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HILBERT-SCHMIDT INTERPOLATION IN
CSL-ALGEBRAS

BY

ALAN HOPENWASSER

One form of interpolation problem in operator algebras is the following:
given vectors x and y in a Hilbert space ’ and an operator algebra z acting
on 3g’, does there exist an operator T in such that Tx y? Furthermore, if
interpolation is possible for a pair of vectors x and y, what is the minimum
norm possible for an operator T which maps x to y? A variation of this
problem asks for the interpolation of a linearly independent set of vectors
{ xl,..., x, } onto a second set of vectors ( YX,’", Yn )"
An early and particularly deep example of this type of interpolation

theorem is Kadison’s Transitivity theorem [7]: if z is a C*-algebra which acts
irreducibly on Jr’, if { x,..., x } is a linearly independent set of vectors in f
and if { Yx,.--, Yn ) is any set of vectors in ’, then there is an operator T in

such that Tx yi, for all i. Another example is the following theorem,
which was first proven for nest algebras by Lance [9] and then extended to all
CSL algebras in [5]: let Alg . be a reflexive operator algebra with a commu-
tative subspace lattice .. Let x and y be vectors in ’. Then there is an
operator T Alg .’ such that Tx =y if, and only if,

sup
llExll

If this supremum is finite, then it is the minimum norm for an interpolating
operator for x and y. (A fraction with both numerator and denominator equal
to 0 is taken to be 0.)
A recent paper by N.J. Munch [12] solves the interpolation problem in the

setting of nest algebras subject to the additional restriction that the interpolat-
ing operator must be a Hilbert-Schmidt operator. As it happens, nest algebras
are of interest in linear system theory; indeed, Munch interprets some of his
results in terms of signal reconstruction. Some authors in system theory have
found it convenient to go beyond Hilbert resolution space and the correspond-
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ing causal operators (i.e., nest algebras) to consider partially ordered Hilbert
resolution spaces (see, for example, [2], [3], [4], [13]). This setting is actually
equivalent to commutative subspace lattices and their corresponding reflexive
algebras, first introduced by Arveson in [1]. Thus it is natural both from a
system theory point of view and an operator algebraic point of view to
consider interpolation problems in the context of CSL algebras. The primary
purpose of this note is to extend most of Munch’s results to CSL algebras. We
do so with proofs which are more general and, at the same time, somewhat
simpler.
A commutative subspace lattice, .o, is a strongly dosed lattice of projec-

tions acting on a separable Hilbert space f’. We always assume that the trivial
projections 0 and ! are contained in .oa. The associated CSL algebra, Alg
is the algebra of all bounded operators acting on f’ which leave invariant
each projection of .a. The main tool which we use is Arveson’s representation
theorem [1, Theorem 1.3.1]: let X be a compact metric space, let < be a
reflexive and transitive order on X whose graph is closed, and let # be a finite
Borel measure on X. Define a Borel subset A of X to be increasing if x A
and x < y imply y A. For each Borel subset A of X let E(A) denote the
orthogonal projection acting on the Hilbert space )f’= L-(X,/t) which arises
from multiplication by the characteristic function of A. The family of all
projections E(A) corresponding to increasing Borel sets A forms a commuta-
tive subspace lattice, which we denote by .o’(X, <, #). Every commutative
subspace lattice acting on a separable Hilbert space is unitarily equivalent to
the lattice of the form .(X, <, #).

This representation will replace the vector valued and operator valued
measures used in [12]. For a specific nest algebra, it is much the same to
determine the ingredients of the Arveson representation as the measures used
in [12]. The Arveson representation, however, is particularly well suited to
problems involving Hilbert-Schmidt operators, for these may be identified
with L2-kemel functions on X X. Furthermore, the Arveson representation
permits a natural extension of many of the results in nest algebras to CSL
algebras.

It will be notationally convenient in the sequel to let the same symbol
denote both an orthogonal projection and its range subspace. Thus, for a
projection E and a vector x we may write interchangeably Ex x
and x t=_ E.

