y)-lattices.

3. The functor (Y,)

The transition from Λ -lattices to E(Y)-lattices is most easily made by means of the familiar functor

$$T = (Y,): \text{mod } \Lambda \to \text{mod } E(Y)^{\text{op}}.$$

Here mod Λ and mod $E(Y)^{op}$ denote the categories of left Λ -lattices and right E(Y)-lattices, respectively. T takes any $X \in \text{mod } \Lambda$ to $T(X) := (Y, X)_{\Lambda}$, which has a natural structure of right E(Y)-lattice: $h \in E(Y)$ acts on $f \in (Y, X)_{\Lambda}$ to give $fh \in (Y, X)_{\Lambda}$. T takes any Λ -map ξ : $M \to X$ to the E(Y)-map

$$T(\xi): (Y, M)_{\Lambda} \to (Y, X)_{\Lambda}$$

given by $T(\xi)(g) = \xi g(g \in (Y, M)_{\Lambda})$. Also T is an R-functor, which means that, for any $M, X \in \text{mod } \Lambda$, the map

$$T_{M,X}: (M,X)_{\Lambda} \rightarrow ((Y,M)_{\Lambda},(Y,X)_{\Lambda})_{E(Y)}$$

which takes $\xi \to T(\xi)$, is R-linear. It follows that T commutes with finite direct sums.

Let add Y denote the full subcategory of mod Λ whose objects are all the components of finite direct sums of copies of Y. Since $T(Y) = (Y, Y) = E(Y)_{E(Y)}$, it is clear that T(M) is a projective right E(Y)-lattice, for all $M \in \operatorname{add} Y$. The next proposition is well known (see M. Auslander [1], Prop. 27(d), p. 193 or [4], Prop. (6.3), p. 120), and follows easily from Lemmas (3.2), (3.3) below.

- (3.1) PROPOSITION. The functor T induces a category equivalence between add Y and the category $\mathfrak{P}(E(Y)^{\operatorname{op}})$ of all finitely generated projective right E(Y)-lattices.
- (3.2) Lemma. If $M \in \operatorname{add} Y$, then the R-map $T_{M, X}$ is bijective, for all $X \in \operatorname{mod} \Lambda$.

Proof. First verify that $T_{Y, X}$ is bijective, which is easy. One then shows that $T_{M, X}$ is bijective for any component M of Y [7, Lemma (2.1a), p. 249]; the lemma follows.

(3.3) LEMMA. If e is an idempotent in E(Y), then $T(e(Y)) = (Y, e(Y))_{\Lambda}$ is isomorphic, as right E(Y)-lattice, to $e(Y, Y)_{\Lambda} = eE(Y)$.

Proof. Let $p: Y \to e(Y)$ (resp. $i: e(Y) \to Y$) be the projection (resp. inclusion) map. Check that $g \to ig$ ($g \in (Y, e(Y)_{\Lambda})$ defines an E(Y)-isomorphism $(Y, e(Y))_{\Lambda} \to e(Y, Y)_{\Lambda}$, with inverse $f \to pf$ ($f \in e(Y, Y)_{\Lambda}$).

Now let e_1, \ldots, e_l be the primitive idempotents of E(Y) which figure in (2.7). Then for any indecomposable component Y' of Y, there is precisely one $\lambda \in \{1, \ldots, l\}$ such that $(Y, Y')_{\Lambda} \cong e_{\lambda}E(Y)$ as right E(Y)-lattices (the E(Y)-lattice $(Y, Y')_{\Lambda}$ is indecomposable by (3.1)), hence such that $Y' \cong e_{\lambda}(Y)$ as Λ -lattices (since $(Y, Y')_{\Lambda} \cong (Y, e_{\lambda}(Y)_{\Lambda})$ by (3.3), and this implies $Y' \cong e_{\lambda}(Y)$ by (3.1)). Therefore

$$e_1(Y), \ldots, e_l(Y)$$

is a full set of indecomposable components of Y. This can be restated as the following proposition.

