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ON THE COHOMOLOGY OF FINITE GROUPS
OF LIE TYPE
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Introduction

Let Fq denote the finite field with q elements and let G XFq be a
connected (not necessarily split) reductive group scheme over spec(Fq). We
will be interested in the cohornology of the finite groups G(Fq,) of Fq,-
rational points of G, with coefficients in Z/l where is a prime different
from p char(Fq). These groups are closely related and present special
cases of the groups referred to in the title. A finite group of Lie type is, by
definition, a central quotient of a group of the form G(Fqn). For instance, all
finite Chevalley groups (as defined in [Gor] or [Car]) are of this kind. For
simplicity, we will formulate our results for the groups G(Fq,) rather than for
these more general central quotients; it should be clear to the reader how to
apply the results, mutatis mutandis, to the general finite groups of Lie type.
The basic references for reductive group schemes are [DeGr] or [Dem] (see
also [Jan] for an account of the basic results).

It is well known that if a homomorphism b" - rr of finite groups induces
an isomorphism in H*(; Z/l), a prime, then the kernel of b has order
prime to and the image of b has an index prime to in 7r (cf. [Jac]); in
particular, it will follow that - and rr will have isomorphic/-Sylow subgroups.
Obviously, the converse statement is in general false, as one can see by
looking at the inclusion map of an /-Sylow subgroup. Our main theorem
shows, however, that for the natural inclusions of groups of Lie type a
converse statement holds. The precise statement is as follows.

THEOREM. Let G be a connected reductive Fq-group scheme and let be a
prime different from char(Fq) p. Then the following are equivalent:

(i) The inclusion G(Fq) -, G(Fq,) induces an H*(; Z/l)-isomorphism.
(ii) The groups G(Fq) and G(Fq,) have isomorphic l-Sylow subgroups.

In Section 1 we will discuss trace formulas and prove the theorem. We will
also point out the relationship of the theorem with conjugacy questions
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concerning the /-subgroups of G(Fq) and G(Fqn). In Section 2 we show how
to adapt the proof of the theorem to cover the Suzuki and Ree groups (as
defined in [Gor]).
The notational conventions of the Introduction will be kept throughout

this paper.

1. Trace formulas

As in the Introduction, G XFq denotes always a connected reductive
Fq-group scheme. Let q be the algebraic closure of Fq and put

G Xspec(Fq)spec(q),

the reductive Fq-group scheme obtained by base change from G. We will
write 4): G G for the Frobenius endomorphism associated with the
Fq-form G of G. Similarly,_ 4) will denote the Frobenius_ of the Fqn-form
G s ec F spec(F .) of G Thus, if G spec(A) and G spec(A (R) Fq)P () q

then 4) is given by the Fq-homomorphism which maps x A (R) Fq to x q. One
has therefore a natural diagram of Lang maps

(1)

where 0n is given on q-rational points by x x 4)(x) 4)2(x)
4)n-l(x). We will write He*t(;Z/lj) for the etale cohomology of with
coefficients in the constant sheaf with stalks Z/P, a prime different from
p char(Fq). As usual, the/-adic cohomology He*t(G; Qt) is defined as

For the convenience of the reader, we recall some basic facts on He*t(G; Qt).
By the classification of connected reductive group schemes over an alge-
braically closed field, there exists a unique reductive algebraic group L over
C with the same Root Data as G. The associated Lie group of complex points
L(C)tp, with the strong topology, satisfies (cf. [FrPa])

n;ing(Z(C)tP; Q,) -- ne*t(; Q,).
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Moreover, the Lie group L(C)tp has complex dimension N dim(G), and
L(C)tp is homeomorphic to K RN, where K denotes a maximal compact
subgroup of L(C)tp and, of course,

OTng(L(C) top; Q ) OTng( K; Q )"

It is well known that Hsing(K; Q/) is an exterior algebra over Ql on odd
dimensional generators. Thus

with W a graded vector space over Qt- In particular,

where N dim(G), and therefore a morphism f: G G of schemes over
spec(Fq) has a well-defined degree

Zt c Ql the/-adic integers, satisfying

f*(x) =d(f).x

for all x HeNt(U; Q/). Because the algebra He](’; Z/l) satisfies Poincar6
duality it is clear that

He*t(f; Z/l)" He(; Z/l) He(; Z/l)

is an isomorphism if and only if d(f) Z i a unit. It is also useful to
observe that He*t(G; Q/) has the structure of a Hopf-algebra, with coalgebra
structure induced by the multiplication in G. If we put

v ma( ;
the subspace of primitive elements, then we have a natural isomorphism

A V--/--/ (; Q/).

