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REPRESENTING MEASURES ON MULTIPLY
CONNECTED PLANAR DOMAINS

BY

KEVIN F. CLANCEY

The linear functional f f(a) of evaluation of an analytic function f at a
point a in a g holed bounded planar domain admits representation in the
form f(a)= fDfdm, where the non-negative measure rn supported on the
boundary OD of D belongs to the g dimensional compact convex set Ma of
representing measures for a. This convex set Ma of representing measures is
a subset of the vector space MI(OD) of real Borel measures on OD. By fixing
a natural basis, the convex set Ma can be affinely identified with a convex set
Ca in Rg. Throughout this paper it will be assumed that the positively
oriented boundary of D is the union

OD bo b bg

of the disjoint simple closed analytic curves b0, bl,... bg with bl,... bg the
boundaries of the holes and b0 the boundary of the unbounded component
of the complement.

It will be shown that the convex set Ca has the smooth parametrization 7ra:
Rg --> Ca given by

1 (log O(x)}T/a(X) " 19(X -4- 60a) (0.1)

where 0 is the Riemann theta function associated with the Schottky double
X of D. The vector constant tOa appearing in (0.1) is tOa (tol(a),... O)g(a)),
where toy(a) is the harmonic measure of b(j 1,..., g) based at a. Since
the 19 function is Z g periodic, then zr provides a covering of Ca by the real g
dimensional torus TO Rg/z g.
The parametrization (0.1) can be explained in the following manner. Let

Jac(X) cg/(zg + ’Zg)
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be the Jacobian variety of the marked double, where - is the "B-period"
matrix. Using a translate a: X(g) -* Jac(X) of the classical Abel-Jacobi map
one can pull back (in a biholomorphic manner) the real torus I’0 in Jac(X) to
a real g dimensional variety Va in the g fold symmetric product Xg). The
torus Va is a natural covering tr’Va Ba of the collection Ba c S

(g) of
critical divisors of elements in M. Note that each element dm in M is the
restriction to OD of a symmetric meromorphic one-form dw on X. The g
points (counting multiplicity) in the closure D of D where dw/dz vanishes
constitute the critical divisor -m of m. The elements in the fiber tr-l(_m),
when "m has k distinct points pl,..., pe with multiplicities na, n2,...,ne
in D, consist of the (n + 1)(n2 + 1) (n + 1) divisors . in Xg) provid-
ing the decomposition of the zero divisor of dw in the form (dw)o
_
+ J..
One nice feature is that we have a commutative diagram

(I)

V To

Ba Ma Ca

(0.2)

where the identifications "=- are canonical. The work of John D. Fay [5] is
essential to the above results. First, the identification of Va with I’0 using (I)a
is simply a translation of Fay’s characterization [5, p. 118] of the divisors of
symmetric definite meromorphic differentials. Second, the explicit form of 7ra

uses a non-trivial theta function representation of meromorphic differentials
by Fay [5, p. 25].
There are two tori of Hardy spaces which are closely related to the torus

parametrization 7ra" TO Ca. Given . in Va such that tr(.)=-m let
H/(dm) be the closure in L2(dm) of the meromorphic functions on
having at most poles at the restriction .+ of . to D. The orthogonal
complement K-(dm) ofH/(dm) is the closure in L2(dm) of the mero-
morphic functions on JD vanishing at Ja having at most poles at the
restriction _- of

_
to JD. Thus Va or, equivalently, TO parametrizes a torus

of Hardy space decompositions of L2(dm), m Ma. This torus of Hardy
spaces provides the complete set of pure C(OD)-subnormal models for a
completely contractive unital (c.c.u.) representation ra of the closure R
R(D) in C(OD) of the rational functions with poles off D. This representation
ra associates with f in R the operator on the one-dimensional Hilbert space
C of multiplication by the complex number f(a). The existence of this
covering of Ma by a torus of single valued Hardy spaces follows from the
work of Vern Paulsen [10].
The second torus of Hardy space models for the c.c.u, representation ra of

R(D) was developed by Abrahamse and Douglas [1]. These models are the
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spaces H2u(dma), u (Ul,... Ug) in Tg (T is the unit circle in C) consisting
of the closure in L2 of harmonic measure ma based at a, of the multiplica-
tive holomorphic functions on D whose continuation along b produces a
change in the germ by the multiplicative factor u1 (j 1,..., g).
The explicit correspondence between the torus Va of single valued Hardy

space models and the multiplicative Hardy space models H2u(dma), u T g,
is given. Indeed, if

_
is in Va, there is an explicit unitary map U from

H+(dm) to Hu2(dma) intertwining the operator of multiplication by z on the
spaces precisely when

_
and u are related by

u exp(-27ri[a(.) + ((..ma) 1-(,0a]

In essence, the translate of the Abel-Jacobi map linearizes the correspon-
dence between the single valued and multiplicative tori of Hardy space
models for the representation ra of R(D).
The structure of the remainder of this paper is as follows. Section 1

analyses the torus of divisors of representing measures. Section 2 describes
the theta function parametrization of the convex set of representing mea-
sures. Section 3 establishes the explicit connections between two tori of
Hilbert space models for the representation ra of Rat(D) given by evaluation
at a. Section 4 describes an example.

1. The divisors of representing measures

The double X of the g holed bounded planar domain is a compact
Riemann surface X D U OD U D’ of genus g where D’ is a second copy
of D glued to the bordered Riemann surface D OD along OD. The
conformal structure on D’ is the conjugate .of the conformal structure on D.
Thus the involution J: X X which fixes OD and interchanges points in D
with their twins in D’ is anticonformal. We mark the double by completing
the cycles bl,..., bg to a canonical homology basis as follows. Fix P0 in b0.

Let ai be a crosscut in D from P0 to a point on b and set ai to be the cycle

a al tO Ja, j 1,..., g. Then al,...,ag; bl, bg is a canonical
homology basis having the requisite intersection properties. From now on X
refers to the double with this marked homology basis.

Let G(z) G(z, a) denote the Green’s function for D with pole at a. The
meromorphic differential

dwa= l. OGdz on

can be reflected to D’ by setting dwa J*dwa on D’. The restriction dma of
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dwa to OD is harmonic measure based at a. That is

10G 1
dma 27r Or ds -m:OGdzlD’’n-t

where O/Or/is the outward normal derivative and ds is arclength measure on
OD. Thus the representing measure dm,, for evaluation of analytic functions
at a is the restriction to OD of an element dwa in the space of meromorphic
differentials /(1)(X) which is symmetric (J*dwa /-a) and non-negative
(dwa/ds >_ O) on OD. We next observe that these properties of dma are
shared by all representing measures.

