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GENUS ACTIONS OF FINITE SIMPLE GROUPS

BY

ANDREW J. WOLDAR

1. Introduction

An action of a finite group G on a Riemann surface S is called a genus
action provided G acts effectively and analytically on S but does not so act on
any Riemann surface of lesser genus. The purpose of this paper is to prove:

THEOREM A. Let G be a finite simple group (simple shall always mean
simple nonabelian ), T( r, s, t) a Fuchsian triangle group, A a surface group, and
S the closed Riemann surface induced from the short exact sequence

1 --> A T(r,s,t) G 1.

Then either
(i) G is normal in Aut S, the full group of automorphisms of S, or

(ii) G is isomorphic to L2(7) and (r, s, t) (3, 3, 7).

THEOREM B. Let G be a finite simple (2, s, )-group with genus action on the
Riemann surface S arising from the short exact sequence

1 --> A --> F --> G 1.

Then G is normal in Aut S. Moreover, if F is a triangle group, then Aut S
embeds faithfully in Aut G.

Remark. The requirement in Theorem B that G be (2, s, t)-generated is far
less restrictive than appearances would at first indicate. Indeed it is a long-
standing conjecture that every finite simple group is so generated. In particu-
lar, the conjecture has been verified for the families of alternating and sporadic
groups, among others (see, for example, [1], [2], [3], [4], [8], [15]). Concerning
the requirement that F be a triangle group, this appears to be the case with
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overwhelming frequency. Indeed, there is no known example of a finite simple
group in which F is non-triangular in its genus action.

Before proceeding, we give a brief organizational outline of the paper. In
Section 2 we provide a somewhat philosophical justification for our interest in
genus actions. Section 3 is devoted to preliminaries, including a proof that the
genus action of a finite non-abelian (possibly non-simple) (2, s, t)-group
covers the 2-sphere (Riemann sphere) with either three or four branch points.
In Section 4 we present a proof of Theorem A, while in Section 5 we derive
some useful generic results concerning genus action. A proof of Theorem B
appears in Section 6.

2. Why genus action?

A natural question to ask is "What is the motivation for the theoretical
development in this paper?" In particular, why are we interested in genus
actions for finite simple groups?
One answer is that we seek a geometrical representation theory of finite

simple groups as automorphism groups of Riemann surfaces. The genus
actions play the role of irreducible representations in this theory. When these
genus actions give rise to full automorphism groups of the related surfaces, our
representation theory has a more natural form. This geometrical representa-
tion theory in turn has a faithful image in the ordinary integral representation
theory of the group by means of the induced homology representation. We
seek to relate these integral representations to the "number theory" of finite
simple groups. Our genus homology representations are minimal integral
representations which integrate in the sense of Schottky-Jung, and as such
should have a special status.
As additional motivation, we cite the theorem of Greenberg [6] which

asserts that given a finite group G and Riemann surface T, there exists a
Riemann surface S such that G is the full automorphism group of S and
T S/G. Our results almost give Greenberg’s theorem in the case where G is
a finite simple group, S is a Riemann surface of least genus on which G acts,
and T is the Riemann sphere.

3. Preliminaries

Let G be a finite (r, s, t)-group, i.e., a finite group having presentation given
by

G (gl, g2, g3[g[-- g gf3 glg2g3 1, etc.),

with r, s, > 2. Then G is the epimorphic image of the triangle group

T(r, s, t) ( A, B, CIAr n C ARC 1),
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i.e., the group of orientation preserving symmetries of the appropriate plane P
generated by rotations of 2r/r, 2r/s, and 2r/t respectively, about the
vertices of a triangle having angles r/r, r/s, and r/t. The plane is spherical
if

euclidean if

1 1 1-+-+ > 1r S --1 1 1-+-+ =1
r S -"

and hyperbolic if

1 1 1
-+ -+ < 1 [9lr s -This leads to a short exact sequence

1A T(r,s,t) G 1

and an effective analytic action of G on the closed Riemann surface P/A.
Moreover,

P/T(r, s, t) S

(8 2 denotes the 2-sphere) and the branched covering p/A --, P/T(r, s, t) has
3 branch points of respective orders r, s, and t. By the Riemann-Hurwitz
formula, we compute the genus g(p/A) of P/A to be

g(p/A) =1+ I@l(1 lr ls It
Thus, if we further assume G is (2, s, t)-generated, we obtain

g<l+ 2 s t’

where g is the least genus of any surface S which admits an effective and
analytic action by G.

