
ILLINOIS JOURNAL OF MATHEMATICS
Volume 34, Number 4, Winter 1990

FUNCTIONS WITH A UNIQUE MEAN VALUE

BY

JOSEPH ROSENBLATT AND ZHUOCHENG YANG

Section 1

Let G be a Hausdorff locally compact group. An admissible subspace
S c L=(G) is a subspace containing the constants such that if f S, then
gf(x) f(g-lx) defines gf S. A function f L(G) potentially has a
unique left invariant mean if there is a constant c such that whenever
f S Lo(G), S an admissible subspace, then any left invariant mean M on
S has M(f) c. A function f L(G) has a unique left invariant mean value
if it potentially has a unique left invariant mean value, and also there is an
admissible subspace S L(G) with f S and there is a left invariant mean
on S. If G is amenable, the above two notions are the same, but in general a
function may potentially have a unique mean value without actually having
one. The analogous notions for right translations or translations on left and
right are easy to formulate.
A function f L(G) left averages (to c) if there is a constant c in the
I1- closed convex hull of {gf: g G}. Any function which left averages to

a constant must potentially have a unique left invariant mean value. The
following is well known.

1.1. THEOREM. If G is amenable as a discrete group, then the following are
equivalent for f Lo(G):

(1) f has a unique left invariant mean value;
(2) f left averages;
(3) f I[ [l-closed span C u {gf f: g G};
(4) f II II-closed span C U {g : L(G), g G}.

Remark. The implications (2) implies (3) and (3) implies (4) are always
true. The implications (3) implies (1), (2) implies (1) and (1) implies (4) only
need the assumption that1 G is amenable as a locally compact group.
However, all the other implications need the hypothesis that G is amenable
as a discrete group. For example, if G is a compact group with a unique
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invariant mean on L=(G), then an open dense set V c G with A(V) < 1
will give f 1v satisfying (4) but not (1), (2), or (3) because both 1 and A(V)
can be left-invariant mean values of f on C + span{gf: g G}.

This result does provide examples that distinguish left and right transla-
tions. In Rosenblatt and Talagrand [6], it was shown that a discrete amenable
group admits a left invariant mean that is not right invariant if and only if
there is an infinite conjugacy orbit {xyx-1" x G} for some y G. This
provides a class of examples of groups for which the following hold.

1.2. THEOREM. Let G be an amenable discrete group. The following are
equivalent:

(1) every f which left averages must also right average and/or vice versa;
(2) every left invariant mean is right invariant and/or vice versa;
(3) II IIoo-closed span of {g : g G, /oo(G)} is 11 IIoo-closed span

of { : g G, /oo(G)}.

Proof By Theorem 1 and its obvious analogue for right translations, (3)
and (1) are equivalent. Clearly (3) also implies (2). Conversely, assume (2). If

is not in

F span{gsr ’" g G, sr l=(G)}

I1" I]oo-closed span{srg "g G, sr lo(G)},

then there exists M loo*(G), M(F) 4: O, with M((g ) 0 for all g G,
loo(G). It follows that M/ and M- are both right invariant and M/(F)

4: M-(F). But by the assumption (2), M/ and M- are left invariant and so
M/(F) M-(F) 0 because

F span{gsr "g G, sr loo(G)}.

This shows (2) implies (3).

Remark. Theorem 1.2 shows that left averaging and right averaging are
not the same in general. However, this theorem does not address non-amena-
ble groups. We conjecture that if G is non-amenable, then there is f Loo(G)
such that f left averages, but f does not right average. See Section 2 for a
proof of this fact in the case that G is discrete.

If G is not amenable, then the set of functions with a unique left mean
value is not well understood. It is not known if these functions form a
subspace of Loo(G). Indeed, a related problem is not resolved: does there
exist a largest, admissible subspace of L=(G)on which there exists a unique
G-invariant mean? See Section 2.
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1.3. PROPOSITION. A function f Loo(G) admits a unique left invariant
mean value if and only if there is a unique constant c such that whenever a C,
a C, gi G, 1,..., n, and a + in=loigif >_ 0, then

n

Ol -J- E olic > 0 (*)
i=1

Proof If f admits a unique left invariant mean value c, then there exists
an admissible subspace S c L=(G), with f S, and a left invariant mean M
on S with M(f) c. Now if

then

n

E Oligif > O,
i=1

n ( n )Ol -1" E OliC M a + E Oligif
i=l i=l

But also, this constant c is unique with this property. Indeed, if co has this
property, then we can define Mo on So C + span{gf: g G} by

( n ) n

M0 ol. -Jr- E Oligif Og -’1"- E OliCo
i=1 i=1

and obtain a left invariant mean M0 on an admissible subspace SO with
Mo(f) c, contrary to assumption.

