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1. Introduction and statement of results

In [5], A. FrShlich introduced the notion of a Kummer order--taken with
respect to the multiplicative group law. The Galois module structure (at
rational level) of such orders was then determined by the author in [20]. The
purpose of this article is to introduce and study the corresponding Galois
module properties of analogous orders, when the multiplicative group law is
replaced by the group law of an abelian variety.

Before stating our results, we first fix some notation. Let QC denote the
algebraic closure of Q, which we view as embedded in C once and for all; we
write p for the complex conjugation automorphism of C; given a number field
L
_
Q, we put fL Gal(QC/L)

We let K denote a CM number field, that is to say K is a totally imaginary
extension of a totally real field. We then fix a CM type of K; thus

{ 1,--. n }, is a transversal, modulo the action of p, of the set of field
embeddings from K into Q. We write K’ for the field generated by all
elements of the form )2ix’, for x K: we call K’ the reflex field of K with
respect to . In the sequel we shall always suppose the CM type (K, ) to be
simple, that is to say K identifies with the reflex of K’. We write N:
K* K’* for the reflex norm N,(x) Hi x’, and we shall also write N for
the corresponding norm map on idrles and ideals.

Let A denote an Abelian variety of dimension n 1/2[K’Q] which admits
complex multiplication by (C)r. For points P, Q on A we write P +A Q for
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their sum with respect to the group law of the variety; and for a (C)r we
write [a]P for the point obtained by applying the endomorphism correspond-
ing to a to P. We suppose that A, together with the endomorphisms (C) r, are
all defined over a given number field H. Furthermore we suppose that A has
CM type ; that is to say A n C has a basis of differentials of the first kind
{dzl,...,dz,, } such that [a]dzi= a’,dzi. By general theory we know that
K’cH.

Let a a(C)r denote an integral (C)r ideal, we then choose r H such
that r N,t,a, and we henceforth write S for the set of primes of (C)n which
divide r.

It is well-known that the co-ordinates of a torsion point of A generate an
abelian extension of H. The Galois action on such torsion points is described
by Shimura’s reciprocity law (see Theorem 11 in [11]). In the sequel we shall
freely use this result without further reference.
We write G for the sub-group of dements in A(Qc) which are killed by all

elements of a; we put r [GI and we let L denote a finite extension of H
with the property that A acquires everywhere good reduction over L; we note
that this can always be achieved by Theorem 6 of [11].
For Q A(L) we define the corresponding G-space of points on A by

GQ (Q’ A(QC)l[a]O Q}

and we note that Go is flL stable. We define the Kummer algebra LQ by

Lq Mapo,.(GQ, QC)
where the addition and multiplication are given by value-wise addition and
multiplication of ilL-maps from GO. to Qc.
LQ is an L-algebra. To understand why we use LQ rather than L(Q), the

field generated over L by the co-ordinates of all points of GQ, we note that
[Lo: L] IGI, whereas, in general, [L(Q) L] will vary with the choice of Q;
thus the algebra LQ enables us to treat all points in A(L) in a uniform
fashion.

In {}2 we construct an (C)L-algebra which represents the (C)L group
scheme of a points of A: although depends on A, a, and L, we shall only
include such dependence in our notation when there is any ambiguity. We
write 9/ for the (C) t Cartier dual of 3.
More explicitly, we shall see that is an (C) order in the algebra

Mapn,(G, Q), while 9/ is an (C) order in the algebra = (QCG)L.
(Here [2 has its natural Galois action on both Q and G.) Thus LQ is an ’module via the rule that for f LQ, Q’ GQ,
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At the integral level we define (C)Q to be the integral closure of (C) z: in LQ, and
we let (C) denote the largest 9A-module contained in (C):

(1.1) Q (x (C)QlXgA
_

(C)Q}.

Thus is naturally isomorphic to Homg(, (C)), the (C)z lattice of
homomorphisms in Homg(, Le) which take 9A into (C). In 3 we shall see
that (C)Q is a twisted Q-form of , in the sense of Galois~ cohomology, and
that it is an (C)z-order which is 9A-locally free. We call (C) a Kummer order.
The main goal of this paper is the study of () CI(), the classgroup of
locally free 9A-modules.
We remark that in many respects the above framework generalises the

