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GENERALIZED CYCLOTOMIC FIELDS

BY

STEPHEN BEALE AND D.K. HARRISON

This note examines the splitting field K
___
C over Q of the set of polynomi-

als of the form X b, with n N* and b Q. We obtain the Galois group
AutQ(K) as a natural subgroup of a semidirect product of the Pontryagin
dual of a quotient of the divisible hull of the positive rationals and the
automorphism group of the maximal abelian extension of the rationals.

Section I

Let R denote the Pontryagin dual Hom(Q/Z, Q/Z) of Q/Z. For each
n N* and r R there is an integer k, uniquely determined modulo nZ,
such that

(1 ) k
r+Z =+Z.

We denote the class of k mod nZ by jn(r) and observe that r j(r) is a ring
homomorphism of R onto Z/nZ with kernel nR. If we write j for the
induced R/nR -> Z/nZ, then these maps interact properly with the natural
epimorphisms R/nR R/mR and Z/nZ --> Z/mZ when m divides n (i.e.,
the diagram

R/nR Z/nZ

Z/mZ

commutes), allowing us to identify the corresponding projective limits R and
Z (= the Priifer ring__mZ/nZ). With the Krull topology (for which the sets
N, (f R If(a) 0, /a A } form a basis of neighborhoods of the iden-
tity when A ranges over finite subsets of Q/Z), R is a profinite group. The
units U(R) Aut(Q/Z) of R form a closed subspace of R in which multipli-
cation and inversion are continuous (in the relative topology) and hence U(R)
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is itself a profinite group. We also have the map

Ot e 2tia

of Q into C with kernel Z; we write C for its image and ’n for the image of
l/n, and we denote by to the inverse of the induced isomorphism Q/Z --) C.
For B a discrete abelian group, there is a natural isomorphism

Hom(B (R) Q/Z, Q/Z) Hom(B, R);

we give Hom(B, R) the strongest topology making this map continuous; here
we take B (R) Q/Z to be discrete and we let Hom(B (R) Q/Z, Q/Z) have the
Krull topology so that Hom(B (R) Q/Z, Q/Z) and hence Hom(B, R) are
profinite groups. We note that U(R) acts on Hom(B, R) by

(r,f)rof

and that this action is continuous as a map from U(R) Hom(B, R) into
Hom(B, R). It follows that with the product topology the semidirect product
Hom(B, R) ) U(R) is a topological group; the multiplication is given by

(f r)(g, s) (f + r g, rs),

for all f, g Horn(B, R), r, s U(R). Furthermore since both Hom(B, R)
and U(R) are compact, Hausdorff, and totally disconnected, so is their
product, and therefore the semidirect product is a profinite group.
When B is free abelian we have a surjection

%: Hom(B, R) Hom(B, R/2R)

induced by the projection rl: R R/2R, and we give Hom(B, R/2R) the
strongest topology making % continuous. Assume B is so and let : U(R) ---)

Horn(B, R/2R) be a continuous group homomorphism. We define Bx to be
the subset

Bx {(f, r) Hom(B, R) > U(R)lh(r) /,(f))

of Horn(B, R) U(R). Beating in mind that the class modulo 2R of an
element r R is determined completely by its restriction to 1/2Z/Z and that if
r is a unit of R, r 11/2z\z must be the identity, one checks that the continuous
map

(f r) h(r) rl.(f )

of Hom(B, R)) U(R) into Horn(B, R/2R) is in fact a group homomor-
phism. As the kernel of this map, Bx is a dosed subgroup of Hom(B, R) )

U(R) and hence is a profinite group.
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Section 2

Let E be the maximal abelian extension in C of Q; this is the smallest
subfield of C containing the roots of all polynomials of the form X 1 with
n N*. Write B for the multiplicative group of positive rational numbers;
this is a free abelian group with basis the set S of prime numbers. For each
n N*, k Z, and b B, the polynomial X bk has exactly one positive
real root; we denote this root by bk/" and we write for the set of all such
roots, F for the field Q[], and K for E[] E F. K is the splitting field
of the set of polynomials x- b, n N*, b B. Denote its Galois group
over Q by F.
For p a prime number and k a unit of Z/pZ we define the symbol (k/p) in

R/2R to be 0 if k is a square in Z/pZ and to be 1 otherwise; k (k/p) is
then a group homomorphism from U(Z/pZ) to R/2R. For r U(R) we
define (r) Hom(B, R/2R) on elements of the basis S of B by

0 ifp=2andA(r)= __1+8Z,

ifp=2andA(r) +3+ 8Z,

if p =- 1 (mod 4),

or if p 3 (mod 4) and J4 (r) 1 + 4Z,

if p-- 3 (mod 4)and j4(r) 3 + 4Z,

where Jn" R Z/nZ is the map defined in 1. One checks with little difficulty
that X: r h(r) is a continuous group homomorphism of U(R) into
Horn(B, R/2R). It is Bx that we are after.