Before generalizing Munch’s results on Interpolation by Hilbert-Schmidt
operators, we treat the (much simpler) case of interpolation by rank-one
operators. Interpolation by trace class operators and by compact operators
present two other interesting and challenging problems.
The solution to the rank-one interpolation problem requires the following

definition: if E let E_= V{F .o[E F}. When L’ is a nest, E_ is
either the immediate predecessor of E, when the immediate predecessor exists,
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or else E_= E. If u and w are vectors in of(’, let u (R) w* denote the rank-one
operator given by u (R) w*(x) (x, w)u. A well-known lemma of Longstaff
[11] (Ringrose in the nest algebra case) asserts that u (R) w* Alg .Z’ if, and
only if, there is a projection E such that w (E_) +/- and u E.

PROPOSITION 1. Let x and y be non-zero vectors on and let .W be a
commutative subspace lattice. Let E A{ F .W[Fy y }. There is a rank-one
operator u (R) w* in Alg .W such that u (R) w*(x) y if, and only if, E) x O.
If E x : O, then the minimal norm for a rank-one interpolation operator is

IlY ll / ll E_ x ll

Proof. Assume that E_ x : 0. Let w II E_ x II 2E- x and u y. Then
u (R) w* is a rank-one operator in Alg which maps x to y; furthermore,

Ilu (R) w*ll IIE_ xll

Conversely, suppose that u (R) w* Alg .W and maps x to y. Since y
u (R) w*(x) (x, w)u, we see that u is a scalar multiple of y. In particular,
u E and E is the smallest projection in .W containing u. Consequently,
w E. But then, 0 : (x, w) x, E w) (E x, w), whenceE x : 0.
It is now clear that u (R) w* also maps E_ x to y, from which it follows that
Ilu (R) w*ll >- IlYll/llg_xll.
The condition in Proposition 1 can be modified to obtain a necessary and

sufficient condition for the existence of a finite-rank operator in Alg .W which
maps x to y, provided that .W is generated by finitely many nests. (. is said
to have finite width in this case.)

PROPOSITION 2. Let x andy be non-zero oectors in and let .W be a finite
width commutative subspace lattice. There exists a finite rank operator T such
that Tx y if, and only if, there exist finitely many projections El,... E in .W
such that ( Ei)_ x * 0 for all i, and y E V V E.

Proof Let E A{ F .Z’IFy y }. Suppose T is a finite rank operator in
Alg .W such that Tx y. Since .a has finite width, we may apply a theorem in
[6] to write T as a sum of rank-one operators in Alg .Z’, say

n

T= ., u (R) wi*,
i==1

where each u (R) w*
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Since the projection E lies in Alg .W, ET is another operator in Alg .W
which maps x to y. Therefore, we may replace T by ET and assume that
u E for all i. We may also assume without loss of generality that (x, w) 4= 0
for all i. (Simply delete from the sum any terms for which x .1_ w.)
For each 1,..., n, let E be the smallest projection in .W which contains

u. Then

y (x, wi)u e_ E V VE,,.
i----1

(In fact, E Et V v E,.) Since u (R) wi* Alg .o and E is the smallest
projection containing ui, we have w (El)

_
for each i. Thus (Ei) x 4 0 for

all and the condition in the proposition is satisfied.
For the converse, assume that El,..., E, in 0 are such that

yeEtV...VE,,

and (Ei)_-L x 4 0 for all i. Let F1 E and

F E A (E A AEi_I) +/-
i= 2 n

Then the F are pairwise orthogonal and F v v F, E V V E,. Let

U F/y and w II(E,) xll -2(E,) x

for each i. Since F < Ei, each rank-one operator u (R) wi* belongs to Alg
Furthermore, (u (R) wi*)x ui for each i. Finally, since y 5".’=u by the
construction, the operator T E’=u (R) w* is a finite rank operator in Alg
which maps x onto y.

