ILLINOIS JOURNAL OF MATHEMATICS
Volume 34, Number 1, Spring 1990

THE EQUIVALENCE PROBLEM FOR COMPLEX
FOLIATIONS OF COMPLEX SURFACES

BY
T. DUCHAMP AND M. KALKA!

1. Introduction

In [4] we began a systematic study of the geometry of complex foliations (a
complex foliation is a foliation of a complex manifold by complex submani-
folds). In the case where the complex dimension of the underlying manifold M
is 2 and the foliation & is not holomorphic we showed that its leaves come
equipped with a metric of constant curvature. In this paper we continue this
study by examining in detail the local geometry of complex foliations of
complex 2-dimensional manifolds. More precisely, we will solve the Cartan
equivalence problem for complex foliations of complex surfaces (see [3], [5]
and [7] for discussions of the equivalence problem).

Note that when the foliation & is holomorphic the equivalence problem is
trivial in the sense that for any point p € M there is a biholomorphism ¢:
U — A? between a neighborhood of p and the polydisk A? ¢ C? sending the
leaves of the restriction of & to U onto sets of the form {(z, w) € A?|w =
const}; i.e., all holomorphic foliations are locally equivalent to the foliation of
C? by parallel lines.

When the foliation % is non-holomorphic the geometry of # is determined
by the anti-holomorphic torsion tensor introduced by Bedford and Burns [1],
[4). To define it let L denote the complex tangent bundle of # and let pr:
TM — Q be the projection map onto the complex normal bundle of #. The
anti-holomorphic torsion is the the section of the vector bundle

L*® 0*® Q
defined by the map
L®Q0~-Q
1.1 : - .
(1) "\ ¥ & X~ pr(37(X))

where Y is any vector field extension of the vector ¥ and X’ is any vector such
that pr(X’) = X. One easily checks that 7 is well-defined. It is easily shown [1]
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that & is holomorphic at all points if and only if the tensor 7 vanishes
everywhere. Consequently & is said to be non-holomorphic at p if 7, # 0 and
& is said to be non-holomorphic on M if it is non-holomorphic at all points of
M. Unless expressly stated all foliations will be assumed to be non-holomor-
phic.

The importance of the anti-holomorphic torsion is that it gives a way of
choosing a distinguished class of framings of the holomorphic tangent bundle
of M.

DEFINITION 1.2. A pair of independent vectors X,Y € T, (M based at a
point p € M is called an adapted frame if (i) Y € L and (ii) 7(Y ® pr(X)) =
pr(X). A coframe dual to an adapted frame is called an adapted coframe. The
bundle of adapted frames, denoted by P(M, #) — M (or simply by P when
no confusion is likely to arise), is the bundle of all adapted frames. It is a right
principal G-bundle where G C GL(2,C) is the group of matrices of the form

a 0

b a/al
To see that P is a right G-principal bundle just observe that if (X, Y)),
k = 1,2 are two adapted frames based at p then condition (i) above shows

that there are uniquely defined complex numbers a # 0, b and ¢ # 0 with the
property that

X,=aX, + bY,, Y,=cl;

but condition (ii) implies the further restriction ca/a = 1.

Note tha. if f: (M, F) - (M', #’) is an isomorphism of two complex
foliations (i.e., a biholomorphism respecting foliations) then the derivative of f
defines a diffeomorphism f: P — P’. Our main result is the following theo-
rem.

THEOREM 1.3. Let (M, #) be a pair consisting of a complex two dimen-
sional manifold and a foliation by complex curves which in non-holomorphic on
M. Then the manifold P(M, %) has a complex structure with respect to which

7. P(M, %) > M

is a holomorphic fibration and there is a global framing (6,7, ¢,y) of the
cotangent bundle of P = P(M, &) by forms of type (1,0). B

Let (M’, %) be another such foliation. Then the mapping f — f is a bijection
between the set of all isomorphisms between (M, %) and (M', #') and the set
of all diffeomorphisms between P and P’ satisfying the condition

0,7, ¢, 9)) = (8,m, 0, ¢).
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The importance of Theorem 1.3 is that it enables us to identify elements of
Aut(M, F) with the set of automorphisms of P(M, %) which preserve the
framing. We can now employ the fundamental theorem on the automorphism
group of manifolds with global framings, Theorem 3.2 of [6], to obtain the
next corollary.