Let o)j o)j(z)be harmonic measure of b. based at z in D and let dw be
the reflection of the holomorphic differentials Ow dz to holomorphic differ-
entials on X. The measures dm dwjlooj 1,..., g are real and form a
basis for R +/- in M(OD). Consequently, any element rn in Ma has a unique
representation in the form

m=ma

g

+ E cjmj,
j=l

where cm
element

(C1,... Cg) is in Ig. Thus dm is the restriction to OD of the

g

dw dwa -t-

_
c dw

j=l

in ’(1)(X). As a result we have identified Ma with the collection of
elements dw in /g’I)(x) which are symmetric (J* dw /-), non-negative
(dw/ds > 0) having only simple poles at a, Ja with 27ri Residue[dw] 1 at
a. The fact that every such meromorphic differential corresponds to a
representing measure follows from the residue theorem.
For the remainder of this paper it will be assumed that the basis ml,..., mg

of R +/- is fixed as above. Using this basis the coefficient map Wa: Ma Rg

defined by Wa(m)= c provides a linear affine bijection between Ma and
the compact convex body C Wa(Ma) in R. The fact that OG/O7 > 0 on
OD (see, Tsuji [15, p. 15]) insures that Ca contains a neighborhood of the
origin in Rg and, consequently, Ca is g dimensional.
As noted above the mapping Wa from Ma to Ca is a bijection. In the

sequel we will use the notation m(c) for the element Wl(c), where c
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(Cl, Cg) is in Ma. Note

g

m(c) m + cjmj.
j=l

The divisor group Div(X)of X will be written additively. Consequently,
the typical divisor . is a formal finite sum

.= _, n,p, nvZ,
pX

and addition and comparison are done pointwise. The collection of non-
negative divisors P + +Pd of degree d > 1 will be identified with
the d fold symmetric product Xd SalSa where Sd is the symmetric
group on d letters. Recall Xd has the structure of a compact d dimensional
complex space.
The pole-zero divisor of an element in ’1)(X) has degree 2g- 2.

Consequently if dw in ’(X) restricts on gD to a representing measure rn
in Ma, then

( dw) . + J_- a Ja (1.1)

where

_
is in Xg). It is very important for our purposes to note that the

presentation of (dw) in the form (1.1) is not unique. There is one .
providing the representation (1.1) which is supported on D. This divisor is
denoted "m and consists of the points in D where dw/dz--0. Conse-
quently, -m is referred to as the critical divisor of -m" Note that since
dw/ds > O, zeros of dw/dz on OD are of even order. These boundary critical
values of rn are only counted in -m with half order.

Suppose the critical divisor -m restricted to D (not D) has the form
nip + +nsPs, where Pl,...,Ps in D are distinct. Then there are
precisely (n + 1)(n2 + 1)’" (n + 1)choices of . in Xg) providing the
representation (1.1). Generically, "m has g distinct points in D and in this
case there will be 2 g ways of providing the representation (1.1) for some

_
in Xg). The divisors . satisfying (1.1), where dwloo din, can be conve-
niently viewed as the set of reflections of the critical divisor -m"
The collection of critical divisors {-m: m Ma} g) will be denoted by

Ba. There is a natural bijection between Ba and Ma which associates a
representing measure with its critical divisor. The notation Va will be used
for the collection of all divisors

_
in Xg) which provide the representation

(1.1) for some dw with dwloD in Ma. The usual retraction r" Xg) g)
restricts to a "covering" map tr: Va B which is "branched" over "m in Ba

which have either critical values on OD or multiple critical values in D.
The Abel-Jacobi map allows us to identify Va with the real torus Tg

Rg/z g. We first recall the essentials of the Abel-Jacobi map. The holomor-
phic one-forms dWl,..., dwg introduced above form a basis for the space
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(X) of holomorphic differentials dual to the homology basis al,...,ag;
b1,... bg which we have used to mark X. This means the following. Let

d (dWl,... dwg)t

be the column vector constructed from dWl,..., dwg. The g 2g Riemann
period matrix has the form

where I is the g g identity matrix. It follows from Riemann’s bilinear
relation that the g g symmetric complex B-period matrix z has positive
definitive imaginary part. Further, from the explicit form of dw,..., dwg it is
clear that for our marked double - is purely imaginary, it follows from the
general properties of " mentioned above that - iP with P a real symmet-
ric positive matrix. The complex torus Jac(X) cg/(zg + -Zg) is called the
Jacobian variety of the marked Riemann surface X. Note that because we
are working with the double of a planar domain the anticonformal map
J[z] -[] is well defined on Jac(X), where [z] denotes the class of z in
Cg modulo the period lattice Zg + ,’/-Z g,
The Abel-Jacobi map based at P0 in X is the holomorphic map 0:

X --* Jac(X) defined by

Po
dr7 mod(Zg + zzg).

This map extends linearly to Div(X). Jacobi’s theorem states that the
holomorphic map sro: X(d Jac(X) is surjective for d > g. Abel’s theorem
establishes that ’0(.1) sro(.2) for divisors -1, -2 of the same degree if
and only if they are equivalent modulo principal divisors, that is, -1 -2 +
(f) for some f in the algebra /(X) of meromorphic functions on X. Here
we will always assume that the base point Po of the Abel-Jacobi map is in b0.
This leads to the symmetry ’0 J J sro

It is necessary to work with a translate of the Abel-Jacobi map. Let A 0 be
the classical Riemann constant based at Po in bo. The explicit form of 0 is

Ao= p) dwk- ’rkke (1.2)
k=l

where o(P)= fo d and ex,..., eg is the standard basis in Cg. The con-
stant A0 plays a significant role in Riemann’s study of the zero locus and
singularities of the theta function. We will return to such matters below. For
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now we note that 2A 0 K, where Kx o((dw)) for any dw in ,,/(1)(X).
With the normalizations in effect here, we have JA 0 A 0.

Define da" X(g) Jac(X)by

a(-) ’0(-) ’0(a) + A0.

