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Dedicated to the Memory of Irving Reiner

1. Introduction

Our purpose is to give a proof of the recent remarkable induction theorem
of John Moody [1], a proof that is straightforward and more or less self
contained. Let I" be a finitely generated abelian by finite group, and let S, I"
be a crossed product of a left noetherian ring S with F. Let Go(S I’) denote
the Grothendieck group of the category of all finitely generated S, F-mod-
ules. For any subgroup F of F, there is a map Go(S, F) Go(S, F) given
by sending the class [M] of an S, F-module M to the class [S, F (R)s, F M]
of the induced module.

MOODY’S THEOREM. Let a be the sum of the maps from FGo(S, F) to

G0(S F), where F varies over all finite subgroups of F. Then a is surjective.

As an application to Go of group rings, let H be a polycyclic by finite
group, and let k be a noetherian ring.

MOODY’S THEOREM FOR POLYCYCLIC BY FINITE GROUPS. The map from
EGo(kF) to Go(kH), given by the sum of inductions from finite subgroups F of
H, is surjective.

To prove this, let H be a normal subgroup of H of smaller Hirsch length
than H, such that H/HI F is abelian by finite, and write the group ring kH
as a crossed product (kH), (H/Hx). Then use induction on the Hirsch length.

Here is an outline of our proof of Moody’s Theorem. Let A be a finitely
generated free abelian normal subgroup of F of finite index, and let G denote
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490 GERALD CLIFF AND ALFRED WEISS

the factor group FlA. Suppose that Q (R)z A is a free QG-module. Then A is
contained as a subgroup of finite index n in a group B which is a free
ZG-module. In Section 2 we show that the matrix ring Mn(S A) is graded by
B, in a way which is compatible with the action of G; then, picking a positive
cone B / in B, we define a certain subring R of Mn(S F) generated by G and
B/, and R is then graded by the non-negative integers. Moreover we can
identify Ro as a direct sum of full matrix rings over certain finite subgroups of
F. That Go(R) --- Go(Ro) follows from work of Quillen [3]. In Section 3 we
show that our map a: EG0(S, F) Go(S, F) is the composition of four
other maps, two of which come from Morita equivalences, one from Quillen’s
theorem, and one from localization. In Section 4 we give a proof of Quillen’s
theorem; we are able to avoid the use of Quillen’s topological machinery, since
we are only interested in GO and not in higher K-theory. At this point,
Moody’s theorem will follow, under the assumption that Q (R)z A is a free
QG-module; if not, we form a semi-direct product of F with a free abelian
group N to get a group F for which Moody’s theorem will have been proved,
and then show in Section 5 that we can reduce back to F. In Section 6 we deal
with the Goldie rank problem for the group ring of a polycyclic by finite group
over a division ring k.
We would like to thank John Moody for sending us a copy of his thesis.

2. The grading on M(S F)

Let S be a ring and F a group. (All rings here are associative .with 1.)
Suppose that for each 3’ F there is an automorphism of S, denoted s Vs
for s S. A ring is called a crossed product of S with F, denoted S, F, if it
has a basis as a left S-module { : 3’ F } indexed by F, with multiplication
given by s =s for s S and 3’ F, and i f(3’, )y---8 for 3’, F,
where f(,, 8) is some unit of S.

Let A be a finitely generated free abelian group, contained as a normal
subgroup of finite index in the group F, and let G denote the factor group
FlA. Then A is a ZG-module. Suppose, for now, that Q (R)z A is a free
QG-module. Let B be a free ZG-module containing A as a submodule of finite
index n. (Explicitly, one may take a QG-basis of Q (R)z A contained in 1 (R) A
and let A1 be the ZG span of this basis; then multiplyA by a rational number
so that it contains 1 (R)A, letting the result be B, and identify 1 (R) A with. A.)
The extension F of G by A leads to an extension A of G by B. Since B is a
free ZG-module, the extension A splits, and we shall regard G as a subgroup
of A.