Conversely, this same construction shows that if c has property (,), then
there exists an invariant mean M on C + span{gf: g G} with M(f) .
Also, if SO is any other admissible subspace of L(G)with f So and So
admits a left invariant mean M0, then Mo(f) satisfies property (,) and by
uniqueness, Mo(f) c. Hence, c is potentially and actually the unique left
invariant mean value of f. []

1.4. COROLLARY. Iff left averages and fight averages, then f left and fight
averages to a unique constant c and f has a unique left and/or right invariant
mean value c.

Proof. If f right averages to c and F a + ,7=lOtigif>_ 0, then by
averaging F on the right, we see a + Ei= laic >_ O. So c is a left mean value
of f. By the usual argument, if f both left and right averages, then there is a
unique constant c to which it averages. But then if

n

a + , teigof >_ 0
i=1
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always implies

n

O + E ai’Y > O,
i=1

we can argue 3’ c. Indeed, choosing an average

n

i=1

with liar- cll < e, c + e }"7=lAigif >_ o and -c + e + ’.in=lAigif >_ O. So

c+e-y>_0 and -c+e +y>0.

Since e > 0 is arbitrary, c y. 1:3

Remark. This is the abstract principle that enables one to construct a
unique G-invariant mean on WAP(G) given Ryll-Nardzewski’s theorem.

Here are some of the unresolved questions:

(a) Does there exist f which left averages to a unique constant, but f
does not have a unique left invariant mean value, or vice versa?

(b) Is ff a subspace if G is not amenable?
(c) If G is not amenable does there exist fl, f2 L=(G)such that fl and

f2 have unique left invariant mean values, but fa + f2 does not in the sense
that (.) is satisfied for more than one constant? Such an example would
resolve b) for the group in question.

(d) Is there a largest admissible subspace with a unique left invariant
mean value? By Zorn’s Lemma, there are always maximal spaces of this type.
Is there a maximum such space?

(e) How different, if at all, are , {f L(G): f left averages}, {f
L=(G): f right averages}, and {f L=(G): f left and right averages}? These
questions are related to (a).

Note that there is a possible phenomenon related to (d) here. One can
possibly have admissible subspaces $1 c S2 such that S admits more than
one left invariant mean, but $2 admits a unique left invariant mean. For this
reason, if there is a largest subspace W with a unique left invariant mean,
then c W but possibly W. Hence, if a) is shown, it is not clear that
then W does not exist. See Section 2 for answers to some of the above, in
case G contains non-abelian free groups.
A property related to the above is easy to show in general: the functions

that left average do not in general form a subspace. Indeed, we have this
theorem; it should be compared with Emerson [2].
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1.5. THEOREM. For a discrete group G, G is amenable if and only if
whenever fl and f2 left average, then f + f2 left averages. Indeed, if G is not
amenable, then there are f and f2 which left average to 0 such that fl + f2 does
not left average.

Proof One direction above is proved by Theorem 1.1. Conversely, if G is
not amenable, then loo(G)= I1" [Ioo-closed span {gf-f: g G, f /oo(G)}.
Since G is infinite, there exists A c G such that both A and Ac G \A are
permanently positive. See Pier [4] or Rosenblatt [6] for references. Hence,
any average E’=lAilgiA is 1 somewhere and 0 somewhere. Thus, 1A does not
left average. It is easy to see if

f loo(G), (f) c loo(G), lim Ill--fn I1 O,

and each fn left averages, then f left averages. So some

F span{gf- f: g G, f loo(G)}

does not left average. But each gf-f left averages to 0 because

lira (l/N) _, gn(gf f)
N-oo n=l

Therefore, the set {f /oo(G): f left averages} is not a subspace of/oo(G), i.e.,
there exists fl and f2 which left average such that fl + f2 does not. By
subtracting suitable constants c and c2, fl Cl and f2 c2 left average to
0, but fl- Cl + f2- C2--fl + f2 + C, where c -c -c2, does not left
average. D

Remark. (1) It is probably the case in general for non-amenable groups
that there exist functions which left average to more than one constant. See
Section 2 for a proof of this in the case that G is a discrete group.