Normal Integral Basis problem, where one studies rings of integers which are
locally free over the (minimal) Hopf order (C)LG; by Noether’s criterion such
an extension can be at most tamely ramified. Here we replace (C)LG by the
Hopf order 9, and the full ring of integers is replaced by (C); we remark that
the result of Childs-Hurley (see Proposition 5) furnishes us with a generalisa-
tion of Noether’s projectivity criterion for 92-modules. Pursuing the analogy
with Normal Integral Bases a little more closely, the fact that we use only
Abelian varieties with everywhere good reduction is the analogue of using only
non-ramified extensions (compare Theorem 1 with the work in [2]). One
obtains the analogue of (genuinely) tamely ramified extensions by permitting
bad reduction on A.
The notion of Kummer orders over a split commutative maximal order was

first introduced by FrShlich in [5]. Such orders were further studied in [20],
and in particular such Kummer orders were completely described as Galois
modules at the rational level: Theorem 2 below may be thought of as an
analogue of this result. We remark that the situation where we use a split
maximal order, corresponds to replacing the group law of A, by the multi-
plicative group law. We note that the (local) Kummer orders associated to
Lubin-Tate formal groups have recently been studied in [15].
We now conclude this introductory section by describing our main results.
Let V denote the multiplicative monoid of elements in (C)r, which are

coprime to a. In 4 we shall define a natural V-action on , which extends the
(C)r action on G: for g G (resp. a9), v 1/, we write this action
exponentially as gO (resp. a). Thus, to sum up, V acts as automorphisms of
the group Cl(), and this action factors t.hrough 1/mod* a. Let " A(L)
C1(9) denote the map induced by Q --, ((C) t2)" We note from the definition of
(C) Q, that k (Q) only depends on the class of Q mod a]A(L). In 5 we show:

THEOREM 1. is a group homomorphism which respects V-action.

COROLLARY 1. Let e denote the exponent of G; then (Q)e-- 1.
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We let 1 denote the inverse different of Lf2/L. By standard theory,

21 9 identifies as the dual of Q; in 5 we show that the inverse class of
the dual of a module corresponds to the action of [-1] on C1(9).

COROLLARY 2. (C)q is a~self-dual 9-module, that is to say there is an
isomorphism of -modules" (C) Q 2 "

Proof From the above it suffices to note that

[-i]
1 q(Q + [-IIQ ) (a)(O []

Remark 1. In practice when calculating ((C)) one has to admit a limited
amount of bad reduction on A" Q is then defined in the same way see; see
the remark after Theorem 5. However, in this case, k apparently ceases to be a
homomorphism. Given this proviso, one can show that if a 1 / and
Q (1 + 2i, v/- 10 ) on y2 x + x, then (t2) has order 2. Bryan Birch has
shown that if a v- 3 and

Q=[5+4w x/-26 (3 + 2w) ] 2 --I+v/-3
1 + 4w’ (1 - 4w)2 on y x + 1, with w 2

then (O) has order 3.

Remark 2. In the case where A is a Fueter elliptic curve and Q is some
torsion point, then it is shown in [17] and [1] that Q Q, and that (C)O is
9-free when 2 splits in K (see Theorem 7).

Remark 3. It is interesting to note that the annihilators for Im(k) are of
the same nature as a number of L. McCulloh’s annihilators in [7] and [8].

Next we consider the behaviour of the homomorphism tk with respect to
restriction. We therefore let F denote a finite extension of L. In {}6 we shall
show that the following diagram commutes:

A(F) - C1(9/(F))

A(L) - CI(9/(L))

where Res denotes the restriction map (see 5), and TrF/L is the trace map. We
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can then deduce:

THEOREM 2. Suppose that A(L) is torsion, with (C)r-annihilator coprime to
a; then for all Q A(F) we have an isomorphism of (L)-modules

Remark. This result can be seen as an Abelian variety analogue of the
(classical) Kummer order classification theorem in [20]. The proof of this result
depends critically on Stickelberger’s annihilation theorem for classgroups.

Our next result concerns the evaluation of resolvents. In general one can
only obtain Galois module results for rings of integers by making some kind of
statement about Lagrange resolvents in the abelian case, or, more generally,
about Fr/Shlich’s generalised resolvents. The result which we give below may
be viewed as an analogue of Fr/Shlich’s evaluation of tame resolvents (see
Theorem 23 in [4]).

Given a map m Mapu,(Go, QC) and g G, we define

m s Mapu,.e,(GQ, QC) Map(GO, QC)

by the rule

mg(Q’) =m(Q’+g) forQ’ Go

Fixing Q’ GQ, we define mQ, Map(G,Qc) by the rule mQ,(g)=
m(Q’ + g).

THEOREM 3. Let denote a prime of (C)L and choose m Q such that
(C)Q,. m. 1; then

-1

is a unit in the ring 9(L(Q)).

Lastly we consider what happens in a particular case when A is an elliptic
curve. More precisely we now suppose that K is a quadratic imaginary
number field with class number one. We now take A to be an elliptic curve,
which we denote by E, with complex multiplication by (C)r and which is
defined over K. We choose a ’sprit’ prime element r, rr 3, rr +_ 1 mod 8(C) r,
with the property that rr (C) r is a prime of good reduction for ElK; we set
p Nr/Qr. Given an (C)r-ideal , we shall denote the ray classfield with
conductor by K([).
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Next we choose a finite abelian extension L/K with the following proper-
ties"

(a) p[L:K];
(b) L contains the co-ordinates of a primitive 419 division point of E.
We set A Gal(L/K), and we let r: A -, Z* denote the unique character

of order p 1, with the property that

g*= [n,]g forg G, 8A

where n Z with n x(8)mod O. We put k (C)rmod 0, o= E(L) (R) k,
and we note that 6 factors through . Given a finite FpA-module M, we shall
denote the x-eigenspace in M by M).

