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1. Introduction

We say that a non-abelian Lie group G is of special type if its Lie algebra,
g, has the property that [x, y] is a linear combination of x and y for all x, y
in g. In [3], J. Milnor proved that every left-invariant Riemannian metric on a
Lie group of special type is of constant negative sectional curvature, and, in
[4], K. Nomizu proved that every left-invariant Lorentz metric on such a Lie
group is also of constant sectional curvature, but, depending on the choice of
left-invariant Lorentz metric, the sign of the constant sectional curvature may
be positive, negative, or zero.

Lie groups of special type belong to a larger class, studied by E. Heintze in
[2], of Lie groups that admit some left-invariant Riemannian metric of
constant negative sectional curvature. A natural question is which Lie groups
in the larger class admit left-invariant Lorentz metrics of constant sectional
curvature and what are the possible signs of those curvatures. In this paper we
answer this question completely by proving the following theorem.

THEOREM 1.1. Let G be a Lie group that admits a left-invariant Riemannian
metric of constant negative sectional curvature. Then:

(i) G admits a lefi-invariant Lorentz metric of constant positive sectional
curvature.

(ii) G admits a left-invariant Lorentz metric of constant negative, or zero,
sectional curvature if, and only if, contains a one-dimensional ideal.

In [2], E. Heintze proved that ; contains an abelian ideal u of codimension
1 and that for any b not in u, ad(b)lu=,I+B, where B is a linear
transformation which is skew-adjoint with respect to the inner product the
left-invariant Riemannian metric induces on g, and where is non-zero. Lie
groups of special type are precisely those for which B is identically zero.
Together with Theorem 1.1, this result of Heintze gives us these two corol-
laries.
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COROLLARY 1.2. Let G be an eoen-dimensional Lie group. If G admits a

left-inoariant Riemannian metric of constant negatioe sectional curoature, then G
admits left-inoariant Lorentz metrics of constant sectional curoature of each
possible sign.

Proof. It suffices to show that contains a one-dimensional ideal. Write
ad;(b)lu XI + B, where B is skew-adjoint with respect to some Rieman-
nian inner product. To show the existence of the one-dimensional ideal, it
suffices to show that Bc 0 for some non-zero dement c u. But this is
deafly true since u is odd-dimensional and thus B has zero as an eigenvalue.

COROLLARY 1.3. There are odd-dimensional Lie groups that admit left-
inoariant Riemannian metrics of constant negatioe sectional curoature, but which
do not admit any left-invariant Lorentz metrics of constant negatioe, or zero
sectional curoature.

Proof. Let V be an even dimensional real vector space and let b be any
nonzero vector in V, and ( ) any Riemannian inner product on V. Let U
denote the orthogonal complement of b, and let B be a skew-adjoint linear
transformation on U. Since U is even dimensional, we may choose B to be
non-singular. Now define a Lie algebra on V by setting [b, u] u + Bu for all
u U, and [u, v] 0 for all u, v U. Then V and u U are as above,
and the Lie group G with Lie algebra and left-invariant Riemannian metric
induced by ( ) is of constant negative sectional curvature. But since B is
non-singular, then contains no one-dimensional ideals, and hence G admits
no left-invariant Lorentz metrics of constant negative sectional curvature.

2. The curvature tensor R

From now on let G be a Lie group that admits a left-invariant Riemannian
metric of constant negative sectional curvature, let denote its Lie algebra,
and let tt denote the abelian ideal of codimension one in guaranteed by
Heintze’s result. In this section we compute the curvature tensor R for a
left-invariant Lorentz metric ) on G which is non-degenerate on u.
Choose b in with b orthogonal to tt and b, b) + 1. Let L ad(b)lu.

The transpose L* of L is defined by

L*(x), y) (x, L(y)) for all x, y in u.

Then S (L + L*)/2 and B (L- L*)/2 are the self-adjoint and skew-
adjoint parts, respectively, of L with respect to
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For all x, y, z g the metric connection X7 of (
mental formula for left-invariant metrics.

satisfies the funda-

2(Vy, z) ([x, Yl, z) ([y, z], x) + ([z, xl, y).

With this formula we compute V. We have the following slight generalization
of Lemma 5.5 of [3].