Let X be a set of representatives of right cosets of .4 in B. Then X has
cardinality n, and is also a set of representatives of the fight cosets of F in A.
Let l/be a free right S. F-module with basis (v,: x X) indexed by X. Let

= Ends.r(V). Then using the basis (t," x X), is isomorphic to
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Mn(S I’), and is therefore an (S I’, S I’)-bimodule. We shall show that
is a Z-graded ring.

For x, y X, let ox, y 6 be the map which sends vx to Vy and which
sends v to 0 for z X, z x, so d’ is a free S F-module with basis (Ox, y ).
Let e ox, . For i A, define (8) as follows:

(8)(v) Vy, where $x Y3’ for some y X, 3’ I’.

From this definition, it follows that

eyO(8) O(8)e,. (1)

For x,yX, let 8=yx
follows that

-1 A; then ix =y, and Ox, y O(8)ez, so it

((i)ex: 8 A, x X)

is an S-basis of .
For 81, 2 A, to form the product t(l)t(2) take x X and write

82x yq, for some y X and , F; then write 81Y z’2 for some z X
and "Y2 F. From the definition of , we find that

t(l)t(2)(Ox) Oz2"Y1, t(l2)(Ux) Oz’Y2 "Y1,

which implies that

(8),(82)ex k(882)Sex for some s S which depends on x. (2)

Let (b, b2,..., b } be a G-invariant basis of the free abelian group B.
Define

d(I-[b’, ) Zni,

so it follows that for b, b’ B we have d(bb’) d(b) + d(b’) and for g G
we have d(gbg-x) d(b). For 8 A, we may write 8 uniquely in the form
5 bg, for some b B, g G. Then define

deg(k(bg)es) d(b), b B, g G, x X, s S.

It follows from formulas (1) and (2) that this makes into a Z-graded ring.
Let

B+= {b= 1-Ib’’B" ni>O,i= 1,...,m}
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and let R be the subring of given by

R {Esq,(bg)e,,’s S, b B+, g G, x X}.
Then R is N-graded. Let

..q’= { Esck(b)ex s a unit of S, b B+, x X}.
Then ,Y- is a multiplicatively closed set of elements of R invertible in d, and
is an Ore set by formulas (1) and (2). Moreover every element of d is of the
form t-lr for some " and r R.

Let us now consider the degree 0 part R0 of R. From the definition of the
grading, Ro has S-basis

(q(g)e," g G, x X}.

It follows from (1) and (2) that G permutes the set of orthogonal idempotents
(ex" x X} via q. For x X, let G denote the stabilizer of ex in G and let
T, be a set of representatives of the left cosets of Gx in G. Let e
EgrxCk(g)eck(g) -1 be the sum of the idempotents in the G-orbit of ex. Then
R0 is the direct sum of the two-sided ideals Roe as x varies over a set 5f of
representatives of the distinct G-orbits of X. From the definition of , if
g G then gx=x3/g for some ,gF; let F denote the set of all the
resulting elements ,g as g varies over G. Then x-iGx Fx, so F is a finite
subgroup of F. Moreover, since k(g)ex ex/g for g G, it follows that
Roe is closed under right multiplication by S, F, and Roe is an
(Roe, S * F)-bimodule. We have (k(g)ex: g G) as a basis of Roe as a
fight S-module, and since k(g)ex ex,/g for g Gx, we see that

((g)e" g Tx)

is a basis of Roe as a fight S, F-module. Then left multiplication by Roe
on the (Roe, S, F)-bimodule Roex shows that Roe is isomorphic to
Ends. Fx(Roe) which in turn is isomorphic to the full matrix ring of degree
G: GI over S, F.
Returning to R, we see that R is finitely generated as an R’-module over the

subring R’ generated over S by

{q(b)ex" b B+, x X}.