The mapping *a is independent of the base point P0. It is trivial to check
that for

_
in Va satisfying (1.1)

+ a0
o((dw)) ta(.. ) "Jr" 2A 0

In other words a maps Va into the subvariety

T {t Jac(X)" Jt -t}

of Jac(X). This subvariety T is the union over u zg/2zg of the 2 g real g
dimensional tori T { + iv: tz Rg/zg}. Fay [5, p. 118] has characterized
the subvariety T in the following manner. The torus T, u (u 1,..., Ug),
b, 2/22, is precisely the set of points sr0(_) + A 0 where . + J_ is the
divisor of a symmetric meromorphic differential dw for which the sign of
dw/ds is (-1)k on bk, k 1,..., g, and dw/ds > 0 on b0. In particular,
TO Tg Rg/zg is the image in Jac(X) under . sr0(_) + A0 of those
divisors . of degree g 1 with . + J. the divisor of a symmetric positive
semidefinite (dw/ds > 0 on OD) meromorphic differential. The following
result is just a translation of this result of Fay.

PROPOSITION 1.1. Let dp
a be the mapping from X(g) to Jac(X)defined by

a(.) ’0(_) sro(a) + Ao. Then dPa maps Va bijectively onto the real torus
Tg Rg/zg in Jac(X). In fact, a maps a neighborhood of Va biholomorphi-
cally onto a neighborhood of Tg in Jac(X).

Proof As indicated above the first assertion of the proposition follows
from Fay [5, p. 118]. In order to see the biholomorphic nature of a"
Va Tg one argues as follows. For a divisor

_
let

i(.) dimc{dw ,/’(1)(S)" (dw)

be the usual index. Let X(1g) be the set of divisors . in Xg) with i(.) >_ 1.
It is known that

o" x(g)~ X(1 g) Jac(X)
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is biholomorphic onto its image (see, e.g., Farkas and Kra [4, p. 141]). Since

a is a translate of ’0, we need only observe that . in Va has index zero.
Note that i(_-a)= i(.). If i(.-a)> 1, then by the Riemann-Roch
Theorem [4, p. 126] there would be a non-constant meromorphic f such that
_- a + (f) > 0. Let dw be a positive semidefinite symmetric meromorphic
differential with (dw) . a + J(_- a). Set g ]%-. Then gfdw would
be holomorphic on X and non-negative on 0D. This contradicts Cauchy’s
Theorem. It follows that i(_- a) i(_) 0 and the proof is complete.

Remark. The anticonformal involution J leaves Va invariant. This involu-
tion transforms via a to the involution on T g of reflection in the point
[-tOa/2]. More specifically, it is easily verified that aJ= Raa, where
Ra([t]) [-t tOa], for [t] in T g.

2. A theta function parametrization of the set
of representing measures

In this section it will be shown that the mapping 7ra defined by (0.1)
completes the commutative diagram (0.2). The proof that 7ra provides this
parametrization of Ma involves a non-trivial representation of elements in
’1)(X) in terms of the Klein prime form. This representation appears in the
work of J. Fay [5, p. 25]. We will recall in as brief a manner as possible the
relevant material dealing with theta functions. Our notations and normaliza-
tions are closely aligned with those in Mumford [7].

Associated with a symmetric g g complex matrix - which has positive
definite imaginary part (i.e., - is an element in the Siegel upper half-space) is
the classical theta function

O(z,’r) exp 2,rri -nt’rn + ntz z C.
nZ

This even entire function is quasi-periodic with respect to the period lattice
L=Zg+-Zginthesensethatform,nZgand zCg,

O(z + m + n’r, "r) exp 2,rri nt,rn ntz O(z,

In particular, 0 is Z g periodic.
The quasi-periodicity of 0 implies that the subset O of the complex torus

Cg/L, where all derivatives of 0 of order less than or equal to r vanish is
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well defined. Moreover, it is obvious that for c, d fixed in Cg the ratio

f(z) )
d)

provides an example of a multiplicative meromorphic function on the torus
Cg/L.. In fact, the germs of this function f transform according to the rule

f(z + n) f(z); f(z + rn) exp(2rrint" (c d))f(z)

for n in Z g. Thus the logarithmic derivatives

dz---lg O(z-d) j= 1,...,g,

are meromorphic on Cg/L.. Note that the component functions of our
parametrization % given by (0.1) are of this latter form.

In the case where r is the B-period matrix of a marked Riemann surface,
theorems of Riemann describe 190 and 191. Suppose X is a compact Riemann
surface with fixed canonical homology basis al,..., ag; bl,..., bg. Let d
(dWl,..., dwg)t, where dWl,..., dwg is the normalized dual basis of fRX),
r [fbj dwi] the B-period matrix and st0: X --+ Jac(X) the Abel-Jacobi map
based at P0 in X. Riemann has established the following two results.

i. There is an absolute constant A 0 given by (1.2) such that for e in Cg

either

(s )0 dff- e
Po

vanishes identically or has precisely g zeros P1,..., Pg such that
sr0(Pl + +pg) + A 0 [e], where [e] denotes the class of e in Cg/L.

2. For r >_ 0, let X(rg-l) be the subset of X(g- 1) consisting of divisors
with i(.) >_ r + 1. Let Wrg-x be the image of X(rg-l) under the Abel-Jacobi
map ’0" x(g-1) "-* Jac(X). Then

Or-- Wrg-1 -- AO.

Remark. The subset X(1g) consisting of the points . in X(g), where
i(_) >_ 1 was used in the proof of Proposition 1.1. Let Wig c Jac(X) be the
image of this subset under ’0. Then W1g + A0 is precisely the subset 19 0 of
those [e] in Jac(X), where O(fpP d- e)vanishes identically. Consequently,
the map r/o(_)= ’o(.)+ Ao maps X(g) X(1g) biholomorphically onto
Jac(X) 19.
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Let us trace out the significance of the above remark for our situation of
the marked double. Note first that for the case of a double

where Jz -2, z Cg. In particular, O(z, "r) is real valued and periodic on
Rg. We have noted that for x in Rg, [x] sr0(.) + n0, with . + J. the
divisor of a symmetric meromorphic differential with i(_) 0. Thus by the
result of Riemann in 2, O(x, "r) 4= 0 for all x in Rg. Since 0(0, -) > 0, then
O(x) O(x, ’) > 0 for x in Rg. It follows that 7ra: T

g Rg defined as in
(0.1) by

o(x)]) log 0(x + (.Oa)

is a real analytic map of Tg to Rg.
In order to introduce the Klein prime form it is convenient to work with

theta functions having characteristics. Given e in Cg, we can write e b / za
for unique a, b in Rg. The (first order) theta function with characteristics a,
b is defined by

b (z,z) =exp 27ri -a’a + (z+b) 0(z+b+’a).