(2) One question here is whether for non-amenable groups

span{ gf f" g G, f loo(G)}

is closed; i.e. does every TILF have to be 0? Woodward [10] resolved this for
amenable groups in the negative, Saeki [7] resolved it affirmatively for the
free group F2 and Willis [9] showed this for all non-amenable groups. See
Section 2, Proposition 2.12 ft.

(3) The previous theorem is almost true for all groups. If G is a
non-amenable locally compact group, then the conclusion above is true.
However, if G is amenable, but not amenable as a discrete group, it is not
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clear whether {f Loo(G): f left averages} forms a subspace. Would this
imply Gd amenable?

A stronger averaging property gives an interesting variant of Theorem 1.5.
A function f Loo(G) strongly left averages if every linear combination

Eim= laigf left averages. If one only knows the same for convex combinations

"im= lli xif then write

m

E Olixif ClZl c2A2 where C E {Oi" Oi
i=1

unless all a _< 0 and then c 0, and c2 =--E{O/i’. a < 0}, unless all
a > 0 and then ca 0, and A 1, A 2 are the appropriate convex combina-
tions. If we can choose a constant a and an average

n m

_
AjgjA with a

_
AjgjA

j=l j=l

then A Ejm=lhjgA2 is an average of translates of f too. So if we can
choose a constant a2 and an average

E "Yk hkA with a2 E 7k hkA
k=l j=l

we thenwould have

cla c2a2
k=l j=l i--1

cla E 7khk E AjgClA1
k=l j=l

-c2a2 -4-- E "Ykhk E }i’jgC2A2
k=l j=l

m

E ]/jhj(Cl(al- E’igiA1))
j=l

"4" C2 E Tk h,A a2
k---1

< EICll -4- elc2].
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Hence, we see that f strongly left averages if and only if every convex
combination ,in= 1}i’i gif left averages.
The same type of argument as the one above shows that if fl left averages

and f2 strongly left averages, then fl + f2 left averages. This gives"

1.6. THEOREM. A discrete group G is amenable if and only if wheneverf left
averages, then any average ’= 11 gif also left averages.

Proof By Theorem 1, if G is amenable and f left averages, then so does
any average Y’,in= 1,,i gif. If G is not amenable, then there are fl and f2 which
left average to 0, but fl + f2 does not left average. By the remark above, f2
cannot strongly left average, r

Remark. By approximating/i by rationals, it is easy to see that if G is not
amenable, then there is f which left averages to 0 such that some average
(1/N),iN=lgif does not left average.

Again, it is easy to see that if fl and f2 strongly left average, then fl + f2
strongly left averages. However, it is not clear whether {f L=(G): f strongly
left averages} admits a (unique) left invariant mean. It is clear, just as for
WAP(G), that {f L=(G): f strongly left and right averages} admits a unique
left invariant mean. More generally,

e’ f L=(G)" f strongly left averages to a unique constant c}

is a subspace admitting a unique left invariant mean Mu. The problem is
whether every function which strongly left averages, must average to a unique
constant. We will see in Section 2 that this is not the case. It is worthwhile to
observe here that ’u is in some sense relatively small.

1.7. THEOREM. If is an admissible subspace admitting a (unique) left
invariant mean M, then the subspace + s"u admits a (unique) left inuariant
mean M.

Proof If M is unique, there is only one possible value for M(fl + rE) if

fl and f2 eu, namely M(fl) / Mu(f2). We show that if fl / f2 >- 0,
then M(fl) + Mu(f2) >_ O. Indeed, for all e > 0, there is an average

n

A(f2) E Oli gif2
i=1

with Il(f2) Mu(f2)Iloo
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So A(fa) + Mu(f2) > A(fa) + A(f2) e > -e. But then

M(f) + Mu(f2 ) M(A(f)) + Mu(f2) M(A(fl) + Mu(f2)) > -e.