Then R’ is a skew polynomial ring over R)= ExSe in the variables
{ q,(bl),..., q,(bm)}, so R’ and hence R are noetherian. We shall need to know
that R0 has finite projective dimension as a right R-module. Using a skew
version of Hilbert’s syzygy theorem, (see [2, 13.4.4]) we see that R has finite
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projective dimension as a right R’-module. Take a finite projective right
R’-resolution { P } of R and apply the functor (R)n, R, which is exact since
R is a free left R’-module, having basis = ((g): g G}. Since f# is also a
left basis of R0 over R, then R is a crossed product R’, G and R0 is a
crossed product R, G. Then

R; R --- (R’, -- Ro

so Ro has finite projective dimension as a fight R-module, as desired.

3. The commutative diagram

We shall keep the same notation as in the previous section.
We recall that GO of a ring R is defined by taking the free abelian group on

the isomorphism classes [M] of finitely generated R-modules, and factoring
out the relations [M] [M’] + [M"] for any short exact sequence 0 ---, M ---,

M’ ---, M" ---, 0. In this section we consider the following diagram.

G0(S F) a G0(S F)

Oo(Ro) --7’ Oo(R) -7’

We first define the maps. In this section, we only deal with the generators of
Go, so we shall suppress the brackets around our modules. The top horizontal
map a comes from sending a left S, Fx-module M to S, F (R)s, Fx M, and is
well defined since S F is free over S Fx. The left vertical map fl comes from
Morita equivalence, but we need a precise version. For x W we have the
(Ro, S, F,‘)-bimodule Roe,‘, which is free as a right S, Fx-module, and we
define fl by sending a left S F,‘-module M to Roex (R)s, F M. The ring R is a
free right Ro-module with basis {(b)" b B/ }, and we get the map 3’ by
sending a left R0-module M to R (R)R0 M. The ring o is gotten from R by
localizing at the Ore set q’, so o is flat as a right R-module, and 8 is defined
by sending a left R-module M to o (R)R M. Fix an element y of X. Then eyd is
an (S F, d’)-bimodule, and since ey is idempotent, then eyO is projective as a
right o module, so we get the map e by sending a left d-module M to the left
S F-module eyd’ (R) M.
Next we prove that the diagram commutes. Starting with the left S, Fx-

module M, fl sends M to Roe (R)s, rx M and 3’ sends this to

R (R)o Roe,, (R)s, r. M =- Re (R)s, r. M.
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Then sends this to (R)R Rex (R)s, Fx M --- ex (R)s, Fx M and e maps this to

ey (R), ex (R)s. Fx M -- eyex (R)s, Fx M.

Since eye S * ’ as an (S F, S Fx)-bimodule, then

eyex @s, Fx M -- S * F (R)s, tx M.

We have therefore proved that the diagram commutes.
To prove Moody’s Theorem, we must show that a is surjective. To do this,

we shall show that fl, ,/, 6, and e are surjective. Indeed fl and e are
isomorphisms since they come from Morita equivalences. We shall prove that, is an isomorphism in the next section. For 6, let M be a finitely generated
left d-module, with a finite set of generators Y. Then let M’ be the R-submod-
ule of M generated by Y, and it is dear that N (R)R M’ -= M.

4. Quillen’s Theorem

In this section we prove the following result.

THEOREM. Let R be a left noetherian graded ring such that R is flat as a right
Ro-module and such that for each left R-module M there exists a positive integer
m such that Tor/(R0, M) 0 for all >_ m. Then the map ,/: Go(Ro) --> Go(R)
given by sending the class [M] of a left Ro-module M to [R (R)Ro M] is an
isomorphism.

This is a special case of Quillen’s Theorem 7 in [3]. Quillen considers all
higher K groups of the category of finitely generated R-modules, not just G0.

For Moody’s Theorem, we only need surjectivity of 7; the ring R in the
previous section satisfies the Tor hypothesis above since R0 has finite projec-
tive dimension as a fight R-module.

Before giving the proof, we shall consider two lemmas, the first of which will
also be needed in the next section.