In 7 we shall show:

THEOREM 4. With the above notations and hypotheses:
(a) For each character : A F

dimrp(Ker ql,0,) _< 1.

(b) If 2 splits in K/Q, then Ker (q[,,)) G.

The above result, together with other calculations, leads me to believe the
following:

Conjecture. If E/L is an elliptic curve with everywhere good reduction, and
with complex multiplications by (C)r; then for any a (C)\ O,

E(L)torsion
___

Ker(6).

One immediate consequence of this conjecture would be that Theorem 2
could then be strengthened to:

If E(L) is finite, then for any finite extension F/L, we have an isomorphism
of 9(L) modules: Q 9(F) for each Q E(F).
The Birch-Swinnerton-Dyer conjecture asserts that E(L) is finite precisely

when the L-function, associated to ElL, is non-zero at 1. As is proven in the
tame case, one can therefore again hope for a direct link between the Galois
module structure of tings of integers and the behaviour of an L-function.

2. The orders and

In this section we give the definitions and a number of basic properties of
the orders 9, (resp. 3) in the algebra (QCG)n’ (resp. MapnL(G, QC)). Clearly,
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in defining such an order, it will suffice to describe its localisation at each
prime of (C).

Given a prime cl of (C), we write G, for the (C),, group scheme obtained
by localising the (C) group scheme afforded by G at q. We then let G denote
its connected component of the identity, and we write G’ for the &ale factor
G/G. From Corollary 2 to Theorem 5 in [11] together with Corollary 2 to
Theorem 4 in [14], we have a splitting G, G1 G’.
We let F(X, Y) (C),o[[X, y]](m) denote the formal group over L afforded

by the kernel of reduction mod O on A, where X (Xt,..., Xm) etc. For each
b (C) r, we let [b](X) denote the vector of formal power series corresponding
to the endomorphism b; we then let denote the (C), o[[X]] ideal generated
by the components of [a] and we define

(2.1)

Then 1 represents G1, where we view 1 as an (C)L,q order in MapaL(G, QC)q
via the rule b(X)(g) b(g) for g Gx, where g denotes the co-ordinates of g
on the formal group.

G, is represented by the (C)L, order ,"

where 3’ Mapa,(G’, (C) c) -
Here (C)c denotes the ring of all algebraic integers in QC.
We note that if q S, then G {1} and so 3, identifies with

MaPa,(G, (C) c),. We let 91 (L) denote the (C)L-Cartier dual of 3 (L). To
describe 91 (L) more explicitly, we first consider the case of a number field M
which contains the field L(Q); then N’(M)= Map(G, M), see(M)= MG,
and we have the non-singular pairing

( )" (M) X at(M) M, (b,El,g)= Elgb(g).

Furthermore we note that for ,0 ilL,

(b,a)’=(b’,a’).

Thus, since 3(L) (M)a,., we note that

(L) (MG)’ and f(L) (M) aL.

In the opposite direction, since A has everywhere good reduction, from the
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above we see that for a finite extension F/L,

(F) (L) (R), v, (F) (L) (R), (C)v.

We again view L as fixed, and so write 92 for 9(L) etc., and we study the
orders and in greater detail. We let t: ’ L denote the trace map
t(b(X)) Egob(g), and we write -1(3) for the inverse different of 3"

(2.2) -1() {b ’lt(b)
__

In the same way we write -1(9) for the inverse different of 9 with respect
to the trace pairing s’ L.

LEMMA 1.
(a) -1() r-l;
(b) -() r-r92, where r denotes Ial.

Proof Part (a) is a particular case of (2.2) in [14]; (b) then follows from (a)
by Proposition 9 in the appendix of [10]. rq

In the standard way we have:

LEMMA 2. -1() identifies with Hom,(3, (C)t) via the pairing

(d,b) t(db) ford-(), b.

PROPOSITION 1. { r-Egof(g)glf ).

Proof. This follows easily on piecing together the above information: by
Lemma 2 we have a natural isomorphism : -(3)-= HomL(3, (C)z)
where I(d)(b) t(db); furthermore, under the identification

r/" HomL(3, (C)) -=

such a homomorphism h has image r/(h)= Ehgg if, and only if, for all
b , h(b) Ehgb(g). Thus r/o (d) Ed(g)g; the result then follows
from Lemma 1. []

The above map : -()-o does not respe_ct [-action; however,
this is easily rectified by composing with the antipode [ - ; we write x:
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-1(3) 9/ for this isomorphism, and we let l: G L be defined by

1 if g 1a,/(g)=
0 ifg:la.