Since e > 0 is arbitrary, M(fx) + Mu(f2) > 0. ffl

Remark. Is e"
Theorem 1.7?

the largest left-invariant subspace with the property of

Section 2

It is possible to answer many of the previous questions about functions
with unique left invariant mean values in the class of discrete groups which
are non-amenable because they contain non-abelian free groups.

First, consider a free group F2 on free generators x and y. Let Y be the
words in reduced form which begin on the left with y or y-1 and let X be
the same set with x playing the role of y. Then {xny: n Z} and
{ynX: n Z} are partitions of F2 \ {e}. Let f 1y. Then

1 N 1
--N E xnf lu.=INxnr

n=l

and hence f left averages to 0. But similarly Ix left averages to 0. Now

Hence,

1 l{e + 1y + ix.

1 N 1 1
--N E ynf----- 1- l{y y} "lUn=l,N,ng.

n=l

Therefore, f left averages to 1.

2.1. THEOREM. If G is a discrete group containing F2, then them is a set
A c G such that 1A left averages to any constant c, 0 < c < 1.

Proof Let {x,,: a ..e’} be a set of right cosets representatives of F2 in
G. Let Y be as above and let A U{Yx,: a e’}. From the argument
above, it is clear that

N--*oo "- x,,1A 0
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and

lim
1 N

" ylA 1
n=l

So both 0 and 1 are in Ol(1A) the II" II-closed convex hull of the left
translates of 1A. Hence, [0, 1] c Ot(1A). D

2.2. COROLLARY. If G is a discrete group containing F2, then them is a set
A c G such that 1A left averages, but does not right average.

Proof Use Corollary 1.4 and the example of A c G from Theorem 2.1.

Remark. See 2.12 following.

An example like the previous one will have an even stronger property. Let
Xo F2 \X and Yo F2 \ Y.

2.3. LEMMA.
that constant.

Iff loo(F2) is constant on some gXo, then f left averages to

Proof. If f= c, a constant, on
g Ilfll / c. So

gX0, then If- c[ < K1F2\gXo where

Ig-lf Cl K1F2\X K1x.

As above, there is a sequence A of left averages such that

lim IlZnlxl[ O.
n--o

So

limsupllAn(g-lf) cll < lim sup An(lg-1f --C [)I1
n--o

< K lim sup A,( 1x) ll 0.

Remark. If f is constant, except for finitely many values on some gX0,

then the same conclusion holds. Indeed, then f + h is constant c on some
gX0 for some h with finite support. Hence, for all e > 0, there is an average
A(f + h) such that IIA(f + h) c I1 -< e. But then

IA(f) cl <h(Ihl) 4- .
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Since A(h) has finite support, there is another average B with B(A(Ihl)) < e.
Hence

IB(A(f)) c] < B(IAf- cl) < B(A(Ihl)) + e < 2e.

2.4. LEMMA. In the free group F2, iffinitely many left translates ofXo have
non-empty intersection, then there is a left translate of Xo contained in that
intersection.

Proof Let g ("1 7= giSo, i.e., g-ig X0 for 1,..., n. Write

Xo {e} U UYk
kO

where Yk y’({e} U X).

We claim that for each 1,..., n, g[-lgYk c Xo for all but finitely many
values of k. Indeed, if there is an x or x-1 in the reduced form of g/-lg, then
g[-lgYk c Xo if Ik] is sufficiently large. Otherwise, glg yk0 and then
g[-lgYk Xo for all k 4: -k0.

Thus, there is some k 4:0 such that gTlgYk c Xo for 1,..., n. That is,

n

gY c n gxo.
i=1

But gYk contains gykxX0. []

2.5. THEOREM. Suppose f loo(F2) is such that for all g F2, there exists
h F2 such that g hXo and f is constant on h_Xo. Let f be any left average of
f. Then f left averages to any value between sup f and inf f.

Proof
Suppose

Let g F2. It is enough to show that f left averages to f(g).

n

f= Eai,f
i=1

is a left average of f. Then

n

?(g) E aif(g-lg)
i=1

By the conditions on f, for each there is some hiX0 containing g-lg on
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which f is constant. Since

n

g .J gihiXo,
i=1

Lemma 2.4 shows there is some

n

hXo c 0 g h go
i=1

Hence, f is constantly f(g) on hXo. By Lemma 2.3, f left averages to f(g).

