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FUNCTIONS WITH A UNIQUE MEAN VALUE

BY

JosepH ROSENBLATT! AND ZHUOCHENG YANG

Section 1

Let G be a Hausdorff locally compact group. An admissible subspace
S c L{G) is a subspace containing the constants such that if f € S, then
S(x) = f(g7'x) defines ,f€ S. A function fe L G) potentially has a
unique left invariant mean if there is a constant c¢ such that whenever
fe S c L G), S an admissible subspace, then any left invariant mean M on
S has M(f) = c. A function f € L (G) has a unique left invariant mean value
if it potentially has a unique left invariant mean value, and also there is an
admissible subspace S c L (G) with f € S and there is a left invariant mean
on S. If G is amenable, the above two notions are the same, but in general a
function may potentially have a unique mean value without actually having
one. The analogous notions for right translations or translations on left and
right are easy to formulate.

A function f € LAG) left averages (to c) if there is a constant ¢ in the
Il - ll- closed convex hull of {, f: g € G}. Any function which left averages to
a constant must potentially have a unique left invariant mean value. The
following is well known.

1.1. TueoreM. If G is amenable as a discrete group, then the following are
equivalent for f € L{G):

(1)  f has a unique left invariant mean value;

(2) f left averages;

(3) fe ll - lleclosed span C U {,f — f: g € G};

@ fe - llwclosed span C U {,{ — {: ¢ € L(G), g € G}.

Remark. The implications (2) implies (3) and (3) implies (4) are always
true. The implications (3) implies (1), (2) implies (1) and (1) implies (4) only
need the assumption that. G is amenable as a locally compact group.
However, all the other implications need the hypothesis that G is amenable
as a discrete group. For example, if G is a compact group with a unique
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invariant mean on LG), then an open dense set V' G with A5(V) < 1
will give f = 1,, satisfying (4) but not (1), (2), or (3) because both 1 and A(V)
can be left-invariant mean values of f on C + span{,f: g € G}.

This result does provide examples that distinguish left and right transla-
tions. In Rosenblatt and Talagrand [6], it was shown that a discrete amenable
group admits a left invariant mean that is not right invariant if and only if
there is an infinite conjugacy orbit {xyx~': x € G} for some y € G. This
provides a class of examples of groups for which the following hold.

1.2. THEOREM. Let G be an amenable discrete group. The following are
equivalent
(1) every f which left averages must also right average and /or vice versa;
(2) every left invariant mean is right invariant and /or vice versa;
(3 | - llo-closed span of {;,{ — {: g € G, { € I(G)} is || + |lwclosed span
of i, — L: 8 € G, L € LG

Proof. By Theorem 1 and its obvious analogue for right translations, (3)
and (1) are equivalent. Clearly (3) also implies (2). Conversely, assume (2). If

Fespan{,{ - (g€ G,{€l(G)}
is not in
||+ |le-closed span{gg -l:g€G, € lw(G)},

then there exists M € [}(G), M(F) + 0, with M({, — {) = 0 for all g € G,
¢ € 1(G). 1t follows that M* and M~ are both right invariant and M*(F)
# M~(F). But by the assumption (2), M* and M~ are left invariant and so
M*(F) = M~(F) = 0 because

Fespan{,l - {: g€ G, L€l (G)}.
This shows (2) implies (3). O

Remark. Theorem 1.2 shows that left averaging and right averaging are
not the same in general. However, this theorem does not address non-amena-
ble groups. We conjecture that if G is non-amenable, then there is f € L (G)
such that f left averages, but f does not right average. See Section 2 for a
proof of this fact in the case that G is discrete.

If G is not amenable, then the set of functions % with a unique left mean
value is not well understood. It is not known if these functions form a
subspace of L (G). Indeed, a related problem is not resolved: does there
exist a largest admissible subspace of L(G) on which there exists a unique
G-invariant mean? See Section 2.
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1.3. ProrosiTioN. A function f € L{G) admits a unique left invariant
mean value if and only if there is a unique constant c such that whenever a € C,
0,€C,8€G,i=1,...,nand a + L]_ja;, f >0, then

a+.2ai620 (%)

Proof. 1f f admits a unique left invariant mean value c, then there exists
an admissible subspace S € L (G), with f € S, and a left invariant mean M
on § with M(f) = c. Now if

n
a+ Eaig,-fz 0,

i=1

then

n n
a+ Zaic=M(a+ Zaigif) > 0.
' i=1

i=1

But also, this constant ¢ is unique with this property. Indeed, if ¢, has this
property, then we can define M, on S, = C + span{,f: g € G} by

n n

i=1 i=1

and obtain a left invariant mean M, on an admissible subspace S, with
M(f) # c, contrary to assumption.