Then from the above,

r-8 5D-() x-() x-l(1) 1..

We have therefore shown:

PROPOSITION 2. 3 is a free 91-module on

Remark. To see the role of self-duality in Hopf algebras in full generality
the reader is referred to [13].

3. Principal homogeneous spaces

We recall that, given Q A(L), the 9/-module 3O was defined in (1.1). We
begin this section by showing:

PROPOSITION 3. O is an (C)L-order in LO.

Proof Since clearly QL L LQ, it suffices to show that Q is a ring.
Firstly we note that for an a , 1.a e(a), where e is the augmentation
map; thus 1 Q, since e(92) (C) L. Next we note that for any two elements
s, LQ and a LG,

(3.1) (s.t)a ., (sail).(tai2)

where A(a) F,a it (R) a i2 under the co-multiplication map A:
induced by g g (R) g. We are required to show that if s, o, then
(st)a (C)o for all a 9/. This, however, is now clear from (3.1), since the
sait and talE all lie in (C) Q.

Next we give a sufficient condition for the local freedom of a module over a
Hopf order in LoG.
PROPOSITION 4 (See [3] and also more recently [21]). Let @ denote a Hopf

order in LoG and suppose that @ t LoG t-t(C)LqY where , Y"gag" Let M
denote a finitely generated @-module which has no (C)G-torsion, which has
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M (R)L., L an L,G free module, and which possesses an (C) z. endomorphism f
such that tm Egf(mg)g-1, for all m M. Then M is a free @-module.

Proof. This is a straightforward generalisation of the corresponding well-
known result for group rings: we therefore only sketch the details. By hypothe-
sis t-lE @; we may therefore write

A (t- 1.) Eil (R))L,q i2 where flij .
For m M, the element

X(m) t-ly,f(mg) (R) g-X

can be written in the form

h(m) (m (R) 1)(A(t-ly,))(id (R)-)(f (R) 1)

and so ,(m)M(R),,@. Thus , defines a @-module map : M
M (R)L., @’ with @ actiig on the second factor in the range of ,. Since f has
trace t, , is sprit by the map/: M (R),., @ M induced by m (R) a ma;
hence M is certainly -projective. The act that M is actually free, follows
from the hypothesis that M (R) Lq is L,G-free and the fact that L,G is
commutative (for instance, see [6]). U

The main goal of this section is to show"

THEOREM 5. O is a locally free rank one -module.

Remark. If we allow bad reduction on AlL at primes which are coprime
to GI; then, for any prime q of bad reduction, , is the maximal order, and
so, of course, 3O will still be locally free over .

Before starting to prove this result, we need an alternative description of

Let N/L denote a finite extension field which contains the coordinates of G
and GO; then by standard Galois theory we have isomorphisms of N-algebras
(and sO-modules),

Mapn,.(G, Q) (R)L N m Mapn,, (G, QC)

Mapa,(Go, Qc) (R)L N --- Mapa (Go, QC).

Thus translation by Q’ Go yields an isomorphism of N algebras (and
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-modules)"

Ii (R)L N = Lo (R)L N.

Here li(b (R) n)(Q’ + g) b(g)n, and we view L as acting on both terms via
the second factor. We then define the Q-twist of 3, denoted o, by

(3.3) t? (3 (R)e,. (C)N) a.
Concretely, given a prime 0 of (C)L, o, is the (C)z, suborder of (C)o,
which is defined as follows: Over L for Q’ Go we write Q’= Q + Q;
with Q torsion of order prime to the reflex norm of 0 n K’, and with Q; in
the kernel of reduction mod . We write g for the (C) , 0[[x]] ideal generated by
the components of [a](x) -FQt, where Qt [a]Q;. We then set

’= Map,.,(Q + G’, (C)q)

Here we identify

Mapn,.o(G0, L) Mape,(GO, L (R) Lc)

and

MapL.,(Q + Gi, L) (R)o Mapn,.o(Q + G’, L) Mape,(GO, L)

We thereby view as an order in L0 defined by the 0" Then subtraction by
Q’ induces an isomorphism of (C) u,, algebras:

(3.4) Jo" (R)(C)L (C)N,o Q (R)(C)L CN, o"

We note that for N D_ F D_ L,

Q(F) o(L) (R), (C)F O(L) Q(F) ’’
LEMMA 3. (O is a locally free, rank one 91-module.

Proof We recall that L0 is an -module (see {}1); so, by (3.2), we see that

o is 91-stable. Moreover 0, must be 910-projective since 3 is 91 0-free,
while (C)N, q is (C),0 free. Thus o is in fact 91 locally free since s is
commutative and since o (R) L is s free. rn
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In order to prove Theorem 5 it now suffices to show"

PROPOSITION 5. Q Q.