Remark. If f satisfies the hypotheses of Theorem 2.5 except f is only
constant on xXo excluding a finite number values, then f will strongly left
average again, although perhaps not to any c in [inf f, sup f].

The example ix above has the property needed in 2.5. Indeed, {X0, X} is a
partition of F2 and {XkXo" k 0} is a partition of X. Hence, 1x strongly left
averages too. By using the right coset construction of Theorem 2.1, this
shows:

2.6. THEOREM. If G is a discrete group containing F2, then there is a set
A c G such that 1, strongly left averages, but does not right average.

A refinement of the previous arguments gives even more. Again, let x and
y be free generators of F2. Let

X’= U xnSo n e Z, n odd}.

If f loo(F2) 0 < f <_ 1F2\X,, then f averages to 0 by Lemma 2.3 because
xXo X’. Choose any B F2 such that both B and Bc F2 \ B are perma-
nently positive. There is no harm in assuming e B. Let

B’=BtX’ and B"=B (F2\X’)

and let

A x- 1B’ tJ B".

Then xA and A are disjoint and xA u A B; hence, xA U A is permanently
positive. Also, F2 \A is permanently positive. Indeed, if g1,..., gn G,
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there exists

n n

g e ["]giBc f3 gix-lBc.
i=1 i=1

So for all i, g-g B and so g]-lg B", while xg lg q B and so g-lg
X- 18’. Hence,

g-g ff x- 1B’ k) B" A for all i,

and therefore, g k) ’= giA.
This shows that f 1A has the following properties:

()
(2)
(3)
(4)

f left averages to 0;
any left average of f has minimum equal to 0;
f has a unique left invariant mean value of 0;
any left average of xf + f has maximum value of 1.

We have observed (1) and constructed A so that (2) and (4) holds. But (2)
shows

I1" [Io-closed span C u {gf" g G}

admits a left invariant mean m with m(f) 0, while (1) shows f potentially
has a unique left invariant mean value of 0. Hence, (3) holds too. Note that
this f then is an explicit example of Theorem 1.6 in that xf + f cannot
left-average since, by (2) it can only left average to 0, and by (4) it can only
left average to 1.

This function f also has the property that by (3), xf + f can have a left
invariant mean value of 0, and by (4), xf + f can have a left invariant mean
value of 1. So for any c, 0 < c < 1, xf + f can have a left invariant mean
value of c. This answers (c), and hence (b) of Section 1 in this case.

2.7. THEOREM. If G is a discrete group containing F2, then there is a set
A c G and x G such that 1A and xlA have 0 as a unique left invariant mean
value, but 1A +xlA does not have a unique left invariant mean value; hence, g
is not a subspace.

Proof Let {x} be right coset representatives of F2 in G. Let

X’= I,.J{xnSoxa’n odd,

Let B c G be such that B and Bc are permanently positive in G. The rest of
the construction proceeds similarly to give f loo(G) with properties (1)-(4).
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Furthermore, let f’ be defined by f’ (1 -f)lFz\X,. Then f’ also satisfies
(1)-(4). Property (1) is clear. To see (2), choose any average Lf F_,in= aigif
where each a > 0 and gi,..., g,, Fz. Then L(xf + f)(g)= 1 for some
g F2 by (4). If f(g-lg)= 1, then f,(glg)= 0. If f(g:i-lg)= 0, then
f(x-lg-lg) 1 and so

-1 -lg X’.x gi F2\

Hence, gi lg X’ and f gi lg) 0 again. Thus, Lf’(g) 0. This proves (2).
Since f’ left averages to 0, this also proves (3). Moreover, to see (4), observe
that 1/2L(xf + f) is an average of f and so

1/2L(xf+f)(g) =0 for somegG.

But f’ 1F2\X, f and so

x 1F2\xX’ + 1F2\x’- (xf + f) 1 (xf + f).

Thus,

L(xf’ + f’)( g) 1- L(xf + f)( g) 1.