(3.4) Proposition. If Y_1, \ldots, Y_l is a full set of indecomposable components of Y, then $(Y, Y_1)_{\Lambda}, \ldots, (Y, Y_l)_{\Lambda}$ is a full set of indecomposable projective right E(Y)-modules; in fact the Y_{λ} can be so numbered that

(3.5)
$$(Y, Y_{\lambda})_{\Lambda} \cong e_{\lambda} E(Y) \text{ as right } E(Y)\text{-lattices},$$

for all $\lambda \in \{1, \ldots, l\}$.

All the preceding discussion of the functor (Y,) holds good for the functor (kY,): mod $kY \to \text{mod } E(kY)^{\text{op}}$ $(k \in \{K, F\})$; one has only to replace Y by kY, and "lattice" by "finitely-generated module", throughout. For k = K, F, an argument analogous to that of Proposition (3.4) gives:

(3.6) If U_1, \ldots, U_r is a full set of indecomposable components of the $k\Lambda$ -module kY, then $(kY, U_1)_{k\Lambda}..., (kY, U_r)_{k\Lambda}$ is a full set of indecomposable projective right E(kY)-modules.

Returning to the case k = F, suppose that Y_1, \ldots, Y_l are as in Proposition (3.4). Then we find

$$(3.7) (FY, FY_{\lambda})_{F\lambda} \cong \bar{e}_{\lambda} E(FY), for all \ \lambda \in \{1, \dots, l\}.$$

For our assumption that Y is F-endostable, together with (2.4)(i), shows that the maps ϕ_F : $e_{\lambda}E(Y) \to \bar{e}_{\lambda}E(FY)$ and ϕ_F : $(Y, Y_{\lambda})_{\Lambda} \to (FY, FY)_{F\Lambda}$ are both surjective (remember that $\phi_F(e_{\lambda}) = \bar{e}_{\lambda}$). Thus

$$(FY, FY_{\lambda})_{F\lambda} \cong (Y, Y_{\lambda})_{\Lambda} / \pi(Y, Y_{\lambda})_{\Lambda} \cong e_{\lambda} E(Y) / \pi e_{\lambda} E(Y) \cong \bar{e}_{\lambda} E(FY).$$

Finally, combining (3.7) with (2.6) we have

(3.8)
$$(FY, FY_{\lambda})_{F\Lambda}/\operatorname{rad}(FY, FY_{\lambda})_{F\Lambda} \cong S_{\lambda}$$
, for all $\lambda \in \{1, ..., l\}$.

Any one of the (equivalent) conditions (3.5), (3.7), (3.8) serves to show how the numbering of the components Y_{λ} , is 'compatible' with that of the simple E(FY)-modules S_{λ} .

4. The theorem

From now on we arrange the simple $K\Lambda$ -modules X_1, \ldots, X_t (see Section 1) so that X_1, \ldots, X_s are components of KY, while for i > s, X_i is not a component of KY. Then (remembering that both $K\Lambda$ and E(KY) are semisimple K-algebras) X_1, \ldots, X_s is a full set of indecomposable $K\Lambda$ -components of KY, so by (3.6),

$$(KY, \mathbf{X}_1)_{K\Lambda}, \dots, (KY, \mathbf{X}_s)_{K\Lambda}$$

is a full set of simple right E(KY)-modules. Write $\mathbf{Z}_i = (KY, \mathbf{X}_i)_{k\Lambda}$ $(i \in \{1, \ldots, s\})$, and use this numbering to define the decomposition numbers $d_{i\lambda}$ of Section 2 $(\lambda \in \{1, \ldots, l\})$.

Suppose now that Y_{λ} is an indecomposable Λ -component of Y such that $Y_{\lambda} \cong e_{\lambda}(Y)$ (see (3.3)). Then KY_{λ} is a $K\Lambda$ -component, in general not indecomposable, of KY.

(4.1) DEFINITION. For any $i \in \{1, ..., s\}$, $\lambda \in \{1, ..., l\}$, $d_{i\lambda}^*$ is the multiplicity of X_i as component of KY_{λ} .

We are now at last in a position to state our theorem.