Conversely, this same construction shows that if ¢ has property (*), then
there exists an invariant mean M on C + span{,f: g € G} with M(f) =c.
Also, if S, is any other admissible subspace of L(G) with f€ S, and S,
admits a left invariant mean M,,, then M,(f) satisfies property (*) and by
uniqueness, M,(f) = c. Hence, c is potentially and actually the unique left
invariant mean value of f. O

1.4. CoroLLARY. If f left averages and right averages, then f left and right
averages to a unique constant ¢ and f has a unique left and /or right invariant
mean value c.

Proof. 1If f right averages to ¢ and F =a + L ja;, f >0, then by
averaging F on the right, we see a + X}_,a;c = 0. So c is a left mean value
of f. By the usual argument, if f both left and right averages, then there is a
unique constant ¢ to which it averages. But then if

n
a+ Zaigofzo
=1
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always implies
n
a+ Y ay=0,
i=1
we can argue y = c¢. Indeed, choosing an average
n
Af = E Aig,-f
i=1

With ”Af— c“oo < g, C +e— E?=1Aigif2 Oand —c t+ ¢+ Z?=1Aig,~f2 O. SO
c+e—vy=>0 and —-c+e+vy=0.

Since € > 0 is arbitrary, c = y. O

Remark. This is the abstract principle that enables one to construct a
unique G-invariant mean on WAP(G) given Ryll-Nardzewski’s theorem.

Here are some of the unresolved questions:

(a) Does there exist f which left averages to a unique constant, but f
does not have a unique left invariant mean value, or vice versa?

(b) Is % a subspace if G is not amenable?

(¢) If G is not amenable does there exist f;, f, € L(G) such that f; and
f> have unique left invariant mean values, but f; + f, does not in the sense
that () is satisfied for more than one constant? Such an example would
resolve b) for the group in question.

(d) Is there a largest admissible subspace with a unique left invariant
mean value? By Zorn’s Lemma, there are always maximal spaces of this type.
Is there a maximum such space?

(e) How different, if at all, are %, {f € L{G): f left averages}, {f
L{G): f right averages}, and {f € L(G): f left and right averages}? These
questions are related to (a).

Note that there is a possible phenomenon related to (d) here. One can
possibly have admissible subspaces §; C §, such that §; admits more than
one left invariant mean, but S, admits a unique left invariant mean. For this
reason, if there is a largest subspace W with a unique left invariant mean,
then  C W but possibly %+ W. Hence, if a) is shown, it is not clear that
then W does not exist. See Section 2 for answers to some of the above, in
case G contains non-abelian free groups.

A property related to the above is easy to show in general: the functions
that left average do not in general form a subspace. Indeed, we have this
theorem; it should be compared with Emerson [2].
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1.5. THeOREM. For a discrete group G, G is amenable if and only if
whenever f, and f, left average, then f, + f, left averages. Indeed, if G is not
amenable, then there are f| and f, which left average to 0 such that f, + f, does
not left average.

Proof. One direction above is proved by Theorem 1.1. Conversely, if G is
not amenable, then [(G) = || - |l«-closed span {,f — f: g € G, f€ l(G)}.
Since G is infinite, there exists A C G such that both 4 and 4° = G\ A4 are
permanently positive. See Pier [4] or Rosenblatt [6] for references. Hence,
any average Lj_;A;1,, is 1 somewhere and 0 somewhere. Thus, 1, does not
left average. It is easy to see if

feloo(G)’ (fn) Cloo(G)’ h_l)rzollf_fn“m:()’
and each f, left averages, then f left averages. So some
Fespan{,f—f:g€G, fel(G)}

does not left average. But each ,f — f left averages to 0 because

= 0.

©

N
(l/N) glgn(gf—f)

lim
N—->o

Therefore, the set {f € I(G): f left averages} is not a subspace of [(G), i.e.,
there exists f; and f, which left average such that f, + f, does not. By
subtracting suitable constants ¢, and c,, f; — ¢; and f, — c, left average to
0, but fi —c, +f, —c,=f +f, +c, where ¢ = —c; — c,, does not left
average. O

Remark. (1) It is probably the case in general for non-amenable groups
that there exist functions which left average to more than one constant. See
Section 2 for a proof of this in the case that G is a discrete group.