Remark. The finite width of the lattice 0 was not used in the proof of the
sufficiency of the condition. Thus, in any CSL algebra, if there are finitely
many projections El,..., E, in 0 satisfying (Ei)5 x 0 for all i, and
y E V V E, then there is a finite rank operator T in the algebra such
that Tx y. If a lattice is not finite width, then it is possible that there exists a
finite rank operator in Alg . which cannot be written as a sum of rank one
operators in Alg .’. An example of such an operator with rank 2 is given in
[6]. If T denotes this operator and if x and y are vectors such that Tx y,
then it is possible to find projections E, E2 in .o.q such that (Ei)

_
x 4 O,

1, 2 and y E v E2. Thus we are left with the following questions:
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If T is a finite rank operator in a CSL algebra, Alg .a, such that Tx y,
then do there exist projections El,..., E, in Aa such that (Ei) x 0 for all
i, and y Et V VE Can n be chosen so that n < rank T?
We now turn to the main questions to be addressed: given a CSL 0’ and

vectors x, y ’, when does there exist a Hilbert-Schmidt operator T in
Alg . such that Tx y? How should T be chosen so as to minimize the
Hilbert-Schmidt norm II TII27
We assume hereafter that La has the form .’= .’(X, <, ) as described

above. Hilbert-Schmidt operators in g(L2(X, )) are associated with L2-kemel
functions on X X with respect to the measure g . By a result in [1], a
Hilbert-Schmidt operator lies in Alg Aa if, and only if, the support of the
associated kernel function lies in the graph of the relation <.

Let G denote the characteristic function of the graph of <, i.e.,

1 ifs<tG(s,t) 0 otherwise.

If x and y are vectors in L2(X, tl) then the function x(s)y(t) on X X is
the kernel function for the rank-one operator y (R) x*. While this operator
carries x to a scalar multiple of y, it generally fails to belong to Alg .’. This
can be remedied by multiplying the kernel function x(s)y(t) by G. A further
adjustment is then needed so that the resulting operator once again carries x
to y: divide x(s)y(t)G(s, t) by the function Nx(t) defined by

N (t) t) dl (s).

We then have the following generalization of Theorem 1.1 in [12].

THEOREM 1. Let .’= Aa(X, _<, ) be a commutative subspace lattice on the
Hilbert space L2(X, #). Let x, y L2(X, tt). Define

Nx(t) t) dl.t(s) for each X.

Let

(Interpret 0/0 as 0 in the integrand.) Then there is a Hilbert-Schmidt operator,
T, in Alg .a such that Tx y if, and only if, Cx, y is finite. If Cx, y < oo, then
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this number is the minimum value for II TII; the operator Th associated with the
kernel function

h(s,t) x(s)y(t)G(s,t)
Nx(t)

(7.1/2is Hilbert-Schmidt, maps x to y, and has Hilbert-Schmidt norm equal to -x, y.

Proof. Suppose first that there is a Hilbert-Schmidt operator T in Alg .’
such that Tx y. Then there is a function k L2(X X,/ /) which is
supported on the graph of < such that T is equal to the integral operator Tk.
We claim that Cx, y < [[k[l 1[ T[[. Since Tx y, we have for almost all t,

y(t) fk(, t)x(s) dt(s) fk(, t)x(s)G(s, t) dlx(s).

Using the Cauchy-Schwartz inequality, we have

[Y(t)[ 2 < flk(, t)l dlz(s)" f[x(s)12G(s, t) dlz(S)

Nx(t ) ilk(s, t)l 2 dl(s).

Therefore

C y f ly(t)l
Nx(t ) a (t) <_ ffl ( , t)] 2 dlx(s) dl(t)

Ilkll IITII -2"
Now suppose that Cx, y < oo and let

h(s,t) x(s)y(t)G(s,t)
Nx(t)

We first observe that h L2(X x X, bt x bt). Indeed, using Fubini’s theorem,

flh(s, t)l= dt x p,(s, t) ff lx(s)l-IY)! G(s, t) dl(s) dl(t)

f N"(t)lyl)ldl(t)Nx(t
fly(t)lNx(t ) dt(t)
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Thus, the Hilbert-Schmidt operator Th associated with h satisfies II ThII 2-2-
Cx, y. Also, Th Alg since h is supported on the graph of <. All that
remains is to show Thx y"

f

f N,(t)
x(s) y(t)G(s, t)x(s) dl(S)

y(t) 2G s, t) dt(s)

y(t)
Nx(t ) "Nx(t)

y (t) for almost all t.