[a]Obviously, 0
b

is simple multiple of 0 with argument translated by e b +
-a. The quasi-periodicy of 0 implies, for m, n in Zg,

o[a]b (z+m+,rn,-)

exp(2,rri(atm-btn 1/2nt-n ntz))o[abl(z,"r).
In particular, we can write down a multiplicative meromorphic function with
arbitrary character as a ratio of theta functions with characteristics.
The 22g points of the form ld, / -’t’’, I.t,, t; - zg/2zg in Cg/L,r are called

half-periods. These half-periods are called even or odd according to whether
tu is even or odd. The theta functions with even (odd) half integer
characteristics are even (odd). In particular, the theta function O(z, ’r)van-
ishes at the 2g-1 (2 g 1) odd half-periods. As is shown in Mumford [7, p.
208] there is a non-singular odd half-period. Fix such a point

leo] [l/Xo + 1/2.Vo (p,0,v0 zg/2zg)

in O0 O1.
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In case r is the B-period matrix of a marked compact Riemann surface of
genus g, the multiple valued holomorphic function defined on X X by

F(p,q) O[eo](f;
where 0[e0] denotes the theta function with characteristics u0, /x0, has the
nice property that for p (respectively, q) fixed the multiple valued holomor-
phic function F(p, ) (respectively, F(., q)) has zero divisor Pl -k- q-Pg-1
+ p (respectively, Pl + +Pg-1 + q) where the divisor d Pl
+ +Pg-1 is independent of p (respectively, q) and satisfies

sr0(d) + A0= [e0].

In this last equation the Abel-Jacobi map and Riemann .constant A 0 are
computed relative to some fixed point P0 in X. The above remark follows
easily from the results 1 and 20 of Riemann.

Since ff0(2d) -2A0, then there must be an element dweo in f(X)with
(dWeo) 2d9. Indeed, this holomorphic one form is given by

g
dO

dweo ] y[eo](O) dwy.
j=l

The holomorphic line bundle Lo over X determined by the divisor class of
has the property that Lo (R) L, is equivalent to the canonical bundle. Choose
a holomorphic section 1/dweo of Lo with (dVe) dwe.

The prime form E is defined by

E(p,q)
/dWeo(19 ) /dweo( q )

This form E(p, q) can be considered as a holomorphic form of weight
2, 5 on X x ,, where 2 is the universal cover of X.
The prime form is a building block for the construction of differentials and

functions on X. In the work below, only sectional interpretation of this form
will be i.mportant. Further, the half-order differential v/d--e0 can be conve-
niently cancelled in most of the formulae below.

Fix q0. Then E(p, qo) is a multiple valued holomorphic differential of
weight in the variable p. The multiple valued nature of E(p, q0) (which
arises from the function 0[e0] appearing in the form E(p,q)) can be
described as follows. Fix coordinate charts at P0, q0. Beginning and ending at
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P0 continue E(p, qo) along a cycle c which is homologous to E(njaj + mjbj).
When E(p, qo) is computed near P0, q0 in the same coordinate charts, then
this continuation produces the differential E(p, qo) multiplied by

exp rri(vom lzon mrl.zo)exp(2rr im f;d).
The most important feature is that the divisor of E(p, q0) is well defined and
equals q0.

Let c 4= d be two points on the marked compact Riemann surface X. The
notation dAc_d will be used for the unique element in /(1)(X)with simple
poles at c, d and normalized so that

0, j 1,..., g; Res dac_d 1.
p’c

The following representation of da_d is given as Formula (1) of Mumford
[7, p. 3.224] and was first established by Fay [5, Prop. 3.10].
Forz inCgandc4=dinX

E(c,d)aac_,,(1,) E(c, 1,) E( p, a)

0 d+z 0

)0 d+z O(z)

g d {0 z+ dr7

J= j. log O(z) dwj(p). (2.1)

We now return to the case where X is the marked double of a planar
domain D. In this case, for a fixed in D, the normalized differential dAja_a

agrees with the meromorphic differential d[-ja_a which is normalized to
have the real parts of all periods zero with (dja_a) >-a-Ja and
Resp=a d’)ya_a -1. In fact, note that

Thus

J* dya -a ’Ja -a"

Re d[ja_a dl’).ja_ a J* d’),Ja_a)
OI.k

d"Ja-a.

This shows that d"ja_a daja_a.
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There is a simple connection between d1a_a and the element dwa in
/dl)(x) which restricts to harmonic measure dmo on OD. This connection is

1 1
dwa d[a-Ja d’Aa-Ja"

It follows from Fay’s formula (2.1) that for any x in Rg

dwa( p) + -j log 0(x + tOa)j=l

1 E(a, Ja)
2,rri E( a, p) E( p, Ja)

X
po ’o *’o *’o (2.2)O( X "l- tOa)O(X)

where dr5 dw restricts to our basis of R +/- in MR(OD). To obtain (2.2)
from (2.1)one must let z -x in (2.1).
An examination of the right side of (2.2) shows that it is a meromorphic

differential of the form ")’go dweo, where 3’ is a constant and go is the
meromorphic function

go(P)
o(ft’t,od- (f.apod_x))O( t,od_ (x fat,od) )

O[eo](fdO)O[eo](faPd)O(x)O(x + ta)

A careful computation of the multiplicative nature of go shows how to
choose the integral paths in order to make go single valued.

Riemann’s theorem described above shows the divisor of the differential
on the right side of (2.2) has the form

Pl + +Pg--a + J(Pl + +Pg- a),

where, with . P +’’’+Pg,

a(.) ’0(.) sr0(a) + A0 [x].

Since 2,ri Resp=a dwa 1 and

_
is in Va, we conclude the differential in



MEASURES ON MULTIPLY CONNECTED PLANAR DOMAINS 299

(2.2) restricts on OD to the element m(c) in Ma, where c in Ca is given by

o(x)
c ---V log

O(x + tOa)"

The above discussion completes the proof of the following:

THEOREM. Let [x] be in Tg Rg/zg c Jac(X), where X is the marked
double of the planar domain D and a fixed in D. Then

1 d O(x)ama + - log
O(x + OOa) dnj (2.3)

j=l

is a representing measure for evaluation at a. The critical divisor

_
of the

representing measure (2.3) is the unique point in Ba satisfying

Ix].