PROPOSITION 3.1. Let G be a finite non-abelian (2, s, t)-group and let S be
a Riemann surface of least genus on which G acts. Then S/G S2 and
r: S - S/G has either 3 or 4 branch points.
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Proof From above

1) 1 1 1
2h-2+ E 1-/ < 2 s t’

where h is the genus of S/G and n denotes the order of the branch point xi
of S (1 < < b). Clearly h < 1. If h 1 then b 0, whence G acts fixed
point freely on S with orbit space the torus, a contradiction. Thus h 0 and
b < 4. As G cannot act as deck transformation group for the regular un-
branched coveting S r-l(xi) C, the result follows.
The following theorem, well known to the mathematicians of the previous

century, is stated below without proof. (See, for example, [7].)

THEOREM 3.2. Suppose G is a finite group acting effectively on a closed
orientable surface S by orientation preserving homeomorphisms. If g
genus(S/G) and there are b branch points of orders n1,..., rib, then G has a
presentation of the form

g

X1, Yl,..., Xg, yg, el,..., eb I-I [xi, yilel eb e
i--1

e, 1, etc.).
As a consequence of Proposition 3.1 and Theorem 3.2, we are able to realize

as a surface of least genus for a finite non-abelian (2, s, t)-group G the surface
p/A induced from the short exact sequence

where F is a Fuchsian triangle group or quadrangle group. Thus a presenta-
tion for F is given by

F=(Xl,...,xlxf, Xk=X ..x 1)

where k 3 or 4. In general, we refer to the unordered k-tuple (n,..., n) as
the signature of F.

DEFINITION. Let G be a finite group whose action on a surface S is
induced from the short exact sequence

We say the group K extends the action of G on S provided there exists a
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commutative row exact diagram

such that:
(i) A is Fuchsian,
(ii) IA: F is finite, and
(iii) The vertical maps are (left to right) the identity map, inclusion map,

and a group monomorphism respectively.

We observe that the existence of such a diagram implies that K acts
effectively and analytically on S and that the action G inherits as a subgroup
of K is consistent with its original action on S. By Aut S we shall mean the
group of all automorphisms of S, i.e., all continuous bijective isometries which
preserve the analytic structure of S. By a theorem of Schwarz, if S has genus
at least 2 then Aut S has finite order, so that Aut S extends the action of G on
S, and every extension K of G on S can be realized as a subgroup of Aut S in
a natural way.

Suppose now that K extends the action of G on S, and let

y= (nl, nk) and k= (ml,...,m,)

denote the respective signatures of F and A. As the genus of S is unchanged
by extension, we derive the following useful formula, obtained by equating the
Euler characteristic at both levels of the appropriate commutative diagram:

(Here h denotes the genus of S/G and that of S/K.) We shall use this
formula later to establish an upper bound on the index IK: GI.

4. Proof of Theorem A

For the reader’s convenience, we begin with a restatement of the theorem.

THEOREM A. Let G be a finite simple group, T(r, s, t) a Fuchsian triangle
group, A a surface group, and S the surface induced from the short exact
sequence

l h T(r,s,t) G I.
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Then either
(i) G is normal in Aut S or
(ii) G Lz(7) and (r, s, t) (3, 3, 7).

Proof Let K extend the action of G on S in accordance with the
commutative row-exact diagram

As T(r, s, t)< A, we know A is a triangle group as well. All possible
inclusions among triangle groups are given in [14]; as the normal inclusions
clearly imply (i) of the theorem, we concern ourselves only with the non-nor-
mal inclusions found there. These appear in Table 1, V and denoting the
respective signatures of F T(r, s, t) and A.