Proof By definition, since fro is an 9-submodule of o, we have

(3.5) 0 -- 0"We shall prove Proposition 5 by proving the reverse inclusion at each prime
q of (C) L. Since in fact it suffices to show o (R), (C) e (C)Q (R), (C)e, for any
finite extension E of L, we may, without loss of generality, now suppose that
L contains the r-th roots of unity, together with the co-ordinates of G and GO.
Thus if we write ( Homz(G, L*), then the Hopf algebra LG now identifies
with Map (t, L). As previously, splitting into its connected and 6tale part
91, 9 (R),.,0 9’, we have a decomposition of groups (, 61 X 6’; here
explicitly

(3.6) 9’ I-I (C)Lex
Xd’

where ex is the idempotent associated to X- We therefore have corresponding
decompositions"

(3.7) o,, I-I x, o,q l-I (C)
x’

where for brevity we put x o, qex, (C) x o, ,ex" By Nakayama’s lemma
and by (3.5) it therefore suffices to show that for each such X,

x + x’Jx x
where Jx denotes the Jacobson radical of 9ex.
suffices to show

Since 9 is connected, it

x + (C)xI’ex (C)x

where I’ is the augmentation ideal of 91. We are therefore reduced to showing
that, for each X, (C)x is 9ex free and that

(3.8) xY,n (C)xXn

where Yn denotes the sum over all elements of H f’lxKer X-
For some (C) we know that

(3.9) 9 N L.Xn t-l(C) XL, H"
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Consequently, if M is any free 91 module, then

(3.10) MEH tMH.

In order to prove (3.8) we begin by considering the special case when X is the
identity character e in G’. Then we note that

(3.11) (C)H (C)L,a IgH.

Thus by (3.10),

(3.12) eH eEH CL, ctH

We conclude that g, contains an element of trace t; hence, by (3.5), (C)
contains such an element; however, since (C)o is an order, (C)(C)x c_ (C)x for all
X (’; therefore by Proposition 4 (using lex in place of @) we see that (C)x
is ex free. From (3.10) we deduce that

(3.13) (C)x H tH GX tGH
X H X"

It therefore suffices to show

H H(3.14) Gx (C)x"

To this end we choose (C) L,. bases

H= CX L, H. dxLX X

By (3.5) cx dx)x with ’x (C)L,."
therefore suffice to show

We wish to show * it willf L, el’

(3.15) cx e (C)*

With the identifications given at the start of the proof, H L, 6,, and
H (C) X. However, we have an isomorphism of (G, (C)N) algebras :SO X L, cl

(R) (C)N gO (R) (C)N; thus j-(cx) uX for u (C)$,,, and (3.15) now fol-
lows.

We conclude this section by proving Theorem 3. With the notation of the
statement of this result, we choose a prime cl of (C)L and we fix m gO such
that g o, mq. For a field N as in (3.2), we have an isomorphism of
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(G, CN) algebras"

and

Q, (C) N m.gA(N).

By Proposition 2, (N) is (N) free on rrl; thus for some a 9(N)*,
lil(rn) rla; applying the isomorphism x (prior to Proposition 2), we
conclude that

Finally we note that the values of m, all lie in L(Q), so that in fact
a 9A(L(Q))*.

4. The K-theory of 9A

We let CI() denote the locally free class group of -modules: that is to
say C1(9) is the subgroup of dements of zero rank in the Grothendieck group
of finitely generated, locally free 9-modules. Given such an 9-module M, the
class of M, (M) C1(9), denotes the isomorphism class of M minus the
isomorphism class of the free 9-module whose rank is the 9-rank of M.
We now briefly recall A. FrShlich’s description of CI() in terms of

character maps (see [4], [16]).
Let Y denote the set of isomorphism classes of simple (R)L QC representa-

tions" we view Y as an fL set in the natural way. We let M denote a finite
Galois extension of L which is ’sufficiently large" that is to say M contains the
coordinates of G and of all points Q’ for Q in A(L), together with the roots
of unity of order the exponent of G. We write J(M) for the group of id61es of
M, and we let U() denote the group of unit id61es of 9:

x l-I ,o,u() FI
0<o clloo

Given u U(9), we define Det(u) Mapn,(Y, J(M)) where for X Y,

(Det(u)(x)), X(U,) M (R)L L,

where we view X as a homomorphism from to M and extend by L,
linearity.
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As per Chapter 2 in [4], we have an isomorphism

(4.1) CI(9/) --- Mapa,( Y, J(M))
Det( U(9/))Mapn,( Y, M*)"

We next describe the construction of a representing map for the class of a
given locally free rank one 92-module X under (4.1). We choose bases

X m9,, X.L

and we let a, e’,* have the property that m
X in CI(gA), is represented by

v.a.; then (X), the class of

1-IDet(a,) Map.,(Y, J(M)).