COROLLARY 1.4. The group Aut(M, F) has the structure of a Lie group. In
fact let p € P(M, %) be any point, then the mapping
Aut(M, F) » P(M, F),
f=f(p)

is an embedding of Aut(M, F) as a closed submanifold of P(M, ¥). In
particular, the inequality

dim Aut(M, F) < 8
holds.

More is true. The group G embeds as a subgroup of SL(3,R) and the
framing (6, n, ¢, ) can be used to define an 31(3, R)-valued 1-form w on P.
Let H denote the subgroup of G consisting of matrices of the form

a 0
0 a/a
and set E = P/H. The fibration P — E is an H-principal bundle.

THEOREM 1.5. The 81(3,R)-valued 1-form w: TP — 81(3,R) is a Cartan
connection on the right principal H-bundle P — E. Moreover, when the funda-
mental invariant A in the structure equations (1.6) vanishes w is in fact a Cartan
connection on the right principal G-bundle P - M.

The outline of the paper is as follows:
In Section 2 we construct the framing (8, 1, ¢, ) and derive the following

structure equations:

(1.6) dd=—-oA0+q A0
dp=-yAb-(¢—9¢)An
dp=yYAO0—20AY—qAT—340 A T
dy=-mAY—YAe—34An AT

+(BO+2Cn+ cn+ 24y + AY) A 8.
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The complex-valued functions 4, B and C are the fundamental invariants of
a complex foliation.

A foliation for which 4, B and C all vanish is called flat and in Section 3
we construct one. It is easily described: Let M be the complement of real
projective space RP? in complex projective space CP2. Every real line in RP?
is the restriction of exactly one complex line in CP? and there is exactly one
such line passing through each point of M; hence this construction defines a
complex foliation . Note that the group SL(3,R) has dimension 8 and acts
transitively and effectively on (M, #). It follows that & is a flat foliation
(this can also be checked directly) and that the total space P(M, %) is
diffeomorphic to SL(3,R). By applying the results of Section 2 we are able to
relate the framing (0,7, ¢,¥) to the Maurer-Cartan form of the group
SL(3,R) and to show that in the flat case the structure equations 1.6 reduce to
the structure equations for the Lie algebra 31(3,R).

2. Solution of the equivalence problem

In this section we prove Theorem 1.3, derive the structure equations (1.6)
and determine the transformation properties of the fundamental invariants, 4,
B and C.

Local coordinates

Many of our computations will be done in local coordinates which we
choose as follows. Coordinates for C2 are (w, z) and holomorphic coordinates
on an open set U C M are chosen so that the z-axis is transverse to .
Consequently, there is a smooth function A = A(z, w) defined in the neighbor-
hood of the origin such that the form

(2.1) 00 =def dZ - A dw
is a normal form defining % and the vector field

d d

Y, =det Zyy T }\32

is tangent to % is holomorphic if and only if Y is a holomorphic vector field.
It is straightforward to check that the local framing

9 1(0 .0
(7553w +238)
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is an adapted framing whose dual coframe is

0, dz — A dw
(2-2) ('ﬂ(:)) =def( A,;dw )

This frame gives a local trivialization of the bundle of adapted frames

Py,=2UXG.

The tautological 1 forms on P are the forms § and 7 characterized by the
property that for every local adapted frame, say s € I'(U, P), the coframe
(s*8, s*n) is dual to s. With respect to the above trivialization the identity

(2.3) (z) =g‘1(z‘;)’ 8= (Z a%)-

holds.

First reduction

We start by considering local frames of the cotangent bundle of M
(coframes) consisting of pairs of forms of type (1,0) whose first entries lie in
the conormal bundle of #. In local coordinates we may write such a coframe
in the form

@4 ()= & (a)
where
(25) g=(2 9)

is a matrix valued function. The set of all such matrices forms a subgroup of
GL(2,0).

LEMMA 2.6. There is a natural reduction of the bundle of frames to a principal
subbundle P = P(M, %) with structure group G C GL(2,C) (see Definition
1.2).