But now f and f’ have 0 as a unique left mean value, while f + f’ 1F2\ x’.
Clearly 1FE\X, averages to 0. But also, xlx, 1FE\X, SO, lX, averages to 0.
Since

1 1F2\X, + lx,,

1Fz\X, must average to 1 too. Hence, f + f’ averages to 0 and to 1; therefore
f + f’ cannot be in any admissible subspace admitting a left invariant mean.
Actually f + f’ also strongly averages by Theorem 2.5 because f + f’ 1F2\X’
and {xnYo" n even} is a partition of F2 \ X’.
Now the same right coset construction of Theorem 2.7 shows this partial

answer to (d) in Section 1. It also resolves (b) in a different manner than the
above.

2.8. THEOREM. If G is a discrete group containing F2 as a subgroup, then
is not a subspace and there is no maximum admissible subspace of loo(G)
admitting a (unique) left invariant mean.

It is worth observing that the above construction gives four sets A, B, C, D
which form a partition of F2 where 1A f, 1B f’, 1C =xf, and 1D =xf’, so
that 1A, 1B, 1C, and 1 each left averages to 0 and each has any left average
with a minimum equal to 0. But then for any h /=(Fz), h hlA + hlB +
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hlc + hlD, a sum of four functions each of which averages to 0 and has a
unique mean value of O.

2.9. COROLLARY,
then

If G is a discrete group containing F2 and h loo(G),

h =fl +f4

where each fi left averages to 0 and has a unique mean value of O.

Some constructions related to the above can give us other important
examples. Let f be as before in the proof of Theorem 2.8. Define h /o(F2)
by

h(g) (i + f(g) +xf(g))lFz\xo(g)"

Then h left averages to 0. But h +xh > 1F2\X + lx(F2\Xo). Since

x-1Xo C F2 \X0 and x(F2 \Xo) Xo.

Hence, h +xh > 1 on F2. Therefore, h cannot be in any admissible subspace
which admits a left invariant mean.

However, h left averages to a unique constant. Indeed, suppose h left
averages to c > 0. Then for e > 0 there is a convex combination A(h)=
,= Oli gi

h with IlA(h) c I1 < e. For any g F2, gS0 either contains all but
one xmXo (if g ends on the right in reduced form with y +/- 1) or gX0 is
contained in some one xmXo Therefore, there exists some xmXo which is
contained in giXo or misses giSo for all i= 1,..., n. Hence, gih is either
constantly 0 or equal to 1 + f +xf on xmXo We can assume that gi,

1,...,n0, are such that gih 0 on xmXo exactly for no + 1,..., n.
Thus, Ein= laig(f +xf) is a constant c within e on xmXo But

n

E aig,h c < e on xmSo

shows

n

E oigih C

i=1

< e on xmXo

Hence,

no no
c e < E ai e,,h E ai ,( l + f +xf)

i=1 i=1

on xmSo
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1(c- e). Hence, f +xf can beThus, c e < 2Y’.’o lOCi and so Ein lOCi >__. "averaged to c within 2e/(c- e). But any left average of f+xf has
minimum value 0 and maximum value 1. This is a contradiction as soon as
2e/(c e) < 1/2.

This construction gives the following result.

2.10. THEOREM. If G contains F2, then there is a function f I=(G) which
left averages to O, and only to O, but f does not have a (unique) left invariant
mean value.

Conversely, we can construct f @ which does not left average. Con-
struct a characteristic function f /=(F2) such that for any gl,...,gk,

’11,... 9/l distinct, there is g F2 with f(glg)= 0 for i= 1,...,k and
f(r/lg) 1 for j 1,..., I. Let h f- lx0. To see h if, just note that
since h < 0 on Xo, for all e > 0, there is a left average A(h)with A(h) < e.
Since h > 0 on F2 \Xo, for all e > 0, there is a left average A(h) > -e.
Hence, h potentially has 0 as a left invariant mean value. But also, for any
linear combination

k

i EOligih E [3jrljh,
i=1 j=l

with gl,..., gk, ’11,..., Tll distinct, and Oli,[ _. 0, there is a g F2 with
f(g[-lg)=O and f(r/lg-l) 1 for all i,j. Hence, h(g-lg)<_ 0 and
h(r/j-lg) > 0. That is, A(g) _< 0. But then if c + A >_ 0, c + A(g) >_ 0 and so
c >_ 0. That is, 0 is the unique left-invariant mean value of h.
Now suppose h can be left averaged to c. Then c 0 is the only possibility

by the above. Let A(h) _,7=lOligih be an average with IIA(h)[l < e. Since
there is g F2 with f(glg) 1 for all 1,..., n,

E {ai" g-lg f X0 < e.