It follows that if f: G - G is a morphism of schemes over Fq, such that the
induced map f*" H(G; Qt) He](G; Qt) maps V PHe*t(G; Q/) to itself
(e.g., if f is a morphism of group schemes), then

d(f) det(f*lV),
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because HeNt(; Q) -= A maxv, the largest non-vanishing exterior power of V.
Moreover, if we put f* 1 -g, then the linear map g maps V into itself
and satisfies

det(f*lV) det(1 glV) grTr(g),

where by grTr(g)we mean the graded trace

E(--1) Tr(g" Udt(; Q,) - Ue/t(; Q/)).

This is a consequence of the fact that V has a bases consisting of elements of
odd degrees, so that grTr(g), as defined above, is also equal to

( 1) Tr( A JPg" A JV - A V),

where Pg denotes the restriction of g to V. Our next goal is to analyse the
degree of the morphism Sn in the diagram (1). An easy spectral sequence
argument, applied to the diagram (1), shows the following (see [FrMi] for the
case of an F-split G).

PROPOSITION 1.1. Let G Xrq and n" G G be as above. Then for
every prime different from p char(Fq) the following are equivalent"

(i) G(Fq) - G(Fqn) induces an H, (; Z/l)-isomorphism.
(ii) The degree d(On) Zt is an l-adic unit.

To prove the theorem of the Introduction, we need to express the degree
d(qn) in terms of the orders of the groups G(Fq) and G(Fq,). This will be
done by interpreting d($n) in terms of graded traces and by relating these to
the orders of the groups G(Fq) and G(Fa,) usi__ng the Lefschetz trace formula
applied to the Frobenius endomorphism of G.

LEMMA 1.2. Let G be a connected reductive Fq-group scheme and
ok" G G the Frobenius endomorphism associated with an Fq-fortn of G. Then
the degree d(1/b) of the Lang map 1/qb" G - G is given by

d(1/b) E(- 1) Tr(b*" Ue/t(; Q/) + Ue/t(; Q/)).

Proof. As observed above, the Hopf-algebra H(G; Q/) is an exterior
algebra A V on V PHe*t(G; Qt), the subspace of primitive elements. If we
denote by grTr(b*) the graded trace

E(-- 1) Tr(b*" Hett(U; QI) ----) Ht(U; QI))
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then, because all homogeneous elements of V have odd cohomological
degree, we have

grTr(*) ] ( 1) Tr( A JPb* A V -+ A iV), (2)

where P&*" PHi(G; Q) --+ PHi(G__; Q) is the map induced from the mor-
phism of group schemes " G - G; as observed earlier, the right hand side
of (2) is therefore just det(1 PC*). On the other hand, 1/b" G G maps
x PHi(G; Q) to x b*x, which is equal to (1 Pd*)x. Thus det(1
Pb*) d(1/4)which shows that d(1/b) grTr(ch*) as claimed.
From the diagram (1) above we see that qn o(1/b) 1/n. The following

corollary is then immediate.

COROLLARY 1.3. The degree of the map b in the diagram (1) is given by

grTr(6n)*
d(0n) grTr(6*)

The Lefschetz trace formula in Hc*, etale cohomology with compact
supports, permits to relate the number of Fqn-rational points of certain
schemes to a graded trace. The following proposition is well known (see
[Mil], and also [DeLu] for a general discussion of the Lefschetz trace
formula; the formula we use here is 1.9.4, page 174, of [Del]).

PROPOSITION 1.4. Let Xvq be a quasi-projective Fq-scheme,

Xvq Xspec(vq)spec@q),
and oh" X --. X the associated Frobenius endomophism. Then

IXFq(Fq)[ E (- 1) Tr(*" H(,; Q,) + H/(.; Q/)). (3)

In accordance with the notation used above we will write grTr(4c*) for the
right hand side of the formula (3). It remains to relate grTr(*) to grTr(*)
in case Xv, G. Since G is a smooth quasi-projective variety of dimension
N over q, there is a natural Poincar6-Duality pairing (cf. [Mil])

( )" UeJt(U; l) X Uc2N-j(; Q/) ---) l(-N)

satisfying (b*x, 4)*Y) qN( x, Y). Therefore (x, d*c y) (qN(ffp*)-l(X), y)
which, since the pairing ( ) is non-degenerate, implies that

Tr(,]H2N-j(; Q/)) qN Tr((O,>-l]UeJt(; Q/)).
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Thus, taking graded traces, we infer

grTr(thc*) qU. grTr((th,)-l). (4)

From the computations in the proof of the Lemma 1.2 we see that

grTr((b*) -1) det(1 (Pb*) -1) (- 1)