LEMMA 1. Let Ro be a subring of a ring R, such that R is flat as a right
Ro-module. Further, let R’ be another ring and let ep. R R’ be a ring
homomorphism, so R’ is then a right R-module. If M is a left Ro-module, then
Tor/(R’, R (R)Ro M) --- Tor/o(R’, M) for all > O.

Proof Take a projective left Ro-resolution (Pi.} of M. To compute
TorRo(R’, M), apply the functor R’ (R)Ro obtaining the complex { R’ (R)o Pi }
and take homology. Since R is flat as an Ro-module, (R (R)Ro P} is a
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projective R-resolution of R %o M. To compute

TorR(R’, R %0 M),

apply the functor R’ (R)n to this resolution, obtaining

It is now clear that Tor(R’, R (R)o
proof is complete.

M) = Toro(R’, M) for all > 0, and the

LEMMA 2. Let R be a left noetherian graded ring, and let M be a finitely
generated graded left R-module. Suppose that there is an integerj such that M is
generated by its j-th homogeneous component, i.e., M RMj. Suppose further
that Tor(Ro, M) 0. Then M -- R (R)1o Mj.

Proof Let 1 E>0Ri be the ideal of R generated by the elements of
positive degree. Then Ro (R)R M is naturally isomorphic to M/IM. We have a
graded map q from R (R)o M onto M given by q(r (R) m) rm for r R
and m Mj, hence an exact sequence

0 kerq -. R %o M M O.

Applying Ro (R) yields

0 ker //I ker/ Mj M/IM 0

since TOrl(Ro, M) 0 and R0 % R %o Mj --- M. Since M 2,j.M, then

M 1M 0, so we deduce that M --- M/IM and therefore ker q/1 ker q
0. Then ker q I ker q, from which it follows that ker q 0, since ker q is
graded and finitely generated (because R is noetherian.) Then R %0 Mj -= M.
This completes the proof.

Proof of Theorem. Let M be a finitely generated left R-module. We first
assume that M is graded, and we shall prove that [M] is in the image of 3’. We
have a positive integer such that Torfi(Ro, M)= 0. If > 1, let o be a
graded homomorphism from a finitely generated free R-module F onto M,
and let M’ be the kernel of o, giving us the short exact sequence

OM’ F-oMO.

Since [F] is in the image of V, in order to prove that [M] is in the image of V,
it suffices to prove that [M’] is. But Torfi_l(R 0, M’)= Torfi(Ro, M)= 0.
Then by induction, we may assume that Tor(R0, M) 0.
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Next, write M Y’._jM for some integer j, with M. 0. If M RMi,
then Lemma 2 tells us that [M] is in the image of 3’. If M RMi, define
M(I) E...iRM. Since M is finitely generated, there is an integer > j with
the property that M M(l) but M : M(! 1). We shall show that [M] is in
the image of 3’, for graded R-modules M satisfying Tor(R0, M)= 0, by
induction on 1- j. We have the exact sequence

O M(l-1) M--+ M/M(I-1) -+O. (3)

Let N M/M(l 1). Apply R (R)Ro, obtaining the exact sequence

Tor(Ro, N) -+ TorlR(Ro, M(I- 1)) -+ TorR(Ro, M) -+ TorR(Ro, N)
--+ M(I- 1)/IM(I- 1) -+ M/IM --+ N/IN--+ O. (4)

We claim that

M(I- 1)/IM(I- 1) M/IM

is injective. To prove this, we must show that if x M(l- 1) n 1M then
x IM(!- 1). We have

1-1 1-1 l-1

M( l 1) ZRMi=

_
(Ro + I ) Mi _, Mi + IM( 1).