(2) One question here is whether for non-amenable groups

span{ f — f: g € G, f € I(G)}

is closed; i.e. does every TILF have to be 0? Woodward [10] resolved this for
amenable groups in the negative, Saeki [7] resolved it affirmatively for the
free group F, and Willis [9] showed this for all non-amenable groups. See
Section 2, Proposition 2.12 ff.

(3) The previous theorem is almost true for all groups. If G is a
non-amenable locally compact group, then the conclusion above is true.
However, if G is amenable, but not amenable as a discrete group, it is not
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clear whether {f € L{G): f left averages} forms a subspace. Would this
imply G, amenable?

A stronger averaging property gives an interesting variant of Theorem 1.5.
A function fe& L{G) strongly left averages if every linear combination
L a;,,f left averages. If one only knows the same for convex combinations
L 1A, f> then write

m
Ya,, f=cA —cA, wherec, = ) {a;: a; >0},
i=1

unless all @; <0 and then ¢, =0, and ¢, = —X{a;: a; <0}, unless all
> 0 and then ¢, = 0, and A4,, A, are the appropriate convex combina-
tions. If we can choose a constant a, and an average

n
2 Aj, Ay with <e,
=

m
=1

then 4 =¥/ ,A;, A, is an average of translates of f too. So if we can
choose a constant a2 and an average

p
Y YinA with <e,
k=1

P
a, — > YinA
j=1

we then would have

€181 — €4y — ZYkth/\ (Zale)

j=1

i=1

n
¢a, — Z ‘Ykhk( )y )‘jgjclA1)
j=1

©

+
k=1

P n
—cay + 3 ’)’khk( Z Ajg]-cZAZ)

[

j ,»(Cl(al - Z/\ig,»Al))

oo

p
+ Cz( h YienA — az)
k=1

< €elcyl +ele,l.

3
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Hence, we see that f strongly left averages if and only if every convex
combination ¥7_;A;, f left averages.

The same type of argument as the one above shows that if f; left averages
and f, strongly left averages, then f; + f, left averages. This gives:

1.6. THEOREM. A discrete group G is amenable if and only if whenever f left
averages, then any average ¥'_,A; ¢ f also left averages.

Proof. By Theorem 1, if G is amenable and f left averages, then so does
any average L7_A; . f. If G is not amenable, then there are f; and f, which
left average to 0, but f; + f, does not left average. By the remark above, f,
cannot strongly left average. O

Remark. By approximating A; by rationals, it is easy to see that if G is not
amenable, then there is f which left averages to 0 such that some average
1/N)ZN, ¢,f does not left average.

Again, it is easy to see that if f; and f, strongly left average, then f; + f,
strongly left averages. However, it is not clear whether {f € L (G): f strongly
left averages} admits a (unique) left invariant mean. It is clear, just as for
WAP(G), that {f € L{G): f strongly left and right averages} admits a unique
left invariant mean. More generally,

o, = {f € L(G): f strongly left averages to a unique constant c}

is a subspace admitting a unique left invariant mean M,. The problem is
whether every function which strongly left averages, must average to a unique
constant. We will see in Section 2 that this is not the case. It is worthwhile to
observe here that 27, is in some sense relatively small.

1.7. TueoreMm. If . is an admissible subspace admitting a (unique) left
invariant mean M, then the subspace .+ 27, admits a (unique) left invariant
mean M.

Proof. If M is unique, there is only one possible value for M(f; + f,) if
fi €  and f, € &7, namely M(f,) + M,(f,). We show that if f; + f, > 0,
then M(f,) + M, (f,) = 0. Indeed, for all ¢ > 0, there is an average

A(f,) = .‘é:laig,-f2 with ”A(fz) "Mu(fz)”°° < €.
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So A(f) + M(f,) = A(f)) + A(f,) — ¢ = —e. But then

M(f,) + M,(f>) =M(A(f1)) + M, (f>) =M(A(f1) +Mu(f2)) = —&.

Since & > 0 is arbitrary, M(f,) + M,(f,) = 0. O

Remark. 1Is &7, the largest left-invariant subspace with the property of
Theorem 1.7?