Proof. Actually, we have already proved this lemma; but we will have need
of expressions for the exterior derivative of the dual coframes so we will adopt
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a slightly different point of view which exhibits Cartan’s method of reduction

of structure group and prove it again. Let 6, be as in (2.1) and note that the

integrability condition [Y,, Y] = 0 written in local coordinates assumes the
form

2.7) As+AA;=0
from which the identity
(2.8) dfy =\ dw A Oy + X dw A b,

follows easily. Choose a coframe as in (2.4) and compute as follows:
0 0 deo
d —gldg A +g7 "
n n Y
0
—g tdg A
n

.\ g_l((acx,,)n A+ (cak;)n A8+ (bak ;)8 A 6)

0
-1 0
—g dg A
n

(X )n— (Zib}\,;/a)é 0 0
+ - | A
(Ebzk,z/ac)O (abA ;/a)b )

.\ ((5C>\,;/g)n A 0).

I

This can be written in the form

e )--ly g ()

The last term of this equation is an invariantly defined torsion term and a
reduction in the structure group can be made by choosing only those frames
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whose dual coframes satisfy the normalization condition,

(2.10) (a/a)ch ;=1

(Note that the requirement that # be non-holomorphic is essential here since
in local coordinates it is equivalent to the condition A ; # 0). One checks that

the condition is satisfied if and only if the function g takes its valuesin G. H

Note that the Lie algebra of G consists of all complex matrices of the form

(5 .2a)

We want to write structure equations for the exterior derivatives of the forms 6

and n which incorporate the structure of the Lie algebra. The next lemma
shows how to do this.

LemMma 2.11. Given a local adapted coframe (0, n)' there are one forms ¢
and { such that the identity

0 ¢ 0 0 nA8 )
2.12 d = - - A +
(12 (n) (\P ¢~¢) (n) ( 0
holds. Moreover, the forms ¢ and  are determined up to the transformation
(2.13) Y-y —f0

where f is an arbitrary complex valued function.

Proof. A straightforward computation using the integrability condition
(2.7) gives the equation

6) (% O 6\ (7oA b
(2.14) d(’ﬂo) - (‘Po %o — ;I;o) : ('10) ¥ ( 0 )

where

= —(A./A;)ne + ( /A 2)0,
(>\ zz/>‘ + )770

Equation (2.14) can be used to derive a similar structure equation for the
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exterior derivative of the adapted coframe g~1(6,, n,)’, can now be computed:

0 -1 0 —1,4( %
d(n) g dg"(n)J'g d("lo)

_ _1f %o 0 6
=|—g1de — g1 -
( 8 % (% ¢o_¢o)g)/\(n)

+ g—l("?o :)\ 60)

_ _1| Po 0 0
= | — ld - 1 _
( 8 %8 (\Po ¢o—¢o)g) A(n)

N g-l(((a/ﬁ)'n 4(-)b0) A ab’)

o 0
=|-gldg—g! - A(0
( g ldg—g (wo %_%)3) (6m)

N A8+ (ba/a)dAB
—(baja)n A G — (bda/a)’0 NG

-1 _1 %o 0 0
a5 a0
_( 2(ba/a)6 + (ba/a)b 0 ) . (0)
—(ba/a)*q + (basa)n (ba/a)0 — (ba/a)b n
7
+("3 )

Note that this is of the form (2.12) where,

6 0
(2.15) (‘P ¢_$)

%o 0
=g“dg+g"‘( _ )g
Yo d— o

+( 2(ba/a)0 + (ba/a)8 0
—(ba/a)’d + (ba/a)n (ba/a)l — (ba/a)b|

To see that the forms ¢ and ¢ for which the relation (2.12) holds are
determined up to a transformation of the form (2.13) assume that ¢ is
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replaced by the form ¢’ = ¢ — g, g a complex valued function and that
Yy’ =y + (a 1 form). (This is the most general transformation that preserves
the form of the structure equation, df = —¢ A 6 + 1 A 6.) Now expand the
second row of equation (2.12):

dnp=—yA8-(s-9)An
=y Al—(¢+gh+ ¢ +30) Ay
—(y+gn)A0—(¢'—¢)An—gdAn.