Further, the mapping 7ra: T
g Rg defined by

7ra([X]) --7 log o(x)
O( X "" tOa)

completes the commutative diagram (0.2).

Remarks. 1. A priori there is no reason to expect that the range of 7ra"
Tg Rg is convex. The author would like to see an explanation of this
convexity which uses only the properties of theta functions.

2. It is easily verified that 7ra commutes with the involution on Tg of
reflection in the point [- "(.O a ].

3. The identity (2.2) can be viewed as a presentation of the representing
measure (2.3) in the form fdA, where

1 E(a,Ja)
2"n’i E( a, p) E( p, Ja)

is a multiple valued differential and

f(p)
0 dO-x 0 d+x+o,,

O(X)O(X ""



300 KEVIN J. CLANCEY

is a multiple valued holomorphic function on X with continuation indepen-
dent of x in Rg. The divisor of f is the sum -1 + -2, where -1, -2 are in
Va with a(_l) [x] and qa(_2) [-x 0a].

4. It follows from the commutative diagram (0.2) that %: TO - Ca is
generically 2 g to 1. In fact, % is (n + 1)(n 2 + 1)...(nk + 1) to 1 over
%Oba(.), when

_
in Va has k distinct points Pl,...,Pk in D with

respective multiplicities nl,..., ne.
5. It is possible to use Riemann’s addition formula

O(u + v,r)O(u v,r) 2-g
1 O](v 1

combined with the representation in 3o to embed Ma into R2g

of Pa" To -* Ra defined by
as the range

o(x)O(x +.,o)
1/2zg/z

The mapping Pa also can be viewed as a theta function parametrization of
Ma; however, Pa places Ma in a higher dimensional Euclidean space and
does not appear to aid in the study of the convex geometry of Ma.
The author would like to thank Werner Kleinert for suggesting the

possibility of this embedding into the "Kummer variety".

3. Hardy space models for representations of R(D)

In this section it will be shown how each point in the torus Tg corresponds
to a natural Hardy space decomposition of L2(dm), where rn is a represent-
ing measure for evaluation at a. The torus of Hardy spaces provides a
complete set of models for the one-dimensional representation f .f(a) of
R(D) as an algebra of operators on the one-dimensional Hilbert space C.
This torus of models is explicitly related to another torus of models for this
representation which was described by Abrahamse and Douglas [1].
The notations in this section are consistent with those given earlier. From

(0.2) we have the commutative diagram

(I)

Va ----, T g

where a Wa--l’/7"a and a--’--(-1 O’’ where a: Ma "-)Ba is the natural
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bijection associating with a representing measure m in Ma its critical divisor
ta(m) "m in B. It will be shown how each point in the fiber :(m) leads
to a natural orthogonal decomposition of L2(dm). Equivalently, each point
[x] in the real torus Tg Rg/Zg corresponds to a Hardy space decomposi-
tion of L2(dm), where m a([x ]).
We begin with the following definition. Given a divisor . supported on D,

we let L(D: _) denote the collection of f in the space /(D) of meromor-
phic functions on D satisfying (f) + . > 0. Given a representing measure
m in Ma, let H(dm) be the closure of L(: _) L2(dm) in L(dm).
Similarly, for . supported on JD, the space L(JD" .) has an analogous
interpretation and the closure of L(J: ) c L2(dm) in L2(dm) will be
denoted K(dm). It is obvious that K(dm)= H(dm). The notation

Ka(dm) will denote the subspace K(dm) obtained as the closure in
L2(dm) of the subspace of those f in L(J: .) vanishing at Ja. We are
particularly interested in these spaces when the divisor . arises from an
element in Va. In this case the following result holds.

THEOREM 3.1.. -, JD Then
Let . be in Va with a(..)-" m. Set _+=-ID and

L2(dm) H+(dm) K2(dm). (3.1)

Proof Note first that the restrictions of L(D: .+) and L(JD: -)
belong to L2(dm). Further, if f is in L(b" _+) and g is in L(J" .-) with
g(Ja) 0, then fff is the restriction to OD of an element k meromorphic on
D with (k) + -m a > 0. Thus_fffdm h(z)dz on 0D, where h is holo-
morphic in a neighborhood of D. As a consequence fff,dm 0 and this
shows that H+(dm) is orthogonal to K-a(dm)_

It remains to show that L(" .+)+ L(JD: .-) is dense in L2(dm).
Suppose kdm, k :/: 0 in L2(dm), annihilates L(: .+) + L(J" -). Then
kdm annihilates Rat() and Rat() and, consequently, k dm is the restric-
tion to OD of an element dr/ in Y(X). Note it is now clear that k is
meromorphically extendable to a neighborhood of D. Since k annihilates
L(D: _+)+ L(JD: _-), then (dr/)> ..IX-OD. Further, dr/ must have a
zero at each of the points in -ID (counting multiplicity). Indeed, if this were
not the case, k dr//dm would have a double pole in OD at some point in
the support of ,. This Would imply flk[ 2 dm +, which is impossible. We
conclude (dr/)> . which yields i(_- a)> 1 which we know is not true.
Thus k 0 and the proof is complete.

Remark. Roughly the above result is saying the following. Let m in Ma

have critical divisor

"m niP1 + +nsP + R1 + "t’Rt
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where P,..., P are distinct points in D and Ra,..., R are on OD. Corre-
sponding to any of the (n + 1)... (ns + 1) divisors . in V,

..= mlP +... +mP + mlJe + +mljes + R + +R

where m.; m. are non-negative integers satisfying mj + mj n (j
1,..., s), there is an orthogonal decomposition (3.1)where the elements in
H+(dm) are meromorphic on D with poles allowed at miP + +mP_.
q-R q- "k’R and the elements in K-a(dm) are meromorphic on JD,
vanish at Ja and are allowed poles at mlJP1 + +mJP + R + -t-R t.