Section 2

It is possible to answer many of the previous questions about functions
with unique left invariant mean values in the class of discrete groups which
are non-amenable because they contain non-abelian free groups.

First, consider a free group F, on free generators x and y. Let Y be the
words in reduced form which begin on the left with y or y~! and let X be
the same set with x playing the role of y. Then {x"Y: n € Z} and
{y"X: n € Z} are partitions of F,\ {e}. Let f= 1,. Then

1
N
n

1
x”f =N 1 UlN_ix"y
1

M=

I

and hence f left averages to 0. But similarly 1, left averages to 0. Now
=14, + 1, + 1.
Hence,

1
N

1

..... ™y —1\71 Uilpnx:

M=
2|~
’L—*

S

ynf= 1 -

n=1

Therefore, f left averages to 1.

2.1. TueoreM. If G is a discrete group containing F,, then there is a set
A C G such that 1, left averages to any constant ¢, 0 < ¢ < 1.

Proof. Let {x,: a € o7} be a set of right cosets representatives of F, in
G. Let Y be as above and let 4 = U{Yx,: a € &/}. From the argument
above, it is clear that

lim =0
N-oowx

1 N
N Z x”lA
n=1

oo
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and
1 N
li ~ =1 =0.
le)rlw N ngly 4 0
So both 0 and 1 are in O(1,), the || - |l.-closed convex hull of the left

translates of 1,. Hence, [0,1]1 c O/(1,). O

2.2. CoroLLARY. If G is a discrete group containing F,, then there is a set
A C G such that 1, left averages, but does not right average.

Proof. Use Corollary 1.4 and the example of A € G from Theorem 2.1.
[m]

Remark. See 2.12 following.

An example like the previous one will have an even stronger property. Let
Xo=F,\Xand Y, = F,\ Y.

2.3. Lemma. If f € I(F,) is constant on some gX,,, then f left averages to
that constant.

Proof. 1If f=c, a constant, on gX,, then |f—c| <Kl ,x, where
K= ”f”oo +c¢. So

lg-1f — ¢l <Kl x, = Klx.
As above, there is a sequence A, of left averages such that
lim (14, Lyll. = 0.
So

limsup || 4,(;_1f) — c"o‘> < limsup "A,,(Ig_lf— cl)"oo
n—o n—o

<Klimsup|4,(1x)]|, = 0. m]

n-— o

Remark. 1If f is constant, except for finitely many values on some gX,,
then the same conclusion holds. Indeed, then f + A is constant ¢ on some
gX, for some A with finite support. Hence, for all ¢ > 0, there is an average
A(f + h) such that |A(f + k) — c||» < &. But then

lA(f) —cl <A(lh]) + &.
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Since A(h) has finite support, there is another average B with B(A(|h])) < e.
Hence

IB(A(f)) — ¢l <B(l4f — c|) < B(A(Ih])) + & < 2e.

2.4. LemMmAa. In the free group F,, if finitely many left translates of X, have
non-empty intersection, then there is a left translate of X, contained in that
intersection.

Proof Let g€ N7 ,8X,, i€, g g€ X, fori=1,...,n Write

Xo={e} U Y, whereY, =y*({e} UX).
k+0

We claim that for each i = 1,...,n, g7 'gY, € X, for all but finitely many
values of k. Indeed, if there is an x or x~! in the reduced form of g/ 'g, then
g7 'gY, c X, if |k| is sufficiently large. Otherwise, g; 'g =y*® and then
g 'gY, c X, for all k = —k,.

Thus, there is some k # 0 such that g; 'gY, c X, for i = 1,...,n. That is,

n
gy, c N &X,.
i=1
But gY, contains gy*xX,. O
2.5. THEOREM. Suppose f € I(F,) is such that for all g € F,, there exists
h € F, such that g € hX, and f is constant on hX,,. Let f be any left average of
f. Then f left averages to any value between sup f and inf f.

Proof. Let g € F,. It is enough to show that f left averages to f(g).
Suppose

_ n
i=1
is a left average of f. Then
_ n
f(8) = L a:if(s'g)-

i=1

By the conditions on f, for each i there is some h;X, containing g; 'g on
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which f is constant. Since

n
g€ U shiX,,
i=1
Lemma 2.4 shows there is some
n
hX, < () g:h. X,

i=1

Hence, f is constantly f(g) on hX,. By Lemma 2.3, f left averages to f(g).
O

Remark. 1If f satisfies the hypotheses of Theorem 2.5 except f is only
constant on xX, excluding a finite number values, then f will strongly left
average again, although perhaps not to any c in [inf f, sup f1].