LEmtA 2.2. For all u, v u we have

7bb 0, 7bU Bu, vub Su,

and

Vuv r(Su, v)b where r (b, b).

Proof. A sample computation goes as follows. The component of X7o in
the direction of b is equal to r(V,o, b). By (2.1) we have

2(V,v, b) ([u, v], b) (Iv, b], u) + ([b, u], v)

0 + ([b, v], u) + ([b, u], v)

(Sv + v, u) + (Su + u, v)
2(Su, v),

the last step following from the self-adjointness of S and the skew-adjointness
of B.
The component of X7o in any direction orthogonal to b is zero since in this

case all computations take place inside the abelian ideal tt. Therefore, X7ao
r(Su, o )b. The other computations are handled in a similar manner.
The curvature tensor R is defined by

R(x, y) z Vtx ylz VxVyZ + VyVz,

for all smooth vector fields x, y, z on G. Let u, v, w be arbitrary elements of
u. Using Lemma 2.2 we can easily show that R satisfies"

LEMMA 2.3. (a) R(u, v)w r{(Sv, w)Su (Su, w)Sv}.
(b) R(u, v)b O.
(c) R(b, u)b -S2u- SBu + BSu.
(d) R(b, u)o r((Su + SBu BSu, v)}b.
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3. Construction of left-invariant Lorentz metrics of constant
sectional curvature

In this section we construct on G a left-invariant Lorentz metric of constant
positive sectional curvature, and under the assumption that g contains a
one-dimensional ideal, we construct a left-invariant Lorentz metric of constant
negative sectional curvature, and a fiat left-invariant Lorentz metric.

LEMMA 3.1. Let ( ) be a left-invariant Lorentz metric on G such that the
restriction of ( ) to u is non-degenerate. Suppose that b Ig is orthogonal
to tt and that r= (b, b) +1. If ad(b)ltt=XI+B, where B is a skew.
adjoint linear transformation, then ( ) is of constant sectional curvature

Proof For all x, y g define the linear transformation x A y by

(x A y)z (x,z)y-- (y,z)x for allzg.

The left-invariant Lorentz metric ( ) is of constant sectional curvature
-rX2 if, and only if, R(x, y) -rX2(x A y) for all x, y in g.
Let u, v, w be arbitrary elements of u. Using Lemma 2.3 we can easily

compute

R(u, v)w rX2((v, w)u (u, w)v},
R(u,v)b=O,
R(b, u)b -X2u,

R(b, u)v rX2(u, v)b.

Thus,

R(u,v)w= -rh2(u ^ v)w,
R(u,v)b= -rh2(u A v)b,
R(b,u)b= -rX2(b A u)b,
R(b,u)v= -rX2(b ^ u)v.

Using the linearity of R in each of its components we get the desired result.
We now go ahead to the constructions of the left-invariant metrics. Let

(( )) be a left-invariant Riemannian metric on G of constant negative
sectional curvature. By Heintze [2] we can write g bR + u, where ad(b)lu
X1 + B, and where B is a skew-adjoint linear transformation with respect to
(( )), and h is non-zero. Define a Lorentz inner product ( ) on g by
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setting

(b,b} -1,

(b,u) =0 foralluu,

(u,o) ((u,o)) for allu, ou.

The linear transformation B is dearly also skew-adjoint with respect to
( ), and by the previous lemma, the left-invariant Lorentz metric that
( ) induces on G is of constant positive sectional curvature ,2.
Suppose that u contains a one-dimensional ideal spanned by c u. Let V

be the orthogonal complement in u, with respect to (( )), of c. Suppose
that u and v are arbitrary elements of V. Define a Lorentz inner product
( ) on g by setting

(c,c) -1,

(b,c) =0,

(b,o)=(c,o)=O

{b,b)=l.

for all v V,
for u, v V,

satisfies

(u,c) =0,

(b,c) 1,

(b,b)=(c,c)=O.