THEOREM 2.1. With B and defined as above, F -- Bx.

Proof. For o I’, b B, and a Q, the number o(b)/b is a root of
unity which depends only on the class of a modulo Z; b is to be interpreted
as the unique positive real root of x- bk, where a k/n, k Z, n N*.
Define/" I" Horn(B, R) by’

o (b (a + Z o(o(b’)/b’))),

and v" r U(R) by

o -) tdOlcOJ -1.

It is straightforward to check that v is a continuous group epimorphism and
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that/t is a well defined continuous map satisfying

(i.e., / is a derivation when Hom(B, R) is considered a F-module through v).
One notes that this is exactly what is needed to insure that : F
Hom(B, R) > U(R) defined by

o

is a group homomorphism. One checks that the kernel of is trivial, and with
the aid of the quadratic Gauss sums

’s + ’ if p 2,- ’ if p 1 (mod 4),

.4+, ifp--3(mod4)4p

(see [1], pp. 70-75; here (i/p) is the ordinary Legendre symbol with values in
U(Z) ( 1 }), one sees that the diagram

commutes; it follows immediately that has its image in Bx. In order to show
that its image is all of Bx, we will identify K with a quotient of the group
algebra E(D) over E of the divisible hull D B (R) Q of B. The Q here is the
additive group of rationals. D is an abelian group which we write multiplica-
tively, and for d D we let ud denote the basis dement of E(D) correspond-
ing to d. Since B is free abelian, the inclusions Z Q and 1/2Z Q induce
injections

B-=B(R)ZD and B(R)1/2ZD

which we use to identify B and B B (R) 1/2Z with subgroups of D.
For b B and a Q we have defined above the dement b F; the map

(b,a)b"
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is Z-bilinear from B Q into the units of K and so induces a group
homomorphism D - U(K) which in turn determines a surjective E-algebra
homomorphism

O" E(D) - K= EF.

Note that 0({ udld B1)) __c E (3 F so O(Ud)U E(D) when d B1. We
will show that the kernel of this map is the ideal a of E(D) generated by the
set

T { Ud- O(Ud)Ulld n1}

and thereby obtain an isomorphism 0" E(D)/a K.
We note that D/BI is a torsion abelian group and hence is the union of its

finite subgroups; from this it follows that E(D) is the union of its subalgebras
E(H) where H ranges over subgroups of D containing B as a subgroup of
finite index (one uses here the fact that the set of such H is directed by
inclusion). Hence to show that a is the kernel of 0 it will be enough to show
that for any such H the kernel of On O len) is E(H). T. So let H be a
subgroup of D with B < H and with (hx,..., ht } a set of Bx-coset represen-
tatives in H. Then in the terminology of [2], the field L E[0(hx),..., 0(h )]
is a pure, separable, and coseparable extension of E and hence Cogalois over
E. If O(h) and O(h) represent the same element of the Cogalois group
Cog(LIE) torsion subgroup of U(L)/U(E), then h and h represent the
same coset of B1 (one cheeks) which implies that =j. It follows that
O(h)U(E),..., O(ht)U(E) are distinct elements of Cog(LIE ) and hence that
O(hx),..., O(ht) are linearly independent over E. This implies dime(L) > t.
We next observe that vectors uh + E(H) T,..., uh, + E(H) T

span E(H)/E(H) T as a vector space over E, and hence

dimE(E(H)/E(H) T) <_ t.

Now since T and hence E(H). (T) are included in the kernel of OH, and
since L E(H)/Ker(Oh), we have

t < dimE(L ) detE(E(H)/Ker(OH)) < dete(E(H)/E(H) T) < t,

which implies E(H). T Ker(0H). This shows that a is the kernel of 0 and
gives us the isomorphism

O" E(D)/a K.

We now complete the proof of the theorem by showing that tp maps F onto
Bx. Let (f, r) Bx. The map

(b, or) o-x(f(b)(a + Z))Ub(R)
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of B Q into the units of E(D) is Z-bilinear so induces a group homomor-
phism

which induces an E-algebra homomorphism

e(o) -+

Since z z c is an isomorphism of Aut(E) onto Aut(C), there is a unique
element Aut(E) extending to- trto Aut(C). Define : E(D) -+ E(D)
by

One uses quadratic Gauss sums as above to check that maps T (and hence
a) into a. Thus we get an E-algebra homomorphism (taking 1 to 1)
E(D)/a .-+ E(D)/a, and since E(D)/a -- K is a field, is an automor-
phism. Finally we let o/, be the composition /- and check that/(o/, r) f
and V(fff, r) r to complete the proof.