We now use a techni]ue, due to Fr/Shlich, to explicitly construct such a
representing map for ((C) o)" For X Y, n LO, we define the X resolvent of
n, (nix) Map(GO, Q), via

(nix) Det(Engg-1

g
(X).

Note that if a z, then

(nalx) (nlx)Det(a)(x).

In conclusion if (C)o.
have shown:

mQ, oq for each q, and if LQ dQ, then we

PROPOSITION 6. (0) C1(9/) is represented by the map

he Mapn(Y, J(M))

defined by

h(x), (mo..,Ix)(dQIx) -.
Remark. We extend L if necessary to ensure that L contains the co-

ordinates of G. By standard theory we know that LO is unramified outside S,
since A has everywhere good reduction. Thus, if q S, then

(4.3) (C)O,. mQ,o mQ, oL, oG
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and by the Frobenius determinant formula, the (m Q, Ix) are all units.

Actions on C1(9). Since A admits complex multiplication by (C)r, G is an
(C) r-module, and so V acts as L-algebra automorphisms on (by L-linearity).
Since V acts on , it acts by transposition on 9; hence, by functoriality, V
acts on CI(
The action of V on G induces an action on Y via the rule x(a ) x(a()),

for a . Given a locally free 9A-module M, we define the v-twist of
M, M(v), via

m!)a () ( ma )() for rn

The map M ---, M() then induces the above V-action on CI(gA). From the
construction (4.2), we see that if M is represented by the map h, then M() is
represented by the map h() where h()(X) h(x). The V-actions on G and
9A extend, by Z-linearity, to ZV-module structures: we shall write these actions
exponentially.

Self-duality. We have already seen in Proposition 2 that 3 is an 92-free
module on ,rl, that is to say we have an isomorphism of 9-modules:

More generally, if M is a locally free -module, then, by the above,

MD= HmL(M, (C)L)

is also a locally free 9-module; thus M Mo induces an involution on
C1(9). Exactly as in I, 5 of [16], we see that if M is represented by

h e Map,(Y, J(M)),

then (MD) is represented by the map h(x-1) -1. Since 9A is commutative, 9A
certainly satisfies the Eichler condition, and so M =- MD if, and only if, the
map X ’-> h(x + X-) lies in the denominator of the quotient group in (4.1).

Restriction. Let F denote a finite extension of L, and let (0,...
denote a transversal of fF\ fL" We then have the co-restriction map

V’: Mapar(Y, J(M)) MapfL(Y, J(M))
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given by

,r/(x) lq/(xo:’) ’

As per the corresponding result for group tings in Theorem 13 of [4], we see
that , on (4.1), corresponds to the restriction map

CI(9/(F)) CI(/(L)).

5. The homomorphism

The main aim of this section is to prove Theorem 1. We begin by showing
that k is indeed a group homomorphism; we conclude by showing that k
commutes with F-action.

Let P, Q denote points of A(L). Addition Ge Go Ge+a, given by
(P’, Q’) ---) (P’ + Q’), induces an injection of L-algebras

A" Le+ Q "-> Le (R)z LQ

we have the trace map T: Lv (R)L LQ ---> Lv+Q.
(5.1) If L contains the co-ordinates of G, then we note that

where 6" G ---> G G is given by 6(g) (g, g-:); correspondingly

T(f (R) h) E/s(R)h
g

forf Lv, h LQ.

We now pass to integral level, and show"

PROPOSITION 7. (a) A(V+Q)
_
v (R) Q-

(b) T(v (R) e)

Proof Let N denote a finite extension of L which contains the co-ordinates
of Ge and GQ. Applying (R),(C)v, by (3.3) we are. reduced to the case
fly ffQ 3; then (a) follows from the fact that is co-closed; while (b)
follows from the formula for the different of 3 given in Lemma 1, together
with the tower formula for differents. D
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We note the following trivial fact:

LEMMA 4. For x L, (R) LQ, and a, b , T(x(a (R) b)) T(x)a.b.

We now show that t (P + Q) 6(P) .6 (Q). With the notation of the
previous section we choose me, q, de etc. such that ff e, rn e,, 9A,, Le
dp’. Identifying ffe+Q with its image under A, by the above proposition we
have

I"+Q r-lT(P (R) {Q);

thus

=r-lT((mp,, (R)mQ,,)( (R) gA))
.a’-lT(me, (R)

and

Lp+Q T((de (R) dQ)(/(R) )) T(dp (R) dQ)d.

Since me (R) mQ (de (R) dQ)(otp (R) aQ), by Lemma 4 we conclude that

"a’-lT(mp (R) mQ) T(dp (R) dQ) (apaQ’/r-1).