The choice ' = ¢ + g7 yields the equation
dp=—y A0— (¢ —¢)An+3g0An,

from which we see that the term g A n cannot be removed. Hence we must
choose g = 0. Having shown that the form ¢ is uniquely determined, it is clear
that ¢ is determined up to a change of the form ¢ — f0, where f is an
arbitrary complex valued function. M

Prolongation

We have shown that given an adapted coframe it is possible to find forms ¢
and v so that equation (2.12) holds. In order to remove the ambiguity in the
choice of the forms ¢ and ¢ we have to move from the base space M to the
total space of the bundle P (doing so is called prolongation).

We seek a canonical trivialization of the cotangent bundle of P. Since P is 8
dimensional we must find four complex 1-forms whose real and imaginary
parts are independent. Two forms already exist, the tautological 1-forms 6 and
7. Using the local trivialization P, = U X G induced by local coordinates, we
may reinterpret formula (2.15) as a formula on the total space of P defining
two more forms on P, ¢ and . The collection 8, 1, ¢ and ¢ is a complex
framing of the complexified cotangent bundle of P (i.e., the real and imagi-
nary parts of these forms yield a framing for the real cotangent bundle of P).
There is a problem: this framing is not canonical—it depends on the initial
choice of coordinates. The dependence is given by Lemma 2.11 which (reinter-
preted as a statement about forms on P) shows that the set of forms satisfying
(2.12) are only defined up to transformations of the form

(2.16)

i

o om
© © ~=o
o = oo
= o oo

fo -f

< e 3

where f = f(w, z, g) is a complex-valued function.
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The next step is to show how to make a canonical choice of the form . The

following lemma shows that this is possible and concludes the proof of
Theorem 1.3.

LEMMA 2.17. There is a unique complex framing (0, m, ¢, ¥) of the cotangent
bundle of P characterized by the equations

(2.18) di=-9oAN0+q N0
(2.19) dn=—4Ab-(6-3)An
(2.20) dp=YAG—20Ay—n AT — 340 A 7,

where 0 and m are the tautological 1-forms on P and A is a complex valued
function.

Proof. We already know that ¢ is determined by the first two equations of
the lemma; we need only show that ¢ is determined by the third equation.

One way to do this is to differentiate (2.12) and then to use (2.12) to
simplify the resulting expression. The computation goes like this:

o=l

_d(i ¢E$)A(z)+($ ¢E$)Ad(g)+d(n35)
g GV B MR E MY | R
+(i ¢E$)A(ﬂ35)+(dn/\§;n/\d5)
—doANOAQAD
:((—dil»+¢/\$)A0~d(¢~$)+¢/\n/\§)

+((¢A5—n/\'ﬁ)/\0+¢/\§/\n).
0

Collecting terms results in the two identities

(2.21) {(-dp+yAB—nAn}AB=0
(222) —{dy+yAd}AO+ {—(do—dp)—yAb} An=0.
It follows that d¢ can be written in the form
(223) do=yAb—qAT
+(347+ B+ Cn+ Do+ E¢p+ Fy + Gy) A 6
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where 4, B, ..., G are complex valued functions to be determined (the coeffi-
cient of A4 is chosen to simplify later calculations). Wedging equation (2.22)
with 6, substituting into it the above formula of d¢ and the conjugate formula
for d¢ and simplifying we arrive at the identity

(224) (Cy+Dp+Ep+Fy+(G-2)¢)AGAqAE=0.

The independence of the forms 6, 8, 7, 3, ¢, ¢, ¥ and ¢ yields the equalities
C=D=E=F=0 and G=2;

and equation (2.23) assumes the form

(2.25) dp=yANO—20Ay—n AT —340 A — BOAG.

This equation can be used to make a canonical choice for the form —for
replacing { by ¢ — f yields the equation

do=yYyAO—20Ay - AR —340 A0+ (—f+2f—B)OAG

and the choice f — 2f = — B fixes the form ¢ uniquely. With this choice we
arrive at the identity (2.20). This concludes the proof of the lemma. ®

The function A is an invariantly defined function on P and as such is an
invariant of the pair (M, %). To determine the complete set of invariants the
formula for the exterior derivative of y must be computed.