Table 1

v X IA: rl
A (7, 7, 7) (2, 3, 7) 24
B (2, 7, 7) (2, 3, 7) 9
C (3, 3, 7) (2, 3, 7) 8
D (4,8,8) (2,3,8) 12
E (3,8,8) (2,3,8) 10
F (9, 9, 9) (2, 3, 9) 12
G (4, 4, 5) (2, 4, 5) 6
H (n,4n,4n) (2,3,4n) 6

(n,2n,2n) (2,4, 4n) 4
J (3, n,3n) (2, 3, 3n) 4
K (2, n,2n) (2, 3,2n) 3

We begin by analyzing the cases where IA F > 10, specifically A, D, and F
of Table 1. From Singerman’s classification of finitely maximal Fuchsian
groups [14], and the fact that two triangle groups are conjugate in PGL(2, C) if
and only if they have the same signature, we see that in each of the cases
corresponding to A, D, and F there exists an intermediate triangle group F’
with signature 3" and indices as shown in Table 2.
Denote by r and s the respective indices IA: I" and II": I’ with F, F’, A

as in Table 2. Then r [K" HI and s IH’G[ where H is the image of F’
under the epimorphism A ---> K. Consider now the action of K on its H-cosets
(i.e., the cosets of H in K) and let N denote the kernel of this action. Clearly
K/N embeds in the symmetric group Y’r on r letters and, as H stabilizes the
trivial coset 1H under this action, H/N embeds in Y’r-l" Thus G/G N N =-
GN/N embeds in Yr-1 as well. As G is simple, we must have G N N 1 or
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Table 2

v’ IA" r’l Ir" rl
A (7, 7, 7) (3, 3, 7) 8 3
D (4,8,8) (2,8,8) 6 2
F (9,9,9) (3,3,9) 4 3

Table 3

, h r IA’ I’l Possibilities for G

(2, 7, 7) (2, 3, 7) 9 As, A6, A7, A8, L_(7)
(3, 3, 7) (2, 3, 7) 8 As, A6, AT, L_(7)
(3, 8, 8) (2,3, 8) 10 As, A6, A7, As, A9, L/(7), L9_(8)
(4,4,5) (2,4,5) 6 A

(n,4n,4n) (2, 3,4n) 6 A
(n,2n,2n) (2,4,2n) 4 None
(3, n, 3n) (2, 3, 3n) 4 None
(2, n,2n) (2, 3, 2n) 3 None

G. If G q N G, then G < N, whence we conclude N G or N H as
s IH’GI is prime. But N G contradicts our assumption that F

_
A is a

non-normal inclusion, while N H implies F’<A, again a contradiction (see
C, H, J of Table 1). Thus G N N 1 and we obtain a faithful embedding of G
in Er-1, i.e., G is isomorphic to a simple subgroup of 7, Es, or 3 in
accordance with F having signature (7, 7, 7), (4, 8, 8), and (9, 9, 9) respectively.
As neither Y’s nor 3 possess elements of order 8 or 9, the latter two cases can
never occur. We conclude that G is isomorphic to either L2(7) or A 7 and that
F T(7, 7, 7).

But in either case, as IH’GI 3, we see that H must itself embed in h 7.

This is an obvious contradiction as copies of L2(7) in A 7 are maximal. Thus
none of the three cases A, D, and F of Table 1 occurs.
The remaining cases are enumerated in Table 3. To treat them we no longer

require the existence of an intermediate Fuchsian group. We merely note that
the action of K on its G-cosets gives rise to a faithful embedding of K in Y,
and that under this embedding G gets mapped to a simple subgroup of A 1,

the alternating group on r- 1 letters. All possibilities for G have been
recorded in the table.

Case 1. 3’ (2, 7, 7). We first observe that G cannot be isomorphic to
either As or A6 as neither of these groups possess elements of order 7. Suppose
G is isomorphic to A7. As IK:GI 9 this implies K is isomorphic to a
subgroup of index 8 in 9. As no such group exists we obtain a contradiction.
Finally suppose G is isomorphic to L2(7), in which case K has order
23 33 7. Let M be maximal normal in K. As K is a (2, 3, 7)-group and 2, 3,
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and 7 are relatively prime, it follows that K/M is a simple (2, 3, 7)-group,
whence K/M =- L2(7). Thus K embeds in a 3-local subgroup of Y’9- As no
3-local of 9 contains a copy of L2(7), we obtain the final contradiction.