The torus of Hardy spaces H/(dm), . V with :a(-) rn can be
used to model dilations of one-dimensional representations of Rat(D) as an
algebra of operators on Hilbert space. There is a second torus of multiplica-
tive Hardy spaces which served the same purpose. The multiplicative Hardy
space models were studied by Abrahamse and Douglas [1]. Below we want to
describe the use of H/(dm) as models and to give. explicit unitary maps
between the single valued and multiplicative models.
Much of the discussion below is due to Vern Paulsen. Indeed, Paulsen [10]

worked out the theory of the torus of Hardy spaces H+(dm) when D was
doubly connected. The author’s contribution here was to use the torus of J.
Fay as described above to realize the torus of Hardy space models H/(dm)
in the higher genus. In addition, the explicit unitary maps between the single
valued and multiplicative models appear here for the first time.

It is worth spending the extra effort to describe the dilation of representa-
tions for subalgebras of C*-algebras. To this end let be a subalgebra
(with unit) of the C*-algebra and r0: e’-o .(o(e) a unital representation
of as an algebra of operators on the Hilbert space o. By a -dilation of
r0, we mean a representation 7r0: -o .(JU) of as an algebra of
operators on the superspace JU3 o such that the restriction to of the
compression of 7r0 to o is r0. This means

r0(a) PoTr0(a)lov, a e’,

where Pov" JU-o o is the orthogonal projection. It is only necessary to
consider dilations which are minimal in the sense that 7r0()o is dense in
JU. Further, two -dilations r0: -o .(JU) and 0: -o .’(JU) are said
to be unitarily equivalent in case there is a unitary U: JU-o with Uh h,
h o, such that UTr0(b) -0(b)U, b .
Not every representation r0: ’ .za(o) has a -dilation, however,

completely contractive unital (c.c.u.) representations have -dilations. A
unital representation r0" e’--, .(o) is called a c.c.u, representation in case
ro (R) I: ’(R) Mn --’> ..o(o) (R) Mn is contractive for all n, where Mn denotes
the algebra of complex n n-matrices. In this case the -dilations are
constructed in two steps. The first step is to consider the completely positive
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map b0" ’+ * .() defined by

b0(al + a’) th0(al) + (b0(a2))

and to use Arveson’s extension theorem [2] to extend bo to a completely
positive map 4o" -z’(r-) The second step in constructing the -dila-
tions is to use Stinespring’s theorem [14] to obtain a minimal representation
7to: ’ .(-), where c- is such that 0 PeTro. Obviously, 7ro
obtained in this way is a ’-dilation. Indeed, every dilation is obtained in
this manner. As a consequence the -dilations are parametrized by the
completely positive extensions b0" ’ .za() of the completely positive
map tko: ’+ ’* -za(). Again we emphasize that we speak only of
minimal -dilations.

Let ro: ’.() be a unital representation and zro: _() a
-dilation of r0. Then the multiplicative nature of r0 forces Pcr’n’o(alaz)lcr

P,n’o(al)P.n-o(a2)l, for elements a 1, a 2 in ’. That is, the map from
ro(’) to _a() sending 7r0(a) to its compression P0(a)lr is an
algebra homomorphism. In this case one says that is a semi-invariant
subspace for 7ro(S’). Sarason [13] has shown that semi-invariant subspaces
are differences of invariant subspaces. This means that there is a nested pair
’c /of subspaces tee’, //invariant under r0(’) such that = -o-//.
In general, the decomposition of as the difference of invariant subspaces
is not unique. Paulsen [10] has made a detailed study of the decomposition of
a semi-invariant subspace as a difference of invariant subspaces (see, the
example below). Paulsen introduces the concept of a -subnormal model for
a representation r0: ’.() as a triple (Tr0, tee’, //), where 7r0:
_() is a -dilation of r0 and Z/, 4/are a nested pair (c //) of
ro(’) invariant subspaces such that //-3-/= . An equivalence relation
is given on the family of -subnormal models for r0" ’ .za() by
identifying (Tro, ’, /) with (Try, ’, //’) in case the -dilations zr0"

_() and zr: _(’) are unitarily equivalent as described
above under the unitary U mapping to ’. The collection of unitary
equivalence classes of -subnormal models can be considered as a fibration
over the unitary equivalence classes of -dilations, where for 7r0" ’_(/) a -dilation the fiber over this point consists of the unitary equiva-
lence classes of (Tro, E/, //) over all nested pairs (’, 4/) of zr0(’) invari-
ant subspaces with //--Ee’= ,. A complete set of representatives of the
-subnormal models can be obtained by allowing Zro: .’() to be the
(minimal) Stinespring extensions of completely positive extensions to of
bo" ’+ ’* .’() and allowing (/, 4/) to vary over all nested pairs
(’, //) of r0(’) invariant subspaces satising //-o-E/= . These mod-
els are referred to as canonical subnormal models for ro.
The relevant example here is the simplest representation of the algebra

,.’= R(D), where R(D) denotes the closure of Rat(D) in the C*-algebra
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C(OD) of continuous complex valued functions on the boundary of the
domain D. This simplest representation is the homomorphism ra" R(D)
.(C) which associates with each rational function f the operator on C of
multiplication by f(a). It is not difficult to see that ra is a c.c.u, representa-
tion. Each Arveson extension 0: C(OD) .’(C) is given by tho(f) ffdm,
for m in Ma. Thus the C(gD)-dilations of ra are parametrized by Ma, where
each m in Ma corresponds to the usual representation 7rm" C(OD)
(L2(dm)) of C(OD) as the algebra of multiplication operators on L2(dm).

If we fix m, then the canonical subnormal models that go with ,/7"m are the
triples (rrm, ’, //), where /-/’ //are Rat() invariant subspaces of L2(dm)
such that //-9-’= C, where C denotes the complex numbers identified as
the constant functions in L2(dm). It turns out that the pairs (/, //) are of
the form (H’+a(dm), H/(dm)), where . is in Fa and satisfies a(..) m
and H’+a(dm) is the closure of L(" .+- a) in L2(dm).
We do not give a direct proof of the above description of the subnormal

models. Such a direct proof based on the work of Paulsen [10] is possible.
The method we use here is to write down explicit unitary maps between
H/(dm) and the multiplicative Hardy space models of Abrahamse and
Douglas [1] and Sarason [11]. We must first describe these multiplicative
Hardy spaces.
The discussion here is limited to the case of scalar valued functions.