(4.2) THEOREM. Let Λ be an R-order in a semisimple K-algebra $K\Lambda$, and let Y be a non-zero F-endostable Λ -lattice. Let $\mathbf{X}_1,\ldots,\mathbf{X}_s$ be a full set of simple $K\Lambda$ -modules which are components of KY. Let S_1,\ldots,S_l be a full set of simple E(FY)-modules. Then the numbers $d_{i\lambda},d_{i\lambda}^*$ defined above are connected by the equation

(4.3)
$$d_{i\lambda}^* \cdot e(\mathbf{X}_i) = d_{i\lambda} \cdot e(S_{\lambda}),$$

for all $i \in \{1, ..., s\}, \lambda \in \{1, ..., l\}$. Here

$$e(S_{\lambda}) := \dim_F E(S_{\lambda})$$
 and $e(X_i) := \dim_K E(X_i)$.

Proof (E.C. Dade). Since $Y \cong e_{\lambda}(Y)$, it follows from (3.5) and (2.6) that $(Y, Y_{\lambda})_{\Lambda}$ is a projective E(Y)-lattice which covers the simple E(FY)-module S_{λ} . So if we replace Λ , \mathbf{X}_{i} , Λ_{α} , E_{α} in Brauer's formula (1.3) by E(Y), \mathbf{Z}_{i} , $(Y, Y_{\lambda})_{\Lambda}$, S_{λ} , respectively, we get

$$\delta_{i\lambda}^* \cdot e(\mathbf{Z}_i) = \delta_{i\lambda} \cdot e(S_{\lambda}),$$

where $\delta_{i\lambda}$ is exactly the decomposition number $d_{i\lambda}$ defined in Section 2, and $\delta_{i\lambda}^*$ is the multiplicity of $\mathbf{Z}_i = (KY, \mathbf{X}_i)_{K\Lambda}$ as a component of $K(Y, Y_{\lambda})_{\Lambda} \cong (KY, KY_{\lambda})_{K\Lambda}$. But the functor

$$(KY,): \mod K\Lambda \to \mod E(KY)^{\operatorname{op}}$$

induces an equivalence of categories add $KY \to \text{mod } E(KY)^{\text{op}}$, by the analog of Proposition (3.1) (all $E(KY)^{\text{op}}$ -modules are projective, of course). From this follows at once that $\delta_{i\lambda}^*$ equals the multiplicity $d_{i\lambda}^*$ of \mathbf{X}_i as component of KY_{λ} ; also that $e(\mathbf{Z}_i) = e(\mathbf{X}_i)$. Therefore (4.4) is the required formula (4.3).

Remarks 1. If $Y =_{\Lambda} \Lambda$, we have $E(Y) \cong \Lambda^{op}$, and theorem (4.2) reverts to Brauer's theorem (1.3) in its original form.

2. If K is a splitting field for $K\Lambda$ and if F is a splitting field for E(FY), then $e(X_i) = 1$, $e(S_{\lambda}) = 1$ for all i, λ and hence (4.3) reduces to

(4.5)
$$d_{i\lambda}^* = d_{i\lambda} \quad (i \in \{1, ..., s\}, \lambda \in \{1, ..., l\}).$$

3. Even in a case where Y is not a projective Λ -lattice, it may happen that some indecomposable component Y_{λ} of Y is projective. Then $Y_{\lambda} \cong \Lambda_{\alpha}$ for

some $\alpha \in \{1, \ldots, a\}$ (see Section 1) and $d_{i\lambda}^* = \delta_{i\alpha}^*$ for $1 \le i \le s$, while for $s < i \le t$, $\delta_{i\alpha}^* = 0$, since X_i is not a component of $\Lambda_{\alpha} \cong Y_{\lambda}$. We may now use Brauer's theorem (1.3),

$$\delta_{i\alpha}^* \cdot e(\mathbf{X}_i) = \delta_{i\alpha} \cdot e(E_{\alpha}).$$

Comparing this with (4.3) we have a relation between decomposition numbers, namely

$$\delta_{i\alpha}.e(E_{\alpha}) = d_{i\lambda}.e(S_{\lambda}) \quad \text{for all } i \in \{1, \dots, s\}.$$

In particular, if F is a splitting field for both $F\Lambda$ and E(FY), then the λ -th column of the decomposition matrix $(d_{i\lambda})$ for E(Y) coincides, as far as the rows $1, \ldots, s$ are concerned, with the α -th column of the decomposition matrix $(\delta_{i\alpha})$ for Λ . The example in the next section provides a striking illustration of this phenomenon.