---j --’-j --j

-1Then x =y + z where y E_.iM and z IM(I- 1). But x and z are in
l-1IM, so y is too, hence y E.qlM for some t. Since y Ew.M it follows

that t<l- 1, so

1-1

y _, IMi,
i=j

and the claim holds. Since M(l- 1)/IM(l- 1) M/IM is injective and
Tor(R0, M) 0, it follows from (4) that Tor(Ro, N) 0. Since M M(I)
and N M/M(l- 1), we have N RNt. Then Lemma 2 implies that N ---R (R)Ro Nz, and Lemma 1, with R’= Ro,.gives

Tor2R(Ro, N) -= Tor2Ro(Ro, Nt) 0

(since Ro is a flat Ro-module.) Since Tor(Ro, M) 0, it now follows from
(4) that

TorlR(Ro, M(I- 1)) 0,

so the induction hypothesis applies to M(! 1). Therefore [M(l 1)] is in the
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image of 3’. Since [N] is as well, we deduce from (3) that [M] is in the image
of 3’, as desired.
For a non-graded module M, we shall proceed (as does Quillen) as in Swan

[4, p. 131]. Let z be an indeterminate, and consider the polynomial ring R[z],
which is graded by assigning the monomial rizJ the degree + j, for r R i,

so (R[z])o R 0. We shall check that R[z] satisfies the hypotheses of the
theorem. It is noetherian by Hilbert’s basis theorem, and it is free over R,
hence fiat over R o. Let L denote a left R[z]-module. We have the short exact
sequence

O-. R[z] R[z] , R-O

where x is left multiplication by z and sends z to 0. We then have the short
exact sequence

O RtZ] (R)R L---, R[Z] (R)R L L O.

Therefore, in order to prove that TorRtzl(R0, L) 0 for all sufficiently large i,
it suffices to show that

Tor/tl(Ro, R[z] (R)R L)= O.

But Lemma 1 tells us that TorftZl(R0, R[z] (R)R L) Torf(R0, L), which is 0
for large by hypothesis. Thus R[z] satisfies the hypotheses of the theorem.

Let us return to our R-module M, and let F be a free R-module of finite
rank which maps onto M, with K being the kernel of this map. Then F is a
graded R-module, by assigning the free generators any convenient degree. Fix
a finite set Y of generators of K. Take y Y and write y in the form

y=EL, LF
i=j

Then define )3 F[z] by

i=j

so )3 is a homogeneous element of the graded R[z]-module F[z]. Let/ be the
graded R[z]-submodule of F[z] generated by the set {)3. y Y). If L is a
graded R[z]-module, then left multiplication on L by 1 z is injective, so the
functor which assigns L the R-module L/R[z](1 z)L is exact. It follows
that (F[z]/I) M. We have already proved that F[z]/I is in the image
of the map Go(Ro)--. Go(R[z]). Then apply the functor , to see that 3’ is
surjective.
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To show that 7 is injective, we construct a left inverse. For a finitely
generated left R-module L, define [L] E..0(-1)i[Tor/(R0, L)]. Using
the fact that R is noetherian, it follows that Tor(R0, L) is finitely generated
as an R0-module. The long exact Tor sequence shows that z respects the
relations of G0, and the sum is finite by hypothesis, so z is indeed a
homomorphism. For a finitely generated left R-module M, it follows from
Lemma 1 that

Torff(R0, R(R)RoM) =0 fori>0,

so ’v[M] [Ro (R)R R (R)Ro
proof is complete.

M] [M]. Thus is a left inverse for 3’, and the

5. The second commutative diagram

We have completed the proof of Moody’s Theorem under the assumption
that Q (R)z A is a free QG-module. We now discuss the general case. Since
Q (R)z A is projective as a QG-module, there exists a finitely generated ZG-
module N such that Q (R)z (A N) is a free QG-module. Let I" denote the
semidirect product N N F. Then we have the crossed product S, F1, which
may be considered as the crossed product (SN), I’, where SN denotes the
group ring of N over S. Moreover Moody’s Theorem has been proved for
S, Ft. We have the following diagram:

ot

Go(S F) -- Go(S * F)