This defines a Lorentz inner product since in the two dimensional orthogonal
complement of the Riemannian subspace V, the orthonormal basis

b+c b-c}el 2 e2 2

(el, el) 1 and (e2, e.) -1,

thus showing that the index of ( ) is 1.
The inner product ( ) is degenerate on u so we cannot use Lemma 2.3

to compute the curvature tensor R. We now compute X7 for this particular

Since c spans an ideal of g then Bc is a multiple of c. But B is skew-adjoint
with respect to (( )), so then Bc 0. It now easily follows that B is also
skew-adjoint with respect to ( ), so by Lemma 3.1 this left-invariant
Lorentz metric has constant negative sectional curvature -2.
We now define a fiat left-invariant Lorentz metric ( ) as follows. Set
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case. Since Bc 0 and B is skew-adjoint with respect to (( )), then B
maps V into itself. Keeping this in mind and setting [b, c] Xc, one easily
computes, using (2.1) that

7c--=0
Vc=0 foru V,

X7v=(u,v)c foru, ve V,

Vbu= Bu foru V,

Vbb -Xb.

Since V is identically zero and c spans a one-dimensional ideal of g, then
R(x, c)y 0 for all x, y g. Since Vuc 0 for all u V, then R(u, v)c 0
for all u, v V. Also,

and

R(u, v) -Vuvob + Vovb
+ vo(-Xu)

x{v o- you}

0

R(b, u)b Vtb,,,]b- VbV,,b + Vu7bb
V(x,+n,,)b- Vb(--Xu) + V,,(-Xb)

-X2u- XBu + h[b, u]
-2u-XBu+h{Su+Bu}

0.

Thus R(x,y)z=O for all x,y,zg, and (
invariant Lorentz metric.

) is the desired flat left-

4. The existence of a one-dimensional ideal of g for fiat left-invariant
Lorentz metrics

Assume that G admits a fiat left-invariant Lorentz metric ( ). In this
section we show that ( ) is necessarily degenerate on tt. This means that
tt Rc + V (direct sum), where c is a light-vector, (c, u) 0 for all uu, and
the restriction of ( ) to V is Riemannian. We then prove that c spans a
one-dimensional ideal of g.
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LEtV_A 4.1. Let(
the restriction of (

) be a fiat left-invariant Lorentz metric on G. Then,
to tt is degenerate.

Proof. Assume that ( > is in fact non-degenerate on u. We then derive
a contradiction, namely, that for b u, tr(ad(b)lu) 0.

Write ad(b)lu S + B, where S is the self-adjoint part of ad(b)lu and B
is the skew-adjoint part. Since B is skew-adjoint, then tr(B) 0, so to derive
the desired contradiction it suffices to show that tr(S)= 0. If S is not
identically zero, choose w u such that Sw 4: O. By the assumption of the
non-degenerary .of ( ) on u, there exists v u with (v, Sw> :# 0. With-
out loss of generality we may assume that b is orthogonal to u and that
r (b, b) _+ 1. Let U denote the orthogonal complement of Sw in g. By
Lemma 2.3 (a) it follows that for u U,

R(u, v)w r{(Sv, w)Su (Su, w)Sv}
r{(V, Sw)Su (u, Sw)So}
r(v, Sw)Su.

Since we are assuming that R is identically zero, we have that Su O.
Therefore, S is identically zero on U.
From Lemma 2.3(c) and the fact that R is identically zero, we have

tr(S2) 0. U is of codimension 1 in g whether Sw is a light-vector or not.
Thus we can choose a basis of u such that its first dement is not in U but the
remaining elements are in U. If (sij) denotes the matrix of S with respect to
this basis, then tr(S2) sZl 0. Therefore, tr(S) Sll 0.

LEMMA 4.2. Suppose ,(), ) is a left-invariant Lorentz metric on G such
that the restriction of ( to u is degenerate. Suppose b, c are light-vectors
in g, with c u, b qi u, and (b, c) 1. Then,

3
(R(b, c)b, c) -([b, c], [b, c]).

Proof We can write u Rc + V (direct sum), where c is a light-vector
such that (c, u)= 0 for all u V and V is a Riemannian subspace. Any
light-vector b’ with (b’, c) 0 is contained in the orthogonal complement of
V, so b is contained in that complement.
Using (2.1) we obtain

Vc O,

(Vcb, b> (vcb, c> O,
1

<Vcb, u) - <[ b, c], u> for u V,
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and it follows that

1 1
vb -[b, c] + -{[b, c], b)c.