(It should be noted that the assumption that C, y
for almost all t for which y(t) 4: 0.)

< oo implies that N(t) > 0

Remarks. If T Th is the operator constructed in Theorem 1 and if S is
any other operator in C2 c3 Alg.’ such that Sx y then Tr(S*S) > Tr(T*T).
A somewhat stronger minimality property for T is valid. To state this, we use
the natural projection valued measure, E, defined on X: if fl is a Borel subset
of X, E(2) is the orthogonal projection on L2(X,/) given by multiplication
by the characteristic function, Xu, of ft. With S and T as above, we have

Tr(S*E(2)S) > Tr(T*E(2)T)

for all Borel subsets of X. (This relation can be denoted S >e T.)
To verify this, let k be the kernel function associated with S. A routine

computation shows that the kernel function for E(f)S is Xu(t)k(s, t). It is
also easy to verify that Cx, e<u)y < Cx, y and that the kernel function for the
Hilbert-Schmidt operator in Alg .Z of minimal Hilbert-Schmidt norm map-
ping x to E(9)y is

x(s) Xa(t) y(t)G(s, t)
Nx(t) =X(t)h(s,t).
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Thus E(f)T is the minimal operator carrying x to E(2)y, whence

Tr(S*E(f)S) IIE(KZ)SII IIE(KZ)TII22 Wr(Z*E()Z).

This observation is pointed out in [12] in the case in which 0 is a nest and f
is an interval.
A less complete result than Theorem 1 is available for the problem of

interpolation of n vectors. The author would like to thank Steve Power for
suggesting the essential ingredients in this result.

THEOREM 2. Let .L#’= .’(X, _<,/) be a commutative subspace lattice, let
xl,..., x be n linearly independent vectors in LE(x,/x) and let yl,..., Yn be n
additional vectors in LE(x, I). For each pair i, j with 1 <_ i, j < n, define

Nij fG(s, t)xj(s) xi(x ) dl(S).

Let N(t) N/j(t)] for all t. Assume that for almost all t, if

y(t) (y(t),..., yn(t)) * 0

then N(t) is invertible and that

flly(t)ll IIN(t)-Y(t)ll dt(t) <

Then there is an operator T in C2 t3 Alg 0090 such that Tx Yi for 1,..., n.

Proof Let ri: C" C be the ith coordinate projection, 1,..., n. Let

n

h(s, t) , G(s, t)xi(s ) ri(N(t)-Xy(t)).
i=1

(Where y(t) 0, take h(s, t) 0.) We claim that h is an L2-kemel function
and that the corresponding operator, which obviously lies in C2 n Alg Aa,
maps x to y for each i.
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Let L(t) [Lij(t)] N(t) -1, for all values of for which N(t) is invert-
ible. In the following, all integrals are over just this set of values of t.

flh(s, t)[ 2 d/x /x(s, t)

n

G(s, t)xi(s ) xj(s)%(L(t)y(t))rj(L(t)y(t)) dl(s) dl(t)

n

f _, N.i(t)ri(L(t)y(t))r(L(t)y(t))d#(t)
i,j----1

f
i, j--Nji(t) p--IE Lip(t)yp(t) q---l- Ljq(t)yq(t) dl(t)

(-’Nji(t)Lip(t))Ljq(f
j, p,q-- i--1

t) yp(t)yq(t) dtx(t)

j,v,q=l
8jtrLjq(t) yp(t)yq(t) dl(t )

Lpq(t) yp(t)yq(t) dl(t )

f yr(t)er(L(t)y(t))dl(t)
p-1

flly(t)ll IIL(t)y(t)ll dl(t)

flly(t)ll IIN(t)-ly(t)lldl(t).