Go(S FN/N) Go(S F)

In the upper left corner, F varies over finite subgroups of 1"1, and eq is the
sum of inductions, which we have proved surjective. Since N is torsion-free,
we have FN/N F; then if M is an S F-module, we define ’[M] [M],
where the M on the right is considered as an S FN/N-module. The map a is
the sum of inductions. For an S I’l-module M, we define ,/[M] to be

E (-1)’[Tor/S*rx(S* F, M)],
i=O

analogous to the left inverse map defined in the proof of Quillen’s Theorem.
Since S F is noetherian, in order to show that r/is well defined we must only
check that this sum of Tors is a finite sum. By Hilbert’s syzygy theorem, S has
finite projective dimension as an SN-module. Then it follows by inducing that
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S, F has finite projective dimension as an SN, F-module, and SN, F
S, Ft. Thus /is well defined.
We now prove that the diagram commutes. Let M be a finitely generated

S F-module, where F is a finite subgroup of Ft. We apply Lemma I of the
previous section, with R S F1, R0 S F, and R’ S I’, with the ring
homomorphism coming from the natural homomorphism F --, F. We find
that Tors* rx(s F, S F1 (R)s, F M) 0 for all > 0, so

?a[M] [S, F (R)s,F M] af[Ml,

and the diagram commutes.
Since we have proved that a is surjective, and since " clearly is, in order to

prove that a is surjective, we must prove that ,/ is. Let M be a left
S F-module; then we claim that M] ,/[S F (R)s, r M]. This follows from
Lemma 1 once more, this time with R’ S, F and R, R0, and as before.
This completes the proof of Moody’s Theorem.

6. Goldie ranks

In this section we use Moody’s Theorem to solve the Goldie rank problem
for the group ring kH of a polycyclic by finite group H over an arbitrary
division ring k. (See also Rosset [4].) We assume that H has no finite normal
subgroup. Then kH is a prime noetherian ring, and therefore has a classical
(left) ring of quotients, which we shall denote by k(H), which is a simple
artinian ring, isomorphic to the full matrix ring M(D) over some division
ring D. (This is proved in [2] for commutative k.) The size n of the matrix ring
is called the Goldie rank of H.

THEOREM. The Goldie rank n of kH is equal to the least common multiple of
the orders of the finite subgroups of H.

Proof If M is a finitely generated left kH-module, then k(H) (R)kn M is
isomorphic to a direct sum of a certain number, say m, copies of the simple
k(H)-module; let rn(M) m/n, so rn(kH) 1. Then rH gives rise to a
Q-valued function on Go(kH). Let H be a torsion-free normal subgroup of
H of finite index l; then kH is a free left kH-module of rank l, and k(H) is a
free k(H1)-module of rank l. It follows that

rH(M ) rHI(MH1)/[H" H[,

where Mnx denotes the restriction of M to kH. Let F be a finite subgroup of
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H and let L be a finitely generated left kF-module. From Mackey’s formula,

where the sum is over representatives of the (H1, F)-double cosets of H. Since
F is finite and H1 is torsion-free, xFx- C3 H 1, and since H is normal,
HxxF xHF. Then each summand on the right is isomorphic to dimk L
copies of kHx (R) k, and there are IH" HIFI such summands. It follows that

1
rH(kH (R)k L) IH. HI rii((kH (R) L)nI)

In" HFI dimk L

dimk L

Pick L to have k-dimension 1; then rl(kH (R),r L) I/IFI, and this is some
multiple of l/n, so n is divisible by the order of each finite subgroup. Let M
be a kH-module with the property that k(H) (R)kit M is a simple k(H)-mod-
ule, so rz(M) l/n. Moody’s Theorem implies that

rH(M) ., :J: rH(kH (R)kF, Li),

for certain k-modules Li, where the F are finite subgroups of H. Then

1/n

___
dim Li/IFil,

and it follows that n divides lcmlF/I. This completes the proof.
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