The example 1, above has the property needed in 2.5. Indeed, {X,, X} is a
partition of F, and {x*X,: k # 0} is a partition of X. Hence, 1, strongly left

averages too. By using the right coset construction of Theorem 2.1, this
shows:

2.6. TueoreM. If G is a discrete group containing F,, then there is a set
A < G such that 1, strongly left averages, but does not right average.

A refinement of the previous arguments gives even more. Again, let x and
y be free generators of F,. Let

X' = | {x"Xy:n € Z,n odd}.
If fel(F,),0<f<1g\x, then f averages to 0 by Lemma 2.3 because
xX, € X'. Choose any B C F, such that both B and B° = F, \ B are perma-
nently positive. There is no harm in assuming e & B. Let
B =BNX and B"=BnN(F,\X')
and let
A=x"'B"UB".

Then x4 and A are disjoint and x4 U A D B; hence, x4 U A4 is permanently
positive. Also, F,\ A is permanently positive. Indeed, if g;,...,8, € G,
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there exists

n n
g€ N&B° N N gx 'B.

i=1 i=1

So for all i,g;'g & B and so g 'g & B", while xg;!g & B and so g; 'g &
x~1B’. Hence,

g 'gEx 'BUB" =4 foralli,

and therefore, g & U}_,8;4.
This shows that f = 1, has the following properties:

(1) f left averages to 0;

(2) any left average of f has minimum equal to 0;

(3) f has a unique left invariant mean value of 0;

(4) any left average of ,f + f has maximum value of 1.

We have observed (1) and constructed A4 so that (2) and (4) holds. But (2)
shows

|l - ll-closed span C U {,f: g € G}

admits a left invariant mean m with m(f) = 0, while (1) shows f potentially
has a unique left invariant mean value of 0. Hence, (3) holds too. Note that
this f then is an explicit example of Theorem 1.6 in that . f + f cannot
left-average since, by (2) it can only left average to 0, and by (4) it can only
left average to 1.

This function f also has the property that by (3), ,f + f can have a left
invariant mean value of 0, and by (4), ,f + f can have a left invariant mean
value of 1. So for any ¢, 0 <c <1, ,f + f can have a left invariant mean
value of c. This answers (c), and hence (b) of Section 1 in this case.

2.7. THEOREM. If G is a discrete group containing F,, then there is a set
A c G and x € G such that 1, and .1, have 0 as a unique left invariant mean
value, but 1, +,1, does not have a unique left invariant mean value; hence, %
is not a subspace.

Proof. Let {x,} be right coset representatives of F, in G. Let
X' = U{x"Xyx,: nodd, a € &7}.

Let B C G be such that B and B¢ are permanently positive in G. The rest of
the construction proceeds similarly to give f € I(G) with properties (1)—(4).
]
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Furthermore, let f' be defined by f' = (1 — f)1,\ x- Then f' also satisfies
(1)-(4). Property (1) is clear. To see (2), choose any average Lf = L}_;e;, f
where each a; >0 and g,,...,8, € F,. Then L(.f+ f)g) =1 for some
gEF, by (4). If f(g,.“g)— 1, then f'(g;'g) =0. If f(g;!g) =0, then
f(x~'g;7'g) =1 and so

xTlgrlg e K\ X

Hence, g; !¢ € X' and f'(g;'g) = 0 again. Thus, Lf'(g) = 0. This proves (2).
Since f’ left averages to 0, this also proves (3). Moreover, to see (4), observe
that 3L(_f + f) is an average of f and so

sL(.f+f)(g) =0 forsome g€ G.
But f' = 1, x — f and so
S A=l e — ) =1 - GF+ 1)
Thus,
LGf +f)(8) =1-L(f+f)(g) =1

But now f and f" have 0 as a unique left mean value, while f + f' = 15 | x-
Clearly 1, x averages to 0. But also, ,1y. = 1\ x- 50, 14 averages to 0.
Since

1=1px + 1y,

1p,\ x~ must average to 1 too. Hence, f + f" averages to 0 and to 1; therefore
f + f' cannot be in any admissible subspace admitting a left invariant mean.
Actually f + f* also strongly averages by Theorem 2.5 because f + ' = 1\ x'
and {x"Y,: n even} is a partition of F,\ X".