PROPOSITION 2.26. The canonical framing of the cotangent bundle of
P(M, F) satisfies the structure equations

(2.27) dd=—-9oAN0+qAb
dn=-yA0-(6-9) A7
do=¢ N0 —-20ANYy—mAG—340 A 7
dy=—NMAY—YAP—34An AN+ DA
where
®=(BO+2Cn+Cn+24y+AY) A0
and A, B and C are complex valued functions satisfying the identity C = 3A /0.

Proof. It remains to consider the last structure equation. Substitution of
(2.20) into equation (2.22) yields, after simplification, the formula

(dy+ Y AP+ AY+3AnAT)AE=0
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from which it follows that dy can be written uniquely in the form
(2.28) dy= —qAY—YAS—3An AT+ DAD
where the one form @ is to be determined.

By computing the exterior derivative of equation (2.20) it is possible to
determine the form of ®. Specifically, expand as follows

0=d(dp)=d(y AG—20AYy—n AT —340 A7)
=dyANO—YAdI—2d0ANY+20AdY—dy AT+ AdY
—3(dA NG A —AdO AT+ A0 A d7y),

employ formulas (2.12), (2.20) and (2.28) and simplify to obtain the identity

(2.29) {(®-20+34Y} AOAD
+3{—d4 +24An+ Ap} ANO AT =0.

Denoting the framing of the manifold P dual to the coframe 8, 1, ¢, ¢ by

9 9 9 9
30’ dn’ d¢’ IY’
we can write dA4 in the form
8A aA 8 c')A dA- 04 -

which can be substituted into (2.29) to obtain the equation

(- (38)o+ (4 22)5- (28— (24]5) o

{<I>—2(I>+3A\p+3a

e }/\0/\0=0.

This equation can be partially solved for ® and dA to yield the identity
- = 94 — -
(2.30) ® = BO + 2Cn + C0 + Zgn2ay + 24¢ + AY

where B is a new complex valued function. (Note that this equation can also

be used to derive the formula for the exterior derivative, d4, given below
(232).) =



THE EQUIVALENCE PROBLEM FOR COMPLEX FOLIATIONS 71

Using the structure equations (2.27) it is possible to derive explicit formulas
for dA, dB and dC.

LEMMA 2.31. The following identities hold:

A 94 - dA
(2.32) dAd = 750 + 309+2A"+ 7 =7 + A
dB dB ~ aC ac
(2.33) dB = 550+ 350+ (2 =7 +B- AC) (ao —2AC)

+ B¢ + 2B + 29_4, +2(C - 4%y

_9C,, Cs ., dC, 4 (2%

Proof. The formula for d4 was derived in the proof of Proposition 2.26. To
determine dB and dC expand the exterior derivative of the fourth structure
equation in (2.27) and use equations (2.30) to obtain the equation

o=d(d.p)={d¢+q>A¢+q>A$—3%%nA'ﬁ—3A.pAﬁ}Ao.

Expand @ and d® in this equation and rearrange terms to arrive at the
identity

{dB - 2%¢ +2(A4*-C)y — B — 2B + (AC — B)n + 2AC1‘1}

AOAG

2dc+3( |A|)n—4C¢ 2—¢ An A8
ac _ R

{dC—%0—2C¢—3;'—\p}AnA0—O.

Expanding dB and dC and collecting linearly independent terms results in the
formulas for dB and dC in the lemma. B

Remark 2.35. The special case in which the invariants A, B and C are
constant is of particular interest because in this case the group Aut (M, )
has maximum dimension. In fact the only case to consider is the flar case
where A, B and C vanish for from Lemma 2.31 we can extract the formulas

94 4, B _p ama E-ac
d¢

3 9%
which clearly force vanishing of 4, B and C.
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3. The Cartan connection

In Riemannian geometry the curvature tensor of the Levi-Civita connection
can be interpreted as the deviation of the metric from the flat metric on
Euclidean space. Similarly, the analysis of this section will show that the
structure equations 1.6 are those of a Cartan connection with values in the Lie
algebra 3[(3,R). The fundamental invariants 4, B and C can then be
interpreted as curvature components and measure the deviation of a complex
foliation from the flat foliation.