Section 3

We turn now to a consideration of subfields of K which are finite dimen-
sional over the rationals, focusing on a family of these fields with the property
that every such subfield is included in some one in our family.
We call a positive integer n indicial and write n Ind if 8 divides n

whenever n has a prime divisor congruent to 2 or 3 mod 4. These will be
cofinal in an upcoming inverse limit. For n indicial we write S(n) for the set
of prime divisors of n and s(n) for the cardinality of S(n). We define the n th
indicial polynomial to be

H
p.S(n)

and let K denote the splitting field in K of Kn over Q and I’ the Galois
group of K over Q. We also set E Q[’] and Fn Q[S(n)/"], where
S(n)x/" (P/"IP S(n)}, and we observe that K E,,F,, and that E
Ll+indE, that F Ui,dlFn, and that K U+indK. Furthermore if n, rn
are indicial then so is their least common multiple [n, m], and E,,Em Et,,,m],
F,,F <:r. Ft,,,m] and K,,K,,, c._ Kt,,,m]. Thus the family {K,,In Ind} is cofinal
(in the sense of the last paragraph) in the set of all finite dimensional
extensions of Q in K.

Let n be indicial. Write dn for the greatest common divisor of 2 and n, U
for the units of Z/nZ, and M for Map(S(n ), Z/n Z). M,, is an abelian
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group under pointwise addition of maps, and U acts on M by pointwise
multiplication; M > Un will denote their semidirect product with respect to
this action.
For k, j positive integers with jlk, rk2 will denote the canonical map

Z/kZ--. Z/jZ. The assignment f Crn, dO f maps M onto
Map(S(n), Z/dZ) with kernel dM; we will use the induced isomorphism to
identify M/dM with Map(S(n ), Z/dZ). Note that this group is trivial
when n is odd.

Let rl: M M/dM be the natural projection, and define X.: U.
M/dM by

a2- 1
8 + d,,Z, p 2,

a-1

p I mod 4,

+dnZ, p-=3mod4,

where u a + nZ Un and p S(n), and where [u/p] is defined to be
0 Z/dZ if u is a square in U and 1 Z/dZ otherwise; it is straightfor-
ward to check that , is a well defined group homomorphism.
We let

[(Un)2- {1,_1} ifniseven

U, if n is odd.

PROPOSITION 3.1. , maps U, onto M,/d,M, and V, is its kernel.

Proof This dear when n is odd, so assume that n is even and hence that
8 In. It is easily seen that V, is included in the kernel. Suppose that u U, is
in the kernel, with u a + n Z, a relatively prime to n. Then u is a square in
U, if and only if a -= 1 mod 8 and [u/p] 0 for every odd prime p dividing
n. Nowif a lmod8 then 1/2(a 1) 0mod2, so for pin with p 3 mod4,- + 2 +2Z =,n(u)(p)=0.

Since [u/p] ,n(u)(p)= 0 for pin with p--lmod4 as well, we have
u U,2 if a 1 mod 8. Thus since

2

+ 2Z ,,(u)(2) 08
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implies a + 1 mod 8, u fails to be a square in U only if a -1 mod 8. In
this case a 1 mod 8,

for pin with p I mod 4, and for pin with p 3 mod 4,

a 1 2Z)+( 2 / u)(p) =0,

and hence -u U.2 and u V.. Thus Ker(h.) V..
Still assuming that n is even, we note that -1 U.2 and hence that

Vl--21U.21 By decomposing U into a product of groups of units mod
prime powers we find that

[U." U,,21 2*(’)+

and hence that

V.I 2tP(")/2(")+1

It follows that the image of ,. has cardinality 2(") [M.: 2M.], which shows
the map is surjective, rq

Let G. {(f, u) M. > U.ll.(f) X.(u)}. Define g. to be the order of
G. and note that since

( f u) ,-+ rl,,( f ) X,,( u)

is a group homomorphism (as one easily checks) of M
with kernel G, G is a group and

IM. U.I ( n )(")gn IM,,/2M,,I p(n),

onto M/dnM

where tp is the Euler function.
Write C. for the subgroup (’.) of C and to. for the unique group

isomorphism C,, Z/nZ satisfying oa.(’.) 1 + nZ. Define v.: F. U. by

. has its image in U. since 0(%) is a primitive nth root of unity, and one
easily checks that v. is a group homomorphism. For each o F. and p
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S(n), o(pt/")/px/" is an nth root of 1, so we can define a map/,,: F,, M
by

(i (p n(O(pl/n)/pl/n));
for , F, ts map satisfies

Thus

is a group homomosm of F. into M. U..