Now the same right coset construction of Theorem 2.7 shows this partial

answer to (d) in Section 1. It also resolves (b) in a different manner than the
above.

2.8. THEOREM. If G is a discrete group containing F, as a subgroup, then %
is not a subspace and there is no maximum admissible subspace of l(G)
admitting a (unique) left invariant mean.

It is worth observing that the above construction gives four sets 4, B,C, D
which form a partition of F, where 1, =f, 1, =f, 1. =,f, and 1, =,f’, so
that 1,, 15, 1., and 1, each left averages to 0 and each has any left average
with a minimum equal to 0. But then for any & € [(F,), h = hl, + hlz +
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hl. + hl,, a sum of four functions each of which averages to 0 and has a
unique mean value of 0.

2.9. CoroLLARY. If G is a discrete group containing F, and h € 1(G),
then

h=fi+fi+fs+fs
where each f; left averages to 0 and has a unique mean value of 0.

Some constructions related to the above can give us other important

examples. Let f be as before in the proof of Theorem 2.8. Define h € I (F,)
by

h(g) = (1 +f(g) +,f(8))1rx8)-
Then h left averages to 0. But & +,h > 15\ x, + lyr,\ x,)- Since
x7 X, c F,\ X, and x(F,\X,) 2X,.

Hence, & +,h = 1 on F,. Therefore, h cannot be in any admissible subspace
which admits a left invariant mean.

However, h left averages to a unique constant. Indeed, suppose A left
averages to ¢ > 0. Then for & > 0 there is a convex combination A(h) =
Li_1a;, h with |lA(h) — cll» < &. For any g € F,, gX,, either contains all but
one x"‘XO (if g ends on the right in reduced form with y*!) or gX, is
contained in some one x™X,. Therefore, there exists some x™X,, which is
contained in g; X, or misses g;X, for all i =1,...,n. Hence, ,h is either
constantly 0 or equal to 1 +f+, f on x™X,. We can assume that g,
i=1,..., no, are such that h =0 on x"X, exactly for i =n,+ 1,...,n.
Thus, I/ a,,(f +,f) is a constant c, within € on x”X,. But

n

Zaigih —C

i=1

<& onx"X,

=

shows

o
Ya,,h—cl<e onx"X,.
i=1

Hence,

S
=)

no

c—e< Yagh=3Y a, (l+f+.f) onx"X,.
' i=1

-
I
-
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Thus, ¢ — & <2X",a; and so L0 a; > 3(c — ¢). Hence, f+,f can be
averaged to ¢, within 2¢/(c —¢). But any left average of f+,f has
minimum value 0 and maximum value 1. This is a contradiction as soon as
2¢/(c —€) < 1/2.

This construction gives the following result.

2.10. TueoreM. If G contains F,, then there is a function f € 1(G) which
left averages to 0, and only to 0, but f does not have a (unique) left invariant
mean value.

Conversely, we can construct f € % which does not left average. Con-
struct a characteristic function f € I(F,) such that for any g,,..., &,
nl,...,n, distinct, there is g € F, with f(g;7'g) =0 for i =1,...,k and
fnj'lg)=1forj=1,...,L Let h = f~1X Toseehe%Justnotethat
since & < 0 on X,, for all e > 0, there is a left average A(h) with A(h) < &.
Since A > 0 on F,\ X,, for all ¢ > 0, there is a left average A(h) > —e.
Hence, # potentially has 0 as a left invariant mean value. But also, for any
linear combination

k i
= Zaigih_ Zﬁmh
j=1

i=1

with g,..., &, ny,...,n; distinct, and a;, B; = 0, there is a g € F, with
f(g7'¢) =0 and f(n;7 g1y =1 for all i,j. Hence, h(g7'g) <0 and
h(n; ') = 0. That is, A(g) <0.Butthenif c + A >0, ¢ + A(g) = 0 and so
¢ > 0. That is, 0 is the unique left-invariant mean value of .