5. James's theorem

In this section we assume that char K = 0, and that char F = p > 0.

Let n, r be positive integers with $r \le n$, let E be a free R-module with basis e_1, \ldots, e_n , and let $Y = E^{\otimes r}$ be the r-fold tensor product $E \otimes_R \cdots \otimes_R E$. Then Y can be regarded as right RG-lattice, where G is the symmetric group on $\{1, \ldots, r\}$, acting by 'place permutations' [8, p. 28]. We shall use notations from [8] (with slight modifications) without further comment. However, since we start with a right RG-lattice Y, we must transpose 'left' and 'right' in Theorem (4.2), in order to apply it to the present case. This gives little trouble; the functor

$$(, Y) : \text{mod } \Lambda^{\text{op}} \to \text{mod } E(Y)$$

takes the place of (Y,), so that we regard (X, Y) as a left E(Y)-module, etc. We can identify E(Y), E(KY), E(FY) with the corresponding Schur algebras $S_R(n,r)$, $S_K(n,r)$, $S_F(n,r)$. Since Y is a permutation RG-lattice, Y is F-endostable. The Weyl modules $\{V_{\lambda,K}: \lambda \vdash r\}$ [8, p. 65] form a full set of simple $S_K(n,r)$ -modules, and the unique simple factor modules $\{F_{\lambda,F}: \lambda \vdash r\}$ of the 'characteristic p' Weyl modules $V_{\lambda,F}$ [8, p. 71] form a full set of simple $S_F(n,r)$ -modules. The decomposition number $d_{\lambda\mu}$ (corresponding to $d_{i\lambda}$ in equation (4.3)) is the multiplicity of $F_{\mu,F}$ as a composition factor in $V_{\lambda,F}$. Moreover $e(F_{\mu,K})=1$, from the fact that $F_{\mu,F}$ is generated by its μ -weight space, which has dimension one [8, (5.4a), (5.4b), p. 71].

In [6], [9] and [11] it is proved (in three very different ways!) that, for any field k, a full set of indecomposable kG-components of $kY = (kE)^{\otimes r}$ can be

labelled $U_{\lambda, k}$ ($\lambda \vdash r$) in such a way that for each pair $\lambda, \mu \vdash r$ with $\mu \rhd \lambda$ (see [10], p. 23 for the definition of the partial order \trianglerighteq) there exists a non-negative integer $a_{\lambda, \mu}(c)$ depending only on the characteristic c of k, so that

(5.1)
$$M_{\lambda,k} \cong U_{\lambda,k} \oplus \sum_{\mu > \lambda}^{\oplus} a_{\lambda,\mu}(c) U_{\mu,k},$$

for all $\lambda \vdash r$; here $M_{\lambda,k}$ is the permutation kG-module $k_{G_{\lambda}}^G$ where G_{λ} is the Young subgroup [10, p. 16] corresponding to λ . It is clear from the Krull-Schmidt theorem that the indecomposable kG-modules $U_{\lambda,k}$ are determined up to isomorphism by these equations (5.1); therefore $U_{\lambda,k}$ is isomorphic to the module denoted V_{λ} in [9], p. 12, and also to James's $I_{\lambda,k}$ (see [11], Theorem 3.1(i); note that James's fields K and F are our F and K, respectively!).

It is proved in [9], Remark 6, pp. 14–16, that the simple $GL_n(k)$ -module (or $S_k(n, r)$ -module) $F_{\lambda, k}$ is associated by the Brauer-Fitting theorem to the components of kY of type $U_{\lambda, k}$, which means precisely that

$$(5.2) (U_{\lambda,k}, kY)_{kG}/\operatorname{rad}(U_{\lambda,k}, kY)_{kG} \cong F_{\lambda,k}.$$

(James proves an equivalent result in [11], but a little less directly.)

By 'idempotent lifting' we find a full set $\{Y_{\lambda}: \lambda \vdash r\}$ of indecomposable RG-components of $Y = E^{\otimes r}$ such that $FY_{\lambda} \cong U_{\lambda, F}$ $(\lambda \vdash r)$. Equations (5.2) give

$$(FY_{\lambda}, FY)_{FG}/\text{rad}(FY_{\lambda}, FY)_{FG} \cong F_{\lambda, F},$$

and so our labelling Y_{λ} is compatible (see (3.8)) with the labelling of the simple $E(FY) = S_F(n, r)$ -modules $F_{\lambda, F}$.