Case 2. 3’ (3, 3, 7). Once again G contains elements of order 7, so cannot
be isomorphic to A5 or A6. Suppose G is isomorphic to h7. As IK: G[ 8 in
this case, we see that K is isomorphic to a subgroup of index 2 in 8- Thus
K -= A8, a contradiction as A8 is not (2, 3, 7)-generated [4].

Case 3. 3’ (3, 8, 8). This case is easily handled as none of the groups
listed possess elements of order 8.

Case 4. 3’ (4,4,5). Not possible as A5 contains no elements of
order 4.

Case 5. 3’ (n, 4n, 4n). Not possible as A5 contains no elements of order
4.
Clearly no other cases can arise, so the theorem is proved.

Remark. The exceptional case in the theorem actually occurs. The associ-
ated diagram is given by

1 A -- T(2, 3, 7) Aut S 1

1 ---,----, r(,,7)----, a ---1

where Aut S is isomorphic to the holomorph Hol(E8) of an elementary
abelian group of order 8.

5. Extensions of genus actions

In this section we specialize to genus actions of G. Our first result gives
conditions under which the genus action of a finite hyperbolic group cannot be
properly extended.

PROPOSITION 5.1. Let G be a finite hyperbofc group whose genus action
arises from the short exact sequence

where F is a triangle group. Suppose G is the epimorphic image of a group K
which extends the action of G on S. Then K G.
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Proof.
form

By hypothesis, there exists a commutative row exact diagram of the

As F is a triangle group by hypothesis, A is triangular as well. Denote by
(nl, n _, n 3) and (ml, m 2, m 3) the respective signatures of F and A. We
thereby obtain from Section 3 the equation

1 1(2_ (1
1,GI(2-(1-/)) IK,, ---)).mi

Clearly K is an (m1, my_, m3)-group. By assumption there exists a group
epimorphism p: K - G; let m denote the order of p(x) where x K has
order mi. Then G is an (m, m’, m’)-group and, as a genus action gives rise
to the largest possible Euler characteristic, we obtain

1 1

As m < m i, it immediately follows that

Finally, as G is hyperbolic, we observe that the quantity 2 E(1 1/m’) is
necessarily negative. This implies that 2- E(1- 1/mi) is negative as well
and division yields ]K] < IGI. As K extends G the result follows.

PROPOSITION 5.2.
surface S arising from

Let G be a finite simple group with genus action on the

where F is a triangle group. Suppose further that G is normal in a group K which
extends this action. Then CI(G) 1. In particular, if G is normal in Aut S we
have CAuts(G) 1 and Aut S embeds faithfully in Aut G.

Proof It is a classical result that the only finite simple (non-abelian) group
which occurs among the spherical and euclidean groups is the spherical group
A 5. But A5 is deafly maximal in its action on the sphere, (otherwise A would
embed in a cyclic or dihedral group). Thus K G in this case and Cr(G)
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Z(G) 1 as required. We may therefore assume G is hyperbolic. Suppose x is
an arbitrary non-identity element of Cr(G). As Z(G) 1, x is an element of
K G whence G(x) --- G (x) properly extends the genus action of G. But
G is the epimorphic image of G(x) under the projection gxi g. This
contradicts Proposition 5.1, and we conclude that CI(G) 1 as claimed. As
the automizer Nr(G)/CIc(G) of G in K is isomorphic to a subgroup of Aut G
and as Nr(G) K by assumption, we conclude that K embeds faithfully in
Aut G. Choosing K equal to Aut S now completes the proof.

6. Proof of Theorem B

We begin with a series of technical lemmas. The reader is reminded that for
us simple always means simple non-abelian.

LEMMA 6.1. Let G be a simple subgroup of A19 the alternating group on 19
letters. Then G is isomorphic to one of the following groups:

A,(5 < n < 19), L2(7), L2(8), L2(11),
L2(13), L2(16), L2(17), L3(3), mll, mla.