Since TbC Vcb [b, c] then

lib cl +1Vbc - -([b,c], b)c.

For any left-invariant metric the linear transformation
for all x g. Therefore,

is skew-adjoint

1
(VbVcb, C) --(VbC, Vcb) -([b, c], [b, c]),

and

(Vyt,b, c) (Vc, Vbb) O.

By (2.1) we obtain

1

Thus,

(R(b, c)b, c) (Vtb, clb, c) (VbVcb, c)
3

-([b, cl,[b,c])

LEMMA 4.3. If G admits a flat left-invariant Lorentz metric then, g contains
a one-dimensional ideal.

Proof By Lemma 4.1 and Lemma 4.2 there exist light-vectors b and c,
with c tt and b u such that

3
(R(b, c)b, c) -([b, c], [b, c]).

Since R is identically zero, this means that [b, c] is a light-vector in u, or else
is the zero vector. Thus [b, c] is a multiple of c. This suffices to show that c
spans an ideal of g since u is an abelian ideal of codimension 1 in g.
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5. The existence of a one-dimensional ideal of g for left-invariant
Lorentz metrics of constant negative sectional curvature

In this section we finish the proof of Theorem 1.1 by showing that if G
admits a left-invariant Lorentz metric of constant negative sectional curvature
then, g contains a one-dimensional ideal. We begin with:

LEMMA 5.1. If ( ) is a left-invariant Lorentz metric on G of constant
negative sectional curvature, then the restriction of ( ) to u is non-degener-
ate and Lorentz.

Proof. Suppose that the restriction of ( ) to u is degenerate. Let c be
a light-vector in u and let b be a light-vector with (b, c) 1. The sectional
curvature of the plane spanned by b and c is

(R(b,c)b,c)
((b, b) (c, c) (b, c)=)

which is non-negative from Lemma 4.2. Thus, ( ) cannot be degenerate
on u.

If the restriction of ( ) to u is Riemannian, there exists b orthogonal to
u with (b, b)= -1.e S and B denote the self-adjoint and skew-adjoint
parts, respectively, of ad(b)l u and let u u be a unit eigenvector of S with
corresponding eigenvalue ,. From Lemma 2.3(b) it follows that the sectional
curvature of the plane spanned by b and u is 3. Thus, the restriction of
( ) ,to u cannot be Riemannian, either. It must be non-degenerate and
Lorentz.

LEMMA 5.2. Let ( ) be a left-invariant Lorentz metric on G of constant
negative sectional sectional curvature. Then, for any b not in u, the self-adjoint
part of ad(b)lu is a non-zero multiple of the identity.

Proof. By Lemma 5.1, the restriction of ( ) to u is non-degenerate
and Lorentz. Without loss of generality we may assume that b is orthogonal to
u and (b, b) 1. Write ad(b)lu S + B, where S is the self-adjoint part of
ad(b)lu and B is the skew-adjoint part. If dim u 1 then G is a Lie group of
special type and ad(b)lu is itself a non-zero multiple of the identity. If
dim u > 3 and (Sc, c) 0 for every light-vector c in u then, by Section 12.25
of [1] there exists an orthonormal basis of u consisting of eigenvectors of S.
Thus, at least one of the following three cases must hold:

(i) There exists an orthonormal basis of u consisting of eigenvectors of S,
(ii) dim u > 3 and (Sc, c) 0 for some light-vector c u,
(iii) dim u 2.
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Case (i) Let el, e2,... e be an orthonormal basis of tt consisting of
eigenvectors of S with corresponding eigenvalues ,1, ,2,---, ’n. By the as-
sumption of constant negative sectional curvature we have, for some non-zero
h and for all x, y, z g, the curvature tensor R satisfies

R(x, y)z -h2{<x, x) (y, z>x}.

Computing R(ei, ej)ei two ways, by Lemma 2.3(a) and by (5.3), and equating
the results, we find that ?- ,Xj if #: j. Proceeding in similar fashion with
R(b, e)b we find that hz X2 for all i. Thus, the the eigenvalues of S are all
equal and S XI.