Now suppose & can be left averaged to c¢. Then ¢ = 0 is the only possibility
by the above. Let A(h) = Z{' 1@, be an average with ||A(A)|l. < &. Since
there is g € F, with f(g7'g) =1 for all i = N,

Yfagi'lgE Xy} <e

Assume a, ..., a,, represent those ; with g7'g € X,. ThenX™ o, > 1 — ¢
By Lemma 2.4, since g € N7 ,g;X,, there is § € F, with

m
c N &X,-
i=1
Thus, on gX,,

m

Z aig,»h = Z tg,.f Za
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(Bt (£}
(Bt Ee) -

Since & > 0 is arbitrary, and 1, left averages to 0, this shows f left averages
to 1. But this is impossible by the choice of f.

Since

<e/(1 —¢) on gX,,

e
it

this shows

<e/(1—¢) on gX,.

2.11. TueoreM. If G contains F,, then there exists f € 1(G) such that f
has a unique left invariant mean value, but f does not left average.

The examples provided by 2.2, 2.10, and 2.11 show that generally

{f: f left averages} # {f: f right averages},
A\ {f: f left averages} # ¢

and
{f: f left averages to a unique constant} \ % # ¢.

This answers most of (a) and (e) in Section 1, except it does not relate % and
{f: f right averages}. It was essentially already observed that if f right
averages to ¢, then M(f) = c defines a left invariant mean on || - ||.-closed
span C + {,f: g € G}. So if X is the words in reduced form that do not end
with x*! then f= 1,0 right averages to any ¢, 0 <c <1, and so has
different left-invariant mean values. The question should rightly be to relate
% and {f: f right averages to a unique constant}. But if G is amenable, these
are not the same by Theorem 1.2.

A related question is whether functions which left and right average, admit
a two-sided invariant mean on G U span {,f: g € G}. This is not generally
the case. Let

f= 1 xou x5y

Then f=0 on X, and X;, so f left and right averages to 0, the only
possible two-sided invariant mean value. But

f(g) +f(xg) +f(g) +f(xgx) =1 forall g €F,,
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so f does not admit a two-sided invariant mean value. Notice f' =

1p\(xpu(F,n xp)-1 has the same properties as f but f + f' = 15 | x, does not
right average. So

{f € I(F,): f left and right averages}

is not a subspace. This, and the previous examples of this section, show that
&7, seems to be the only reasonable subspace on which there is a unique left
invariant mean value. But Theorem 1.7 shows how it is essentially the heart
of the class of admissible subspaces admitting a unique left-invariant mean,
and hence to be considered a small subspace.

The class of groups that has been considered here has another property
relevant to the remarks in the first section. Saeki [7] showed that if f € [(F,)
then there is

fi,fo €L(F,) with f=f —fi+,f,—f,.
By the coset construction of Proposition 2.1, this proves:

2.12. ProvosiTion. If G is a discrete group containing F,, then for every
f € 1LG), there exist f,, f, € I.(G) such that f = f, — f, +,f, — f,.

Remark. When is this two term representation possible? Does it imply
that G contains F,? Note that by Tarski’s characterization of non-amenable
groups G, there exists sets

{4,,...,4,} and {B,,...,B,}
which partition G, and some g,,..., g, and hy,..., h, such that
{g.4,,...,8,A4,,hy,By,...,h,B,}

is also a partition of G. Hence,
n
1= 2 1Ai - 1giAi + Z 1Bi - lhiBi'
i=1 j

That is, if G is non-amenable, there are fi,..., f, € L(G)and x,,...,x, € G
such that

1= Zx,fi_.fi'

i=1
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The question above is in part when is n = 2 possible? See the article by
Krom and Krom [3] for an analogous question.

Proposition 2.12 clearly shows that if G contains F,, then the only TILF
on [(G) is 0. But Willis [9] shows that this is true for any amenable group
(discrete or not).

2.13. Tueorem (Willis). If G is a non-amenable locally compact group
then

L(G) = span{f —,f: g € G, f€ L.(G)},
and the only TILF on L(G) is 0.

Another consequence of the argument in [9] is this proposition for discrete
non-amenable groups.

2.14. ProrositioN (Willis). If G is a discrete non-amenable group, then

there exist g,, ..., 8, € G such that {g,, ..., g,_,} generates an amenable group,
and there exist f, ..., f, € L.{G) such that 1 = X}_.f; — . f:

2.15. CoroLLARY. If G is a discrete non-amenable group, then there exists
f € 1.LG) which left averages to any ¢, 0 < ¢ < 1, and so f left averages but does
not right average.