Therefore, in summary, k(P + Q) is represented by Det(apaQr-1), which has
the same class under (4.1) as Det(ae).Det(aQ), which represents the class
tk(P) 6(Q).
We conclude this section by showing that for v V, we have an isomor-

phism of 9A-modules:

(5.2) {2)--- tolQ"

The map v: GQ GtolQ, given by v(Q’) [v]Q’, is not a map of G-spaces.
It does, however induce an isomorphism of L-algebras (and -modules):

To see this we are required to show that for f L[v]Q and a

(5.3) v*(f.a)=(v*(f)(O))a.
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To show this we evaluate on Q’ Go:
(5.4) (o*(f a))(Q’) (f a)([o]Q’) Ef([olQ’ + g)ag

where a ,agg. We choose u F such that uv 1 moda; then

((v*(f)(v)) a)(Q’) ((v*(f)a("))())(Q’)

,o*(f)(Q’+ [ulgla

Y’.f([v]Q’+ g)ag.

Now (5.3) follows from (5.4) and (5.5).
Lastly we note that since g

Q (resp. [olQ) is the largest 9-module in (C)Q
(resp. (C)to]Q), we may conclude that v* induces the required isomorphism
(5.).

6. The Weil pairing

The purpose of this section is to show how the Weil pairing provides a
natural tool for calculations with FrShlich’s character-map description of
classgroups; in particular we shall thereby obtain a quick proof of (1.3).
We let B denote the isogenous Abelian variety A/G; we let B denote the

dual Abelian variety of B; then (C)r acts on B by pull-back of divisors; we
write this action as [t], for a (C)K; we let ( denote the points on /(QC)
which are killed by []. We then have the Weil pairing

(6.1) w" G dg

where/ denotes the group of roots of unity in QC killed by the exponent of G.
(See page 184 of [9].) Thus, by definition, for a (C)r we have the adjoint
relation

(6.2) w([a]g,R) =w(g,[d]R) forg G, R d.

Henceforth we identify Y and (, by viewing Y as the distinct Q algebra
homomorphisms ’ (R) Q QCG Qc, and where for R ( we define

x.(Y’.ag) Eae,w(g, t).

This identification respects both the V-action and the f]L-action.
Let N denote a finite extension of L which contains # together with the

co-ordinates of G. We let f denote a radical element for the Kummer
extension N(A)/N(B)- so that f N(B); then f has class R , for
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some R, and

(6.3) f(z +A g) w(g, R) f(z).

(6.4) We remark that for any h L(A),
Egh(z + g)w(-g, R) satisfies (6.3).

of course, ( h R )

LEM_MA 5. For any number fieM N, we write N(A) fin for the N sub-algebra
of N(A) consisting of those functions which are finite at all points of GO; then
eoaluation on Go. induces a surjection

N(A)fin Mapu
N (GQ, QC).

Proof. It is clear that for some ’sufficiently large’ extension M/N,

M(A )fin "-* Map(GQ, M),

by use of co-ordinate functions. The result then follows on applying the M/N
trace. []

We now show (1.2). We let ( 0x,... 0, } denote a transversal of "F "L; for
o f we write

We choose Q A(F); for fL we shall write 0() Q’ -A Q’ G; for
brevity we set P’ EQ’’ A(L).

Next, by the above lemma, we choose f F(A)n, f’ L(A)fn such that

FQ f(Q’) .’(F) and L, f’(P’)’(L).

By (4.4), Proposition 6 and (4.1), in order to prove (1.2) it suffices to show

(6.5)

(6.6)

( R ,A/’(f(Q’)IR)( f’(P’)IR) -) Mapu,((, Q*).

(R r-tr’LI.#’(mo.]R)(m,IR) -1) Det(U(9/(L)).

Here, as usual, m O- (resp. me) denotes an ad61ic basis for o. (resp. ,) over
(F) (resp. 9(L)).
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Proof of (6.5). The result follows on comparing Galois action formulae:

lqf/,fo,o:)l) l](:,(o,,o,)lo)

I-I(:o;(e,o; + o())1o)

by (6.4).

Also

(6.7) (f’(P’)IR)= (f’(P’)IR) (f’(P’)JR).

However,

?,o= EQ,,.= EQ,,, EQ,: + Y’.0(,): ,,+ E0(,) :.
Hence by (6.7),

w(O(,) :, )(f’(?)l).
Proof of (6.6). Since both 4:((f[ )(mQI )-1)and (f’[ )(me[ )-1

are f]L maps, by (6.5) we see that the left-hand term in (6.6) is an fL-map.
Therefore, by Theorem 3,

_)(me[ _)-1 Det(9(N))a,

where N denotes the normal closure of F/L. However, since LG is commuta-
tive and separable, we see that for each prime ideal of (C), the homomor-
phism

*Det(9/*)Det 9

is injective. Thus Det(U((N))a’- Det(U(9(N))aL) Det(U((L)). D

7. Elliptic results

We now adopt all the notation and hypotheses given prior to the statement
of Theorem 4. We note that since [G[ NK/tr is a prime, p say, LQ L(Q)
for any non-zero point Q in ; furthermore, Gal(LQ/L) identifies with G,
since G _c E(L).
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We begin this section by observing that ) admits the following interpre-
tation:

For non-zero Q e , LO is abelian over K if, and only if,

Proof. This follows immediately from the f]r-equivariance of the Kummer
pairing 6 fb (R) Fv G of Fv-vector spaces and the fact that p [L" K].