Assume al,... a represent those a with g- lg X0" Then Eim= lai > 1 e.
By Lemma 2.4, since g Iq = giXo, there is F2 with

m

’0 c ngixo.
i=1

Thus, on gX0,

m m m

E Oli gi
h E Oli gif E Oli"

i=1 i=1 i=1
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Since

E Oli gih ol

i=1 i=1

_<e/(1-e) ono,

this shows

i=1 i=1

1 < e/(1 e) on gX0.

Since e > 0 is arbitrary, and lx0 left averages to O, this shows f left averages
to 1. But this is impossible by the choice of f.

2.11. THEOREM. If G contains F2, then there exists f l=(G) such that f
has a unique left invariant mean value, but f does not left average.

The examples provided by 2.2, 2.10, and 2.11 show that generally

and

{f" f left averages} : {f: f right averages},

\ {f’f left averages} b

{f" f left averages to a unique constant} \ ff b.

This answers most of (a) and (e) in Section 1, except it does not relate " and
{f: f right averages}. It was essentially already observed that if f right
averages to c, then M(f) c defines a left invariant mean on II-closed
span C + {gf: g G}. So if X is the words in reduced form that do not end
with x +/-1, then f= lx0 right averages to any c, 0<c< 1, and so has
different left-invariant mean values. The question should rightly be to relate

" and {f: f right averages to a unique constant}. But if G is amenable, these
are not the same by Theorem 1.2.
A related question is whether functions which left and right average, admit

a two-sided invariant mean on G to span {gf: g G}. This is not generally
the case. Let

f 1F2\(Xot Xb--1)

Then f 0 on X0 and X-1, SO f left and right averages to 0, the only
possible two-sided invariant mean value. But

f(g) +f(xg) +f(gx) +f(xgx) >_ 1 for allgF2,
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so f does not admit a two-sided invariant mean value. Notice f’=
1Fi\(XoU(F2\Xo)- b has the same properties as f but f + f’ 1F2\X0 does not
right average. So

{f I(F2)" f left and right averages}

is not a subspace. This, and the previous examples of this section, show that
e"u seems to be the only reasonable subspace on which there is a unique left
invariant mean value. But Theorem 1.7 shows how it is essentially the heart
of the class of admissible subspaces admitting a unique left-invariant mean,
and hence to be considered a small subspace.
The class of groups that has been considered here has another property

relevant to the remarks in the first section. Saeki [7] showed that if f l(F2)
then there is

fl,f2 l(F2) with f =xf f +rf f2.

By the coset construction of Proposition 2.1, this proves:

2.12. PROPOSITION. If G is a discrete group containing F2, then for every

f l(G), there exist fl, f2 l=(G) such that f xfl fl + yf2 rE.
Remark. When is this two term representation possible? Does it imply

that G contains F2? Note that by Tarski’s characterization of non-amenable
groups G, there exists sets

{A1, An} and {B1,... nn)

which partition G, and some gl,..., gn and hi,... hn such that

{glA1,..., gA, hi, B1,... hnBn}

is also a partition of G. Hence,

n n

1 1A, lgia "- E 1B,
i=1 i=1

1hiBi

That is, if G is non-amenable, there are fl,. fn loo(G) and Xl,... x - Gsuch that

n

1=
i--1
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The question above is in part when is n 2 possible? See the article by
Krom and Krom [3] for an analogous question.

Proposition 2.12 clearly shows that if G contains F2, then the only TILF
on lo(G) is 0. But Willis [9] shows that this is true for any amenable group
(discrete or not).

2.13. THEOREM (Willis).
then

if G is a non-amenable locally compact group

Loo(G) span{f-gf: g G, f Loo(G)),

and the only TILF on Loo(G) is O.

Another consequence of the argument in [9] is this proposition for discrete
non-amenable groups.

2.14. PROPOSITION (Willis). If G is a discrete non-amenable group, then
there exist gl,. gn G such that {gl, gn-1} generates an amenable group,
and there exist fl,..., fn lo(G) such that 1 ,’-=lfi -gifi.