The flat model

We begin with an investigation of the flat foliation. Let M, denote the
complement of real projective space in complex projective space and let %,
be the foliation of M, whose leaves are the restriction to M, of the complex
projective lines in CP? which intersect RP? in real projective lines.

Let the group SL(3,R) c SL(3,C) act from the left on CP? in the standard
way by complex projective transformations. Because SL(3,R) maps RP? to
itself and maps real projective lines to real projective lines it embeds in the
group Aut(M;, %,). In fact because SL(3,R) is 8 dimensional it follows from
Corollary 1.4 that the manifolds SL(3,R) and P(M,, %,;) are diffeomorphic,
that SL(3,R) = Aut(M,, %), and that the invariants, 4, B and C are all
constant. Finally, by Remark 2.35 the constants 4, B and C vanish and %,
is a flat foliation with structure equations

(3.1) dd= - AO0+qAb
dn=-yA0—(o—9)An
do=yAN0—-20ANYy—n AT
dy=-nAd-9Ad

By virtue of the isomorphism between SL(3,R) and P(M,, %;) =
Aut(M,,, F,) these equations are equivalent to the structure equations for the Lie
algebra 31(3,R). In particular, the framing (8, 7, ¢, ) can be expressed in
terms of the components of the Maurer-Cartan form of SL(3,R), wg;. (Recall
that if g denotes a variable 3 X 3 matrix in SL(3,R) then wg; = g~ 1dg.)

To derive the form of this expression we must introduce some notation. Let
[£Y, ¢2 ¢%) be homogeneous coordinates on CP?, let (w, z) be the affine
coordinates, w = {2/, z = {3/¢! and fix once and for all the point x, =
[1,i,0] € M,. Let g = (a/) denote an arbitrary element of SL(3,R) and let }
denote the ijth entry of wg;. Finally, let « be the surjective map

SL(3,R) > M,
7
g g xo=|al +id}, a} + ia}, a} + ia3]

and observe that #: SL(3,R) — M, is a right G'-principal fiber bundle where
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G’ is the subgroup of SL(3,R) defined by the formula

a b c
(3.2) G ={|-b a d a,b,e,fER}.
0 0 1/(a®+b?)

Consequently, M, can be identified with the homogeneous space SL(3,R)/G’.

To construct a framing of the complexified tangent bundle of SL(3,R) for
which the structure equations (3.1) hold start with the local adapted coframing
of TM* given by the 1-forms

z—2z -1
de and n0=w—_—wdw.

At the point x,, the equations 8, = dz and n, = 3idw hold. These covectors
pull-back to a pair of covectors at the identity element of SL(3, R) and extend
by left translation to left invariant forms, denoted by 6 and 7. We leave it to
the reader to check the identities

(3.3) 0=+ iw}
(3.9 n= %{(w‘l—wg) +i(w12+w§)}.

The forms ¢ and ¢ are uniquely determined by (3.1) and can be found by
computing d@ and dn using the structure equations for SL(3, R):

(3.5) dwi= —w} A wl'f
(3.6) o+ w3+ w}=0.

The result of the computation is
3 i
(3.7 $=—5(eh +}) — 5(eh— «})
1 .
(3.8) v=+ -2—(w13 +iw}).

The skeptical reader can check directly that the forms do indeed satisfy the
identities (3.1).

Remark 3.9. There is an inclusion of Lie groups G <> SL(3,R). Start with

the Lie algebra isomorphism g’ = g between the Lie algebras of the groups G’
and G given by the formula

( a b c ) —3a—ib 0
-b a d o c+id ,
0 0 —2a ) —2ib
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and exponentiate to give the Lie group isomorphism

1
0
4 < (4 + B?)(4 + iB)
[
5 oan-l C+iD A—iB
0 0 (4°+B% 2(4 + iB) AT

The inverse map gives the sought after inclusion G = SL(3,R):

(3.10) (‘; a%)

Re(a)/|a|*® —Im(a)/|a]** 2Re(ab)/|a|**
— | Im(a)/|a|*?  Re(a)/|a|**  2Im(ab)/|a|*’
0 0 |a|?/3

and allows us to identify the group G with the subgroup G’ € SL(3,R).