The last quantity is finite by hypothesis; thus, h is an L2-function.
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Now suppose that T is the integral operator associated with h. Clearly
T C2 N Alg .W. For each i,

f dt (s)

s, t)xj(s) rj(N(t)-ly(t))xi(s) dlx(s )

n

2 "a’j(N(t)-ly(t)) f
n., Nij(t)’a’j(N(t)-ly(t))

,ri(N(t)N(t)-ly(t))
ri(Y(t))

y,(t).

Thus T is an interpolating operator for the sets { Xl,... x } and { Yl,..-, Yn }"
The interpolation problem for Hilbert-Schmidt operator suggests the analo-

gous problem for the other Schatten C,-classes and for the compact opera-
tors,

Questions. Let .W= .Z’(X, <, #) be a commutative subspace lattice and
let x and y belong to L2(X, i). When does there exist an operator T in
Cp N Alg .W (resp. in X’ Alg .Z’) such that Tx y? Can T in C,
be chosen so as to minimize the Schatten p-norm, II TII Can compact T be

9chosen with minimal operator norm II TII
Even in the case in which is a nest, tittle is known about cg interpola-

tion. The most interesting case is, perhaps, the trace class operators, cgl. Where
.W is a discrete nest with finite dimensional atoms, Proposition 1.3 in [12] gives
a condition on x and y which guarantees that the minimal Hilbert-Schmidt
interpolating operator is also trace class. This condition, together with an
estimate for the trace class norm, can be extended to totally atomic CSL-alge-
bras (without any restriction on the dimension of the atoms).
When .W is totally atomic (on a separable Hilbert space), we may take X to

be a countable set and # to be counting measure: #(( s }) 1, for all s X.
The Hilbert space is thus /2(X). If Y is a subset of X, let E(Y) be the
orthogonal projection of 12(X) onto /2(y), where the latter is viewed as a
subspace of/2(X).
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For each vector x 12(X), let

Sx(t)

Also, let

P { tlNx(t) * 0).

Then Px is the smallest increasing set in X which contains the support of the
vector x. Consequently, E(Px) is the smallest projection in . whose range
contains the vector x.

PROPOSITION 3. Let .P= .(X, <, IX) be a totally atomic commutative
subspace lattice with X countable (or finite) and tx equal to counting measure.
Let x, y 12(X). Assume the following:

(1) y(t) 0 for all q Px.

(2) E ly(t)12

t’Px Nx(t ) <

(3) E ( > ’Y(t)’2 )
1/2

s t_s

Then the Hilbert-Schmidt operator, T, corresponding to the kernel function

x(s)y(t)G(s,t)
Nx(t)

is trace class and

IITII <_ , ( ly(t)lZ )
/

sP t>_s Nx(t)

Proof Assumptions (1) and (2) guarantee that the operator T with kernel

x(s)y(t)G(s,t)
Nx(t)

is Hilbert-Schmidt, maps x to y, and has minimal Hilbert-Schmidt norm
amongst interpolation operators. (Again, 0/0 is taken as 0.) Conditions (1)
and (2) are just the discrete version of the hypothesis in Theorem 1. We can, of
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course, view

x(s)y(t)G(s,t)

as the entry in row t, column s of the matrix for T. The rows and columns of
matrices for operators in (/2(X)) are indexed by the elements of X.
The action of T is given as follows: if f /2(X) then Tf is the element of

12(x) given by

Tf(t)

_
f(s)x(s) y(t)G(s, t)

Vx(t)

If t Px, then Tf(t) 0 (since y(t) 0). Thus, range T
_

E(Px).
We now show that IITII is finite and, in fact, is dominated by the quantity

in (3).
If t P then Tf(t) 0; if Px then

y(t)rf(t) Sx(t) E()() (, t)

y(t)

_
f(s)x(s) G(s, t),(t)

since x(s) 0 if s P. Then

[ITfll 9-= ITf(t)l 2

t- P

2

sP tP Nx(t

s<t s<t

E f(s)x(s)
s Px

But

E Ix(s)l 2= Nx(t),
sP
s<t
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so

Now let

IITfll2<_ ’. lY(t)[2( )tPx Nx(t) Px’ If(s)12

E E lY(t)121f(s)]2

s<t

t>_s

h()= (
0

ly(t)l 2

t>s Nx(t) ifsP

if sq Px.