2.15. COROLLARY. If G is a discrete non-amenable group, then there exists

f lo(G) which left averages to any c, 0 < c < 1, and so f left averages but does
not right average.

Proof Use 2.14 to write 1 Ein=lfi-gill with {gl,’’’, gn-1} generating
-,i= fi -gfi left averages to 0. Hence f fn gnfan amenable group. Then -1

left averages to 1, while it obviously left averages to 0. So f left averages to
any c, 0 < c < 1. This f proves the corollary, t3

Remark. The extension of this corollary to non-discrete non-amenable
groups is open.

Section 3

Another interesting aspect of functions with unique left invariant mean
values for amenable groups is that they do not usually form an algebra of
functions. Let " be as before and let @* {f Loo(G): M(f) is uniquely
determined if M is a left invariant mean on Loo(G)}. Hence c ,* and

’= ’* if G is amenable as a discrete group. This was observed in Theorem
1.1 since (4) describes * and (1) describes @.
The basic question is whether @* or can be an algebra. Forms of this

question were considered by Chou [1] and Talagrand [8]. Let //= {f L(G):
M(Ifl) 0 for all left invariant means M on Lo(G)}. Clearly if f C + //,
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then fh if* for all h if*. If C + a/’= if*, then the converse below
would prove @* is not an algebra.

3.1. THEOREM. If G is amenable as a discrete group and f L=(G) with

fh 2* for all h *, then f C + 1/.

3.2. COROLLARY. g G is a compact group which is amenable as a discrete
group, then only the constant functions f L=(G) have the property that
fh 2* for all h

Proofof Theorem 3.1. First, f(g ) a2* for all g G and sr L=(G).
But if m is a left invariant mean,

m(f(g-,- )) m(fg-,) m(f)

m((gf)) m(f) m((gf-f)).

Hence,

also.
Let

Let

be a measurable set. Then

Igf fl2srle le

is in @* for all measurable E c {Igf- fl 2

//. To see this let
> e}. It follows that l{lff_fl

Since G is amenable as a discrete group, there are left invariant means 01, 02
and A c G with 01(1A) 0 and 02(1At) 0. See Rosenblatt [5]. Let

E Eo N A, E2 Eo Ac, and 0 5(01 -i- 02).
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Then

0(le,) 02(1E1) 02(1AC1E1) 0 and 0(lez) 01(1E2) Ol(1AIE2) O.

So 0(le0) 0(1El) "- 0(le2) 0 and hence M(le0) 0 for all left invariant
means M.
But now we have 1 Igf-fl dl/for all e > 0 and hence gt" f d//too.

Let c be the unique constant with M(f) c for all left invariant means M.
Let f0 f- c. Then f0 has a unique left invariant mean value of 0 and
gfo-fo M/ for all g G. But then f0 averages to 0 by Theorem 1.1.
Hence, for all e > 0, there are gl,..., gN G with

But

1 N 1 N- E gfo - E (g,fo- fo) + fo.
i=1 i=1

This shows f0 I[oo-closed span {gfo -fo" g G} and so f0 d//by the
above. That is f c + f0 C + 4/. rq

Remark. (1) To show C + d//4: ’*, and hence show if* is not an
algebra using Theorem 3.1, requires showing that if G is an amenable
discrete group, then there exists M c G and g G such that lgMaM
Although this is easy for certain groups, no general argument for it is known.
However, an unpublished theorem of Granirer (cf. Chou [1], p. 182) shows in
another fashion that if* is not an algebra. So C + d//4: ’* and the set M
and g G above exists in general. Granirer’s argument uses his theorem
that amenable groups do not admit multiplicative invariant means.

(2) Some assumption besides amenability of G as a locally compact group
is needed here since if G is a compact group with a unique left invariant
mean, then ’* Loo(G) is an algebra. However, the above does not resolve
if ff can be an algebra. Moreover, it is possible that if f ’* and fh
for all h , then f C + if0 where 0 {f if: f has a unique left
invariant mean value of 0}.

Added in Proof. Tianxuan Miao, Amenability of locally compact groups
and subspaces of L(G), Proc. Amer. Math. Soc. (to appear), contains a
solution for general non-amenable groups of a number of the questions from
Sections 1 and 2.
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