THEOREM 3.2. Pn maps Fn isomorphically onto Gn.

Proof. One checks that tp, is injective and uses quadratic Gauss sums as in
2 to see that its image lies in G,. We take advantage of the finiteness of F, and
G in showing that the image of tpn is all of G,. The following lemma enables
us to count the relevant dimensions.

LEMMA 3.3. F. and E, N F. are cogalois extensions (see [2]) of Q with
cogalois groups isomorphic, respectively, to M, and M,/dnM,.

Proof. Write L for E, N F. and Q* for the units of Q. By [2], F. is
cogalois over Q and hence the subextension LIQ is also cogalois, and
Cog(LIQ) < Cog(Fn]Q). Let t be a positive integer dividing n. For a prime
p S(n) and an integer a, pa/t is an element of F, whose coset modulo Q*
depends only on p and the class u of a modulo Z, and we let pU/tQ, stand
for this coset; it is an dement of Cog(F, IQ). It is straightforward to check that

f I-I
p.S(n)

is a group isomorphism of M onto Cog(QIQ).
Using Gauss sums again, one notes that for every p S(n), pt/dn E,

and since dln, pt/a. F as well, so that pa/dn L for every integer a.
Hence

pS(n)

defines a map from Map(S(n ), Z/dnZ) -- M/2M, into Cog(LIQ) which one
checks is an injective group homomorphism. Its surjectivity follows (as one
checks) from the fact, which we proceed to establish, that every element of
Cog(LI Q) has order dividing d.
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Let y Cog(LIQ) have order k. Note that kin since Cog(LlQ) <
Cog(FnlQ) and the latter has exponent n. Also, y is of the form bQ* with
b L and bk Q*; thus b is a root in L of Xk bk Q[x]. The conjugates
of b over Q all look like ’b with " a kth root of 1, and they all lie in L since
L is a subfield of the abelian extension En. Thus if ’b is a conjugate of b, then

" L, __C_ F,
___
R which implies that " + 1. It follows that all conjugates of

b are in the set (b, -b } and therefore that b2 Q and y2 1. Thus kl 2, and
since kin as well, we get kids. This establishes the lemma.
We complete the proof of the theorem by observing that, as a consequence

of the lemma,

and

Fn" Q] ICog(FnlQ)I n

[e. n Q] ICog(E. n F.IQ)I

and hence

IF l QI QI[F " QI/[En
ns(n)

cp(n) d(,,)

n Q]

The next result gives G as an extension of M/dM. Let

Nn Map(S(n), dn(Z/nZ)) dMn.

The action of Un on M restricts to an action of V on N, and the semidirect
product N Vn with respect to this action is a subgroup of M > Un. Since

N is the kernel of 1: M - Mn/dM and V is the kernel of Xn: Un --’
M/dMn, N > V is actually a subgroup of

THEOREM 3.4. There is an exact sequence

Proof The map from G to M,/M is given by (f, u) Xn( U). All details
are easy to check. D

We now give a criterion for deciding when an arbitrary number field is K
for some indicial integer n. Let L be a finite extension of Q. Write r’ r’(L)
for the cardinality of the group/(L) of roots of unity in L. We note that r’ is



GENERALIZED CYCLOTOMIC FIELDS 701

always even, and we set

r’ if 41r’
r= r(L) 2r’ if4r’.

Recall that B denotes the multiplicative group of positive rationals, and set

A A(K) {a Bl:ta L with ar= Or}.

LEMMA 3.5. Assume n is an indicial integer. Then r(K,) n.

Proof Since ’, #(K,), nlr’ and q<")ltp(r’). Also Er," F,
_

K,, so
[E,," F,: Q] divides g,. We note that Lemma 3.3 remains valid when E, is
replaced by any extension of E, which is abelian over Q, and hence [Er, 3 F,:
Q] d,<n). It follows that

Er," Fn" Q] p (r’) ns(n)ldSn(n),

and because this divides g, p(n)nSt")/d],") we obtain q(r’) q0(n). If n is
even then n r’, and since 8In in this case, 81r’, so r r’= n. If n is odd
then tp")= pr’) implies r’= 2n; in this case 4 does not divide r’ and
r 1/2r’ n. Thus in either case we conclude that r n. []

COROLLARY 3.6. If n and m are indicial and K. c_ Kin, then n m.