Suppose u (Ul,... Ug), lull lull 1, is a point in the g-torus_
Tg. Setting Xu(b)= u, j 1,..., g, defines a homology character_ on D.
Suppose f is a multiple valued meromorphic function on D which admits
continuation along any path in D. Then f is said to be a multiplicative
meromorphic function belonging to the character Xu in case continuation of
the germ f0 along a closed path y produces the germ fl Xu(T)fo. Note
that because we consider only unimodular characters, then these multiplica-
tive meromorphic functions have the property that If[ is automorphic with
respect to the group of deck transformations on the universal cover of D. For
this reason these multiplicative meromorphic functions are called modulus
automorphic. Two other natural interpretations of the multiplicative mero-
morphic functions are possible. One interpretation (see, e.g., Ball [3]) is
obtained by taking a system al,..., ag Of crosscuts from bl,... bg to b0 and
consider meromorphic functions on D (.J = laj with multiplicative jump by
a factor uj across aj (j 1,..., g). Alternatively, one can use the character
Xu to define a flat unitary line bundle u over D and consider the multiplica-
tive meromorphic functions as sections of du [1].
Now fix a in D and continue to let ma denote harmonic measure on OD

based at a. For Xu, u in Tg, a character, let HuE --H2u(D, ma) denote the
closure in LE(dma) of holomorphic functions on belonging to the charac-
ter gu. The operator Su defined on f in HuE by Suf(Z)= zf(z) is called a
bundle shift. The operator Su is clearly the restriction to HuE of the normal
operator Nf(z) zf(z) acting on LE(dma). Further the operator Su is pure
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in the sense that it has no reducing subspaces on which it acts as a normal
operator. Consequently, Su is a pure subnormal operator. The space Hu2 is a
functional Hilbert space. This means that given p in D there is an e, in Hu2
such that (f, e,)= f(p), for all f in Hz. In particular Hz’a= {f H:
f(a) 0} is a closed subspace of Hu2, which indeed is Hu2 -9-span(eU). The
remarks appearing in this paragraph are in Abrahamse and Douglas [1].
We are now in a position to show how to obtain a subnormal model for ra"

R() .+(C) using each multiplicative Hardy space Hu2, u Tg. First we
impact C onto the subspace 0 spanned by eu using the isometry A
Alleall-uea The representation ra: R() ’(C) transplants to ra(f)h
f(a)h, h 0, which is a representation of R(D)on ..(eto). Obviously,

7ru: C(OD)-- L2(dma) sending f in C(OD) to the operator on L2(dma) of
multiplication by f is a C(OD)-dilation of ra: R(D) .z(o).
The triples (Tru, Hu2,a, H2), u T g, represent all pure C(OD)-subnormal

models for r. This last result is due to Abrahamse and Douglas [1]. The next
theorem sets up an explicit correspondence between the multiplicative and
canonical C(OD)-subnormal models.

THEOREM 3.2. Let . be in Va with a(.) m. Suppose a(") is the
point in the torus TO Rg/zg. Let u in Tg be defined by

U exp(--27ri(tdPa(.ma) + Wa)), (3.2)

where exponentiation is done componentwise. There is a unitary transformation
U: H+(dm) Hu2 such that US SuU, where S is the subnormal
operator of multiplication by z on H+(dm). As a consequence the pure
subnormal models

(Tr,H’2(dm),H/(dm)) and (ru, Hu’",Hu)

are equivalent if and only if (3.2) holds. Moreover, the operator U is
multiplication by the restriction to OD of an explicit multiplicative meromorphic

function on X.

Before beginning the proof of the above theorem we make the following
remarks:

(i) The unitary U is constructed using the theta functions associated with
X. This is not too surprising since the theta function is a natural tool
providing explicit correspondence between line bundles and divisors. The
argument here is complicated by the fact that the correspondence between
the spaces Hu2(D: dm) and H+(dm) is required to be unitary and the
measure dm is, in general, different than dma.
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(ii) The big picture is now clear. We have the three equivalent tori
coverings: (1) tr: Va Ba, (2) 7ra: Rg/Z

g "-’> Ca, (3) the tori

{(zr, H’+a( drn ) H+( am))" . Va

of single-valued pure subnormal models of ra covering the completely posi-
tive extensions Ma of ra. Moreover, there are explicit fiber preserving maps
relating these coverings. In addition there is the fourth torus {(Tru, Hu2’, Hu2):
u Tg} of "multiplicative" pure subnormal models of ra. The unitarily
equivalent single-valued and multiplicative pure subnormal operators are
determined by Theorem 3.2.
The proof of Theorem 3.2 will require some preliminaries. Recall that for

P, Q (P : 0) on the marked double, the notation drip_c2 is used for the
unique element in ’(1)(X) having real parts of all periods equal to zero and
such that

..(dOe-Q ) > -P-Q with Resdfle_Q= -1.
z=Q

Given a divisor

_
E,= l(Pk Qk) of degree zero the function

is a multiplicative meromorphic function with divisor (I/)=

_
which be-

longs to a unimodular character X" 7rl(X) -* T.
For a divisor . of degree zero there is only one (up to a constant multiple)

multiplicative meromorphic function having divisor . belonging to a uni-
modular character. In other words, 1/ and X associated with a divisor

_
of

degree zero are unique. The function 1/ can be given in terms of theta
functions (or the prime form).
Note that in the case where the divisor . has the form

then the multiplicative function l/ having divisor . belongs to the normal-
ized character X given by

x(ay) 1;x(by)= exp(--2rrik=l toj(Pk)) j= 1,..., g.

Further for . of the form _-- -1
OD.

J-l the function V has modulus I on
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Proof of Theorem 3.2. Let . be in V with a(..)--m. Let

"1 "ffm- 2-@+-J(-@- 2-@+), a "m -J.ffm

and set

V& dm
V.. dma

The function h belongs to a normalized character and divisor

( h ) 2J..m 2J.m + 2_@+- 2J_@+.

Further, Ihl drn/drna on 0D. Find a multiplicative meromorphic function
V belonging to a normalized character X0 with divisor

(V) J’m J.-m + -+- J-+

satisfying V2 h. This V can be given in the explicit form

g s }j=l Po
d[’Qij-JQij

where

"flm "--P1 + +Pg,..m Q1 + +Qg,-@+= Qil + + Qis

and Co is a constant.
A short computation establishes that the character X of V satisfies x(by)

uy exp 2zrit + ((a(..ma)) "Jl" o.)j(a), j 1,.o., g. As a consequence, the
unitary mapping

U_f Vf f H+( dm )

carries H+(dm)onto HuE with U..S.
the theorem.