Let H be the diagonal operator whose entries are h(s). Thus Hf(s)
h(s)f(s), all s, and

II nfll 2= EIh(s)f(s)l 2

$

E Ih(s)121f(s)l 2

s P

If(s)l
s t_s v( )

Thus II Tfll 2 Ilnfll 2, for any f 12(x). This says that <T*Tf,/> < <H/, f>
for all/, i.e., that T*T < H. By the monotonicity of square roots we have

Consequently,

(T’T)1/2 < H.

II TIIx tr(T*T)l/2 <trH= E h(s)
sP

by condition (3). This completes the proof.
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Remark. The proof above can be formally written out in the general case.
However, if # has a continuous part, then the operator H is an L-multiplica
tion operator with respect to a measure which is not totally atomic. As such, it
is not even compact, let alone trace class and consequently no estimate is
obtained by this approach.
We will close with a brief discussion of approximate interpolation. Both

parts of Proposition 4 below are proven in [12] for nest algebras. The proof of
part (1) given there works equally well for CSL-algebras; it is repeated here for
the convenience of the reader. The second part of Proposition 4 is not valid for
general CSL-algebras. It does hold for all commutative subspace lattices which
are completely distributive, a class which includes all nests. The usual defini-
tion of complete distributivity is that distributive laws for the two lattice
operations hold for families of arbitrary cardinality. We will use an equivalent
technical condition; see [11] for the proof of the equivalence or [8] for a
thorough discussion of complete distributivity. Two definitions are needed: for
each P .W, define

P+= A{Q IQ P}

and for each L a, define

L V(P+IP .o’ and L P}.

Then .W is completely distributive if, and only if L Lg, for all L
A notable property of a completely distributive commutative subspace

lattice .W is that the sums of rank one elements in Alg .W are weakly dense in
Alg .W; indeed, this property is actually equivalent to complete distributivity.
(See [10].) If .W is not completely distributive, then Alg may contain no
non-zero compact operators. This makes it clear that part (2) of Proposition 4
admits no extension to all CSL-algebras. If x is a vector in ta, then the
smallest projection in .W whose range contains x in Px A( F lFx x }.

PROPOSITION 4. Let .W be a commutative subspace lattice on a Hilbert space
,%a. Let x and y be vectors in such that Tx :/: y for all T

(1) Suppose there is a net T C2 N Alg L’ such that lim Tx y. Then
lim II TII2

(2) Assume further that .’ is completely distributive. Then there is a net

T C2 N Alg . such that lim Tx y if, and only if, y P.

Proof. (1) If limll T, II oo then there is a bounded net, S, in C2 ( Alg
such that lim Sx y. By passing to a subnet, if necessary, we may assume
that S is weakly convergent to some operator S in C2 Alg .W. Thus Sx
converges to y in norm and to Sx weakly. Therefore Sx y, a contradiction.
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(2) First assume that T is a net in C2 t3 Alg . such that Tx converges to
y. Since Px "if’, Tx Px for all r, whence y P.

For the converse, assume y Px. Since is completely distributive,
P, P,. Using the fact that is separable and the definition of g, we can
conclude that there is a sequence pn of projections in such that Px Pn

p p1 and inductively definefor all n and P, V +. Let Q1 +

for all n.

Then the Q are mutually orthogonal and

ex-- Ee, Vo,.
i--1 i--1

Since y Pxy Ei-Qiy, we have E..Qiy y as n ---, oo. Now, for each n,
Px- PPx O, since Px P. Thus PP is a proper subprojection of P;
therefore its range cannot contain x. In other words, (Px PnP)x O, for all
n. Let 2 II(P PP)xll-2. Let T be the rank one operator

)knQnY (R) ((Px- PnPx)X)*"

By the dual of the Ringrose-Longstaff lemma [11], T
We have Tx Qny, for each n. Let S

(in fact, rank S < n) and Sx Y’-’]-Qiy -’ y. This completes the proof.

The author would like to thank Robert Moore and Steve Power for helpful
conversations on the content of this paper.
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