Proof. Use 2.14 to write 1 = X7, f; —, f; with {gy,..., g,_;} generating
an amenable group. Then L7 lf, — ¢ fi left averages to 0. Hence f = f, —, f,
left averages to 1, while it obviously left averages to 0. So f left averages to
any ¢, 0 < ¢ < 1. This f proves the corollary. O

Remark. The extension of this corollary to non-discrete non-amenable
groups is open.

Section 3

Another interesting aspect of functions with unique left invariant mean
values for amenable groups is that they do not usually form an algebra of
functions. Let % be as before and let 2* = {f € L{G): M(f) is uniquely
determined if M is a left invariant mean on L(G)}. Hence % C %* and
% = * if G is amenable as a discrete group. This was observed in Theorem
1.1 since (4) describes Z* and (1) describes %.

The basic question is whether %* or % can be an algebra. Forms of this
question were considered by Chou [1] and Talagrand [8]. Let .#'= {f € L (G):
M(|f]) = 0 for all left invariant means M on L(G)}. Clearly if f€ C + ¥
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then fh € %* for all h € Z*. If C + A4+ %*, then the converse below
would prove Z* is not an algebra.

3.1. TueoreM. If G is amenable as a discrete group and f € L{G) with
fhe U*forallh € %* thenfe C+ 4.

3.2. CoroLLARY. If G is a compact group which is amenable as a discrete
group, then only the constant functions f € L{G) have the property that
fhe 2* forallh € %*.

Proof of Theorem 3.1. First, f(,{ — {) € %*forall g € G and { € L(G).
But if m is a left invariant mean,

m(f(g-16 = £)) = m(f,-1¢) — m(f2)
= m((£)¢) = m(£8) = m((.f = £)¢)-

Hence,
lof = 1% = GfF = (T} € 2
also.
Let
£ = (1/1ef = PN gropn ey

Let

Ec{g~f*=¢)
be a measurable set. Then

lof = f1%01 =1

is in %* for all measurable E C {|,f — fI? > &}. It follows that L\ f-fi22e) €
A To see this let

Eo={l,f - fI* = &}.

Since G is amenable as a discrete group, there are left invariant means 6,, 6,
and 4 c G with 6,(1,) = 0 and 6,(1,,.) = 0. See Rosenblatt [5]. Let

E,=E,NA, E,=E,NA°, and 0 =3(6,+9,).
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Then
0(151) = 92(151) = 02(1A‘1E1) =0 and 0(132) = 01(1E2) = 01(1A1E2) =0.

So 6(1g) = 6(15) + 6(15,) = 0 and hence M(1g ) = 0 for all left invariant
means M.

But now we have 1.« ¢ .., € .# for all ¢ > 0 and hence gf — f € ./ too.
Let ¢ be the unique constant with M(f) = ¢ for all left invariant means M.
Let f, =f— c. Then f;, has a unique left invariant mean value of 0 and
oJo — fo €A for all g € G. But then f; averages to 0 by Theorem 1.1.
Hence, for all € > 0, there are g;,..., 8y € G with

< e&.

o

1 N
N.Zg,fo

i=1

But
1 ¥ 1 N
N .;lgifo =N ;1 (g,»fo —fo) + fo-

This shows f; € || - |l-closed span {,f, — fo: £ € G} and so f, € .# by the
above. Thatis f=c+f,€C+ /. O

Remark. (1) To show C + 4+ %*, and hence show %* is not an
algebra using Theorem 3.1, requires showing that if G is an amenable
discrete group, then there exists M € G and g € G such that 1./, & A4
Although this is easy for certain groups, no general argument for it is known.
However, an unpublished theorem of Granirer (cf. Chou [1], p. 182) shows in
another fashion that %* is not an algebra. So C + .#'# %* and the set M
and g € G above exists in general. Granirer’s argument uses his theorem
that amenable groups do not admit multiplicative invariant means.

(2) Some assumption besides amenability of G as a locally compact group
is needed here since if G is a compact group with a unique left invariant
mean, then 2* = L (G) is an algebra. However, the above does not resolve
if % can be an algebra. Moreover, it is possible that if f € %* and fh € %*
for all h € %, then fe C + %, where %, = {f € %: f has a unique left
invariant mean value of 0}.

Added in Proof. Tianxuan Miao, Amenability of locally compact groups
and subspaces of L(G), Proc. Amer. Math. Soc. (to appear), contains a
solution for general non-amenable groups of a number of the questions from
Sections 1 and 2.
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