THEOREM 3.7. With L, r, and A as above, the following are equivalent:
(1) L K for some indicial integer n;
(2) r is indicial and L Kr;
(3) r is indicial, S(r)

_
A, and [L: Q] < gr;

(4) :! m indicial with m It, S(m) c_. A, and [L: Q] < gm"

Proof The implication (1) (2) follows from the last lemma, and (2)
(3) (4) is dear. If (4) holds then ’m L and Xr--p has a root in L for
every p Ira. It follows that Xm p splits over L for each p Ira, and hence that
K C L. The condition [L" Q] < gm then implies that L Km.

Finally, we remark that for n indicial it can be shown that a prime number
q ramifies in Kn if and only if q divides n. Furthermore, if p is a prime
number which is indicial (i.e., if p is a prime congruent to 1 (mod 4) then p
ramifies fully in Kp, and for q a prime different from p, q decomposes in K,
into a product of g primes each of inertial degree f, where f is the multiplica-
tive order f0 of q mod p and g p(p- 1)/f0 if X - Z/qZ[x] has a



702 STEPHEN BEALE AND D.K. HARRISON

root in Z/qZ and f=p. fo and g (p- 1)/fo if Xp -ff has no root in
Z/qZ.

Section 4

Let KIk be a finite extension of fields and let Sub(KIk) be the lattice (with
respect to inclusion) of field extensions of k in K. An inclusion reversing
bijection 0 of Sub(KIk) onto itself will be called a duality of Klk if for all
L Sub(Klk), [K: L] [0(L): k] holds. A field extension for which a
duality exists will be called semiabelian. We make analogous definitions for a
finite group G and its lattice of subgroups Sub(G), and note that a Galois field
extension is semiabelian if and only if its Galois group is. We also point out
that as a lattice antiisomorphism, a duality of Klk takes intersections to
composities and composites to intersections. A similar statement holds for
groups.

Let G be a finite abelian group. By selecting an isomorphism of G onto its
Pontragin dual t and following the induced lattice isomorphism Sub(G) -o

Sub(G) with the lattice antiisomorphism

H (. GIX(O) =I,VXH}

of Sub(G) onto Sub(G), one obtains a duality of G. Thus finite abelian groups
are semiabelian. The next two theorems follow easily from this observation.

THEOREM 4.1. Every Cogalois fieM extension (see [2]) is semiabelian.

THEOREM 4.2. Every abelian field extension is semiabelian.

Let n be an indicial integer. Let m m(n)= d,,
Em(n) Q[m(n)]- Note that k, is a subfield of K,.

THEOREM 4.3. Kn kn is a semiabelian fieM extension.

I-Ips(n)p and k.

Proof Lemma 3.5 implies that Klk is a pure extension. Since it is also
separable and coseparable, theorem 1.5 of [2] implies it is Cogalois and hence
semiabelian. El

The existence of a duality for a group imposes a symmetry on its lattice of
subgroups which we exploit in the following application.

THEOREM 4.4.
degree g. Let

Let Klk be a semiabelian Galois field extension of finite

g =px... p,
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be the prime decomposition of g. Then for 1,..., s there is a unique
subextension L of degree p, over k, and

K-- L (R)k (R)k Ls
as k-algebras.

Proof By theorem 7 of [3] semiabelian groups are nilpotent. Hence G
Autk(K) has unique Sylow subgroups. We choose a duality 0 of G, and for
each 1,..., s we let H denote the p-Sylow subgroup of G. Then O(Hi)
has index p, in G, and since there is just one such subgroup in G, it is
independent of the choice of 0. The Galois correspondence then gives a unique
element L of Sub(K] k) with Li: k] p,.
To obtain the isomorphism of the .theorem’s second assertion, we note that

multiplication induces a k-algebra homomorphism

L1 (R)k (R)k Ls--* K

with image L1... L. The properties of 0 imply that

L1... L, K#(H1) c c o(ns)

KO((nl nsS)

Ko(G)

K {1}

--g.

Thus our map is surjective. Since both domain and codomain have dimension
g over k, the map is also injective, and the theorem is proved, t3

COROLLARY 4.5. Let n be indicial and.for each pin write ep for the largest
power ofp dividing gn/P(m(n)) Kn: kn]. Then for each such p there is a unique
subextension L(,,n) ofKlk with [L(p, n): k.] pep, and Kn is isomorphic as
a k-algebra to the tensor product over k of the L(p,n).
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