SuU. This completes the proof of

4. Examples

The examples discussed here were introduced by Nash [8] and Sarason [12]
in investigations of the convex geometry of the space of representing mea-
sures.
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The earlier notations and conventions remain in effect. Let a be fixed in D
and 6a" Ma Ba the map which associates the critical divisor with a
representing measure. A measure m in Ma is in the boundary of Ma if and
only if the support of "m intersects OD [8, p. 131]. This last remark can be
seen by considering the homeomorphism 6-1 Wa-lq’’ata; Ba --’> Ma. This
homeomorphism extends to a homeomorphism of a neighborhood of Ba in
X(g) to a neighborhood of Ma in MI(OD). It is clear that the annihilator R +/-

of Rat(D) in MI(OD) can be identified with the set of restrictions to OD of
the space I(X) of symmetric holomorphic differentials on X.
The following results of Sarason and Nash give information about the

convex geometry of Ma in terms of critical divisors.
1. Sarason [12]. (See also Lemma 3.2 of [8].) A measure m in Ma fails to

be an extreme point of Ma if and only if there is an u element in R +/- such
that (dulOD) > (dm lOD). In particular, since elements in R x have divisors
of degree 2g-2, then any m in Ma with -m supported on OD is an
extreme point of Ma.

2. Nash [8]. The measure m in OMa is an isolated extreme point if and
only if -m is supported on OD. Further, if OMa contains an isolated extreme
point, then D is conformally equivalent to the complex sphere minus a finite
number of closed slits in the real axis.
Note that if the critical divisor is supported on OD, then 2a(.m) [tOa].

Thus Pa(..m) is one of the 2 g possibilities

[ 1 1]--’tOa + -n n zg/2zg

In particular, Ma has at most 2 g isolated extreme points. (In general, there
are 2 g solutions of 2a(.) -[wa] in Va; however, these solutions will not
be supported on OD.) We will examine a class of examples where the
maximum number of isolated extreme points occurs.

Let D be a domain obtained from the open unit disc {z" Izl < 1} by
removing g disjoint closed discs D1,..., Dg centered at points dl,..., dg in
the real axis. For definiteness it can be assumed that dl < d2 < < dg.
The intersection of D with the real axis is the union of the g + 1 open
subintervals

I0 (So,S1) ,I ($2,$3),... ,Ig (S2g ,S2g+1),

where -1 So < s < < S2g < S2g+ 1. The closure of I. is denoted

On the double X of D the interval ]j forms the lower half of the "circle"
Ty . Jy, j--0,..., g. In addition, to the anticonformal symmetry J:
X---> X the double X has the extra anticonformal symmetry Q: X--> X of
reflection in the real axis. The holomorphic involution QJ is such that X/QJ



MEASURES ON MULTIPLY CONNECTED PLANAR DOMAINS 309

Po=So -1

Yl 7 2

s
2 0 s3

s5

FIG.

is the complex sphere and, consequently, these doubles are hyperelliptic. Fix
the base point P0 So 1. A convenient choice for the crosscuts aa,... ag
is to let aj join P0 to Szj_ by running along the real axis and the top halves
yg(k 1,..., j 1)of the boundaries bg of Dg. See Fig. 1 for g 2.

Let dWl,...,dwg be our usual basis of f(X) dual to the canonical
homology basis al,... ag; bl,... bg, where as above ag otk U (-Jag),
k 1,..., g. It is obvious from the symmetry that

f, dwj ""l’i

where - [Tij is the B-period matrix of the marked double.
On the real axis dwj -OxW dx and, consequently, the divisor of dw is of

the form .. + J_., where ,.. > 0 is of degree g 1 and consists of one
point from each of the subintervals Io, I,..., Ig which do not abut bj.
Moreover, the differentials dwy satisfy

Q * dwy and J * ( dwj ) -y, j= 1, g.

For real a the Green’s differential

1
dwa dOa_Ja
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also possesses the symmetries

Q* dwa and J * dwa --aa"
Thus any differential dw in M(1)(X)whose restriction to OD is in Ma also
possesses these symmetries. In particular, for real a the critical divisor "m of
rn in Ma is supported on the union /70 kJ 1 u .. u/Tg.
The Riemann constant A

0 based at P0 -1 is a half-period. By a direct
computation using our basis of f(X) one can conclude that

A0-- 1+ - (4.1)

where -f (1, 1,..., 1) and ’ (g, g 1,..., 2, 1)t. The direct derivation of
(4.1) is a bit bothersome. (See, also Mumford [7, 3.81].)

Fix a real in D. The critical divisor -m of rn in_Ma consists of exactly one
point from each of the g closed subintervals I0, I1,..., lg which do not
contain a. This can be established as in [8, Lemma 3.13] or by using the
explicit form of A0. In fact, it is a simple exercise to show that for . a divisor
of degree g supported on D intersected with the real axis

0(a) + a0

is in Rg/Zg if and only if

_
consists of one point from each of the g closed

subintervals 0, 1,..., g which do not contain a.

PROPOSITION. Let D be a domain obtained from the unit disc by removing g
disjoint closed discs centered at points on the real axis. Let Io, I1,... Ig_be the
open intervals forming the intersection ofD with the real axis and Tj I td J
the "circles" obtained by reflecting the closure of I into the double X of D,
j 0,1,...,g.

Fix a real in D. The collection Ba in Xg) of critical divisors of representing
measures in Ma is

Ba J1 X X Jg c X(g),

where Jl,..., Jg are those intervals o,..., ig not containing a. The torus of
Hardy spaces Va is

Va Tx xT cXg),

where T,..., T are those circles T0, T1,... Tg not containing a.
Further given "1 Pl -1- -I-pg, where pi Tj’, 1,..., g, then -1 is

the critical divisor of the representing measure m given as in (2.3) with
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Ix]-" (I)a(_l). Any divisor . in Va over -.,1 corresponds to the orthogonal
decomposition (3.1) of L2(dm).

Remark. The above proposition gives very explicit information concerning
Ma for a real. For example, it is clear that Ma has 2g extreme points. This
answers a question of Nash [8, p. 134]. The case where a is not real is not so
simple. An example in Sarason [12, p. 376] shows that, in general, Va is not a
product of circles from X.
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