Proof This is immediate from a classification of Sims of primitive permu-
tation groups of small degree [13].

LEMMA 6.2. Let G be a finite noneuclidean group with genus action on the

surface S induced by the sequence

Assume further that the genus g corresponding to this action satisfies

g<l+

Then F is a triangle group.

Proof Trivial.

LEMMA 6.3.
the sequence

Let G be a simple subgroup of A19 with genus action induced by

Then G is normal in any group K which extends this action.

Proof We first show that F must be a triangle group. This has been
accomplished for the alternating groups [4] and for the two-dimensional
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Table 4

G (r,s,t) g* 1 + IG----j[
12

L3(3 (2, 3,13) 253 469

Mix (2, 4,11) 631 661

Mx2 (2,3,10) 3169 7921

projective linear groups [8], [5], [12]. The remaining subgroups G of A19 are
given in Lemma 6.1 as L3(3), Mll, and M12. In each case we note from [11]
that G is an (r, s, t)-group, and we calculate the corresponding genus g* of
p/A induced from

by the formula

1 a--, T(r,s,t) GI

g*=l+ -+-+s -1
We list our findings in Table 4 below. As g* < 1 + IGI/12 in each case, we

conclude that g < 1 + ]GI/12 where g is the least genus of a surface on which
G acts. Thus by Lemma 6.2, F is triangular as claimed. By Theorem A, G is
normal in K unless G =- L2(7). But the genus action for L2(7) is induced by
the sequence

1 -+ A --+ T(2, 3, 7) -+ L2 (7) -+ 1,

and one easily checks from [14] that this action admits no proper extension.
Thus G K for G isomorphic to L(7) and the lemma is proved.
We now proceed to the proof of:

THEOREM B. Let G be a finite simple (2, s, t)-group with genus action on the
Riemann surface S arising from the short exact sequence

Then G is normal in Aut S. Moreover, if F is a triangle group, then Aut S
embeds faithfully in Aut G.

Proof. Let K be any group which extends the action of G on S in
accordance with the commutative row exact diagram.

We show G is a normal subgroup of K.
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Recall from Section 3 that the genus g of S satisfies

g<l+ 2 s

as G is (2, s, t)-generated. In terms of Euler characteristics this gives

1 1 1)--IGI -}- + -7 -
As we have already shown that A cannot be properly extended in its genus

action (proof of Proposition 5.2), the theorem follows in this case. We also
recall that A 5 is the only finite simple group which is not hyperbolic. We may
therefore assume for the balance of the proof that G, so K as well, is
hyperbolic.
The largest Euler characteristic that can be attained by any hyperbolic

group H is given by

1 _(1_1 _1 1
42 IHI.

(This is the case where H is a Hurwitz group, i.e., (2, 3, 7)-generated.) Apply-
ing this to the case where H is the extended group K, we obtain

so that

1 1
2 lal < x(S) -IKI.

As easy calculation now yields IK: GI < 21; i.e., Ig: GI -< 20.
Consider next the action of K on its G-cosets. Clearly the kernel N of this

action is a normal subgroup of K contained in G. As G is simple by
assumption, we have either N 1 or N G. In the latter case G is normal in
K as desired. In the former case K embeds in 20, whence G embeds in A19 as
it is a simple group which stabilizes the trivial coset 1G. Application of Lemma
6.3 now yields the desired conclusion G<IK. We complete the proof by
applying Proposition 5.2 to the case K Aut S, under the additional assump-
tion that F is triangular.
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Remark It is of interest to determine which signatures (ml,... m,) for F
might actually arise from a genus action for a finite simple (2, s, t)-group G.
The reader will have tittle trouble verifying them to be

1 1 1 1
1 (m1, m ., m 3) where + + >

m m 2 m 2
2. (2,2,2, n), n > 2,
3. (2,2,3, t), 3 < < 5.

Acknowledgements. I am grateful to Henry Glover for introducing me to
the study of group actions on Riemann surfaces.
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