Now take k = K in (5.1) and (5.2). Equations (5.1) show that the (simple) KG-module $U_{\lambda, K}$ has character ζ^{λ} in standard notation (see [10], §2.2). So we may take $U_{\lambda, K}$ to be the Specht module S_K^{λ} over K [10, p. 396]. Another classical result says that $e(S_K^{\lambda}) = 1$ [3, Exercise 3, p. 206]. The full set $\{S_K^{\lambda}: \lambda \vdash r\}$ of simple KG-modules corresponds to $\{X_1, \ldots, X_t\}$ in our general notation, so that (definition) $d_{\lambda\mu}^*$ is the multiplicity of S_K^{μ} in KY_{λ} . All the S_K^{λ} appear as components of KY, so that s = t in the notation of Section 4; but we must be sure to label the simple $E(KY) = S_K(n, r)$ -modules \mathbb{Z}_{λ} so that

$$\mathbf{Z}_{\lambda} \cong \left(S_{K}^{\lambda}, KY\right)_{KG}$$

(this corresponds to $\mathbf{Z}_i = (KY, \mathbf{X}_i)_{K\Lambda}$ in Section 4). Fortunately (5.2) gives

$$(S_K^{\lambda}, KY)_{KG} \cong (U_{\lambda, K}, KY)_{KG} \cong F_{\lambda, K} \cong V_{\lambda, K}.$$

So we may take $\mathbb{Z}_{\lambda} = V_{\lambda, K}$, which means that the $d_{\lambda\mu}$ have the meaning announced earlier in this section, and Theorem (4.2) gives James's Theorem 3.4(ii) [11] namely

$$d_{\lambda\mu}^* = d_{\lambda\mu}$$
 for all $\lambda, \mu \vdash r$.

Finally we may recover an earlier theorem of James involving the decomposition numbers $\delta_{\lambda\mu}$ for G, namely

$$\delta_{\lambda u} = d_{\lambda u}$$

for all $\lambda \vdash r$, and all column *p*-regular $\mu \vdash r$ (see [11], Section 1). For it can be shown that Y_{μ} (or, what comes to the same thing, FY_{μ}) is projective if and only if μ is column *p*-regular; now we may apply Remark 3 of the last section.

REFERENCES

- M. AUSLANDER, Representation theory of Artin algebras I, Comm. Algebra, vol. 1 (1974), pp. 177–268.
- R. Brauer, On modular and p-adic representations of algebras, Proc. Nat. Acad. Sci. U.S.A., vol. 25 (1939), pp. 252-258.
- C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, John Wiley & Sons, New York, 1962.
- 4. _____, Methods of representation theory I, John Wiley & Sons, New York, 1981.
- 5. L. DORNHOFF, Group representation theory, Part B, M. Dekker, New York, 1972.
- J. Grabmeier, Unzerlegbare Moduln und Vertices in durchschnitts/ und konjugationsstabilen Systemen von Untergruppen, Preprint, University of Bayreuth, 1984.
- J.A. GREEN, On a theorem of H. Sawada, J. London Math. Soc. (2), vol. 18 (1978), pp. 247-252.
- 8. _____, Polynomial representations of GL_n , Lecture Notes in Math., No. 830, Springer, New York, 1980.
- 9. _____, Functor categories and group representations, Portugaliae Mathematica, vol. 43 (1985-1986), pp. 3-16.
- G.D. JAMES and A. KERBER, The representation theory of the symmetric group, Addison-Wesley, Reading, Mass., 1981.
- G.D. JAMES, Trivial source modules for symmetric groups, Arch. Math., vol. 41 (1983), pp. 294-300.
- P. LANDROCK, Finite group algebras and their modules, London Math. Soc. Lecture Note Series, No. 84, Cambridge, 1983.
- L.L. Scott, Modular permutation representations, Trans. Amer. Math. Soc., vol. 175 (1973), pp. 101–121.