Case (ii) Let c’ be a light-vector in tt with <c’, c)= 1. The plane V
spanned by c and c’ is non-degenerate and Lorentz, so u V + W (direct
sum), where W is the orthogonal complement of V in tt. Computing R(c, c’)c
two ways, as above, we find that

(5.4) Sc, c’)Sc

Thus, Sc +A,c. Changing b to -b, if necessary, we may assume that
Sc ,c. Computing R(c, c’)c’ two ways again gives us

X(Sc’, c’)c hSc’ -,2c’,

and thus Sc’ is a linear combination of c and c’. Therefore, S maps V into
itself, and by the self-adjointness of S we have that S also maps W into itself.
The subspace W is Riemannian, so the eigenvectors of SIW are all real. Let

u be a unit eigenvector of SIw corresponding to the eigenvalue 2’. Computing
R(c’, u)u two ways as before and equating results we obtain X’Sc’= 2c’.
Replacing Sc’ with (X2/h’)c’ in (5.5) and equating coefficients we find that

’ h. Thus, Sc’ ,c and S W XIw. Therefore, S ,I.

Case (iii) Let c1, c2 be light-vectors in tt with <cl, c2) 1. Let (s2) and
(b2) denote the matrices of S and B, respectively, relative to the basis { c1, c2 }
of u. Using the self-adjointness of S and the skew-adjointness of B we obtain

st s22, b2: -bll b9_ bzt 0.

Using Lemma 2.3(c) one computes

R(c1, c2)cl (3,?i- S12S21)C1.
But (5.4) shows that R(ci, c2)cl ,2, and thus

(5.6) sZt $12S21 2.
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From Lemma 2.3(c) and (5.4) we obtain tr(S2) tr(A2I). Therefore,

(5.7) S? + S12$21 2.

Equations (5.6) and (5.7) imply that Sll + h and s12s21 0. Changing b to
-b, if necessary, we may assume that $11 h.
Recall that G admits a left-invariant Riemannian metric of constant nega-

tive sectional curvature, and consequently, we may write

ad(b)l tt ,’I + B’

where B’ is a linear transformation which is skew-adjoint with respect to some
Riemannian inner product on u. Since B’ S- ,’I + B, the matrix of B’,
relative to the basis { c1, c2 }, is

k- ’ + bll $12 )$21 .- ’_ bll

Since B’ is a skew-adjoint linear transformation with respect to a Riemannian
inner product, then tr(B’) 0. Therefore, A ’ and the matrix for B’ is

bll S12 )$21 bl

Recalling that s12s21 0, it follows that bll and -bll are the eigenvalues of
B’. But if skew-adjoint linear transformation on a Riemannian vector space
has only real eigenvalues, that transformation is identically zero. Therefore,
s12 s21 bll 0. Then, B is identically zero and S I.
We now show that admits a one-dimensional ideal. From Lemma 5.2 and

the fact that G admits a left-invariant Riemannian metric of constant negative
sectional curvature, we see that if b is not in tt, then

ad(b)lu XI / B,

where B is a linear transformation that is skew-adjoint with respect to a
Lorentz inner product ( ) and also with respect to a Riemannian inner
product (( )). To establish the existence of the one-dimensional ideal we
show that Bc 0 for some non-zero element c u.

Since B is skew-adjoint with respect to (( )), there exists a plane V
contained in u so that B maps V into itself. If the restriction of ( ) to V
is degenerate, then the intersection of V and its orthogonal complement (with
respect to ( )) is one-dimensional. If c spans that one-dimensional
subspace, then

(Bc, v) -(Bv, c) =0 for allv V.
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Therefore, Bc is itself orthogonal to V and must be a multiple of c. But
((Bc, c)) O, thus we have that Bc O. If the restriction of ( ) to V is
non-degenerate and Lorentz, let c V be a light-vector. The orthogonal
complement of c (with respect to ( )) in V is a one-dimensional subspace
spanned by c. Since (Bc, c) O, we have again that Bc is a multiple of c, and
by the previous argument’ Bc O. If the restriction of ( to V is
Riemannian. Let W be the orthogonal complement of V with respect to
( ). Now repeat on W the procedure described above. Continuing in this
manner eventually we must find a plane on which ( ) is degenerate or
Lorentz, and this plane contains the desired non-zero element c with Bc O.
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