From property (b) of L, we deduce that E acquires everywhere good
reduction over L, by the standard theory of the N6ron minimal model; we
may therefore now apply all the preceding results and techniques of this paper
to the triple (E, , L).

THEOREM 7. If 2 splits in K, then G
_
Ker q:.

Proof From (2.10), Chapter XI of [2], we recall that if N K(4p2),
F K(4O); then (C)N is a free (F)-module. (N.B. In order to guarantee that
(F) agrees with the associated order in [2], we apparently need to assume
r +lmod8(C)tc, and not just mod4-(C)r--see the remark on page 173 of
[2].)

Let P denote a non-zero point of G. Since G G0, we shall write K(0) for
the field generated by K by the co-ordinates of P. Since has ramification
index p 1 in both F/K and K(O)/K, we deduce that is non-ramified in
J F(O)/F; however, N/F is, of course, unramified outside ; thus (C) N (R)
(C)j (C)vj, and moreover this is a free 9/(J) module. By standard complex
multiplication theory N.J J(P); hence, by the above, j(e) admits
and so e( )e(J)) j(e). Therefore, on applying (R)e, (C)L, we conclude
that p(P)=I. U

Next we rework some of the results of [}4 on representative maps for classes
in C1(9). We let " denote a primitive p-th root of unity in Q, and we set
M L(’). We let

e" d HomL (, M.v

denote the injective Fflr-homomorphism induced by

Q--)(R-)(dQiR)(Q’) e

where LQ dQ. z (cf. Theorem 1.1 in Chapter X of [12]).
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For the present we fix R (, and let L’ denote the field generated over L
by the values of R. From Proposition 6 and Theorem 3 we know that

where c denotes id61e content. Moreover, by choosing dQ to be an 9 basis of
Q,, for each ctlr, we see that (dQIR)(Q’)r- is a unit at each such prime
(see Theorem 3 again). However, since cl is non-ramified if q r, and since
(dQIR)(Q’) p LQ, we have shown that (dQIR)(Q’)(C)L,<Q) is lifted from an
(C) L, ideal,

(7.1) (do.IR)(Q’)(C)z,<Q

with b o(R) an (C) ,-ideal.
Let 92 denote the unique maximal order in LG (note that LG, since

E(L)

___
G). Thus we have an isomorphism.

C1(92)---CI((C)L) I-ICl((C))

where the product extends over the fL-orbits of (\ 0. Of course, C1(92)
possesses an idlic Map-description, as per (4.1); we obtain (7.2) by evaluating
on orbit representatives and taking content. Therefore, by naturality together
with the above work, we see that the image of k(Q) in C1(92), under the
extension map e: C1(9) C1(92), is represented by 1-IbQ(R). In fact, from
the above, we note that b (0) is obviously a principal (C)z-ideal.
The proof of the following result, and its subsequent application is similar

to part of Leopoldt’s Spiegelungsatz:

PROPOSITION 8. Let U denote the units of (C)t. If Q Ker(e o), then

e(Q) Homu,.( UM*V)M,P

Proof We suppose e k(Q)= 1, and we choose a non-trivial R (.
Then, by hypothesis and (7.1),

(C),o.)(do.IR)(Q’) X,(C)L,O.)

for some XR M*. Therefore e(Q)(R) is represented by
(dolR)(a’)PSP. t

the unit

We now conclude by proving Theorem 4. Let 0" A Fp* denote an abelian
character of A. We write x* (resp. ) for the fr-character given by action on
E(p) (resp. the p-th roots of unity); from the Weil pairing we know that
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(e(Q)(R))"= e(Q’)(R") e(Q)(R) ’*(’’).

Writing go Ker +, we see that

However, by Dirichlet’s Unit theorem we know that

dimvp(U (R) Fn)) 2,dimvp(U (R) if 0 =/= .
Moreover, if C

_
U (R) F) denotes the F,-line represented by ’, then we note

that Im(e) N Homu,((, C) 1 since M(I/P)/M is ramified at pP (by condi-
tion (a) for L). Thus we have now shown that for all 0

dim(e(0’ )) < 1.

Part (b) of Theorem 4 now follows from Theorem 7, since e is injective.
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