The connection

Now let (M, #) be an arbitrary complex foliation of a two dimensional
complex manifold. The formulas (3.3), (3.4), (3.7) and (3.8), applied now to the
canonical framing of P(M, &) by complex 1-forms can be inverted to furnish
a canonical 31(3, R)-valued 1-form, w.

DEerFINITION 3.11. The Cartan connection of the foliated manifold (M, %)
is the 3[(3,R)-valued 1-form, w, on the total space P(M, ¥), given as
follows:

Re(n —¢/3)  Im(n - ¢) 2Re(y)
w=| Im(n+¢) Re(-n-¢/3) 2Im(y)
Re(8) Im(6) 2Re(9/3)

It remains to make precise the sense in which o is a Cartan connection. Form
the quotient bundle E = P/H where H C G is the group of matrices of the

form
a 0
0 as/a)

A section of E — M is a splitting of the exact sequence of complex vector
bundles

0-L->TM-> Q- 0.
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The bundle #’: P — E is a right H-principal bundle and the forms 8, n and
¢ are horizontal with respect to the map =’'.

THEOREM 3.12. The 81(3,R)-valued 1-form w»: TP — 81(3,R) is a Cartan
connection on the right principal H-bundle P — E. Moreover, when the funda-
mental invariant A in the structure equations (1.6) vanishes o is a Cartan
connection on the right principal g-bundle, P — M.

The curvature matrix, @ = dw + o A W, is of the form

o -9
(3.13) o=@ @ @
0 0 -2
with
(3.14) 30+ iQ2 =340 A 7

(3.15) QL +iQ2=—-64n A7
+2(BO+2Cn+ Cq+ 24y + AY) A 0.

Proof. Begin with the definition of a Cartan connection (see [6a, 127-128]).
Let R, denote right multiplication by an element g € G and recall that the
right action of G on P can be used to associate to each element X € g a
vertical vector field X* € I'(P, TP); more precisely, for p € P, X,* is the
vector

dRexp(tX)p
XP* = ( dt )I,_o.

The form w is a Cartan connection on P — E (resp. P — M) if the following
three conditions hold:

(a) The components of w form a framing of the cotangent bundle of P.
(b) Forall X € (resp. X € q), o(X*) = X.
(c) Forall g € H (tesp. g € G), R¥w = Ad(g™Hw.

Condition (a) is almost immediate. By construction, the real and imaginary
parts of the forms 8, 0, ¢ and ¢ form a framing of 7*P and the components
of w are obtained from them by a non-singular linear transformation.

To prove condition (b) work over a trivializing neighborhood, U C M, so
that Py=UXG and recall that with respect to such a trivialization, X* =
0 X X where X is now thought of as a left invariant vector field on G.
Examining formula (2.15) and recalling that subsequent modifications to the
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forms ¢ and ¢ only involved the addition to ¢ of a multiple of the form 6
reveals that the restriction to a fiber (i.e., to x X G, x € U) of the matrix

(I ¢E$)

is precisely the Maurer-Cartan form g~!dg and condition (b) becomes obvi-
ous, because g~ dg(X) = X for all X € g.

It remains to check condition (c). Because G and H are connected we need
only check the infinitesimal version

L = —ad(X)w,

for all X €l (resp. X € g), where £ denotes Lie differentiation. But by
virtue of property (b) the equation ad(X)w = i(X*)w A @ holds and
w(X*) = X € g is constant. Therefore, from the standard formula for the Lie
derivative

Lo = (doi(X*) +i(X*)od)w,
condition (c) reduces to the identity
i(X*)(do+ wAw)=i(X*)2=0,

for all X € §) (resp. X € g). In other words, condition (c) holds if and only if
the curvature 2-form  is horizontal. Inspection of the formulas for the
components of £ given previously reveals that all components are linear
combinations of the forms 8, n, ¢ and their conjugates. Hence € is horizontal
with respect to the fibration P — E. When A = 0 all curvature components
are linear combinations of § and n and their conjugates and @ is horizontal
with respect to the fibration P — M.

The curvature identities are simply a translation of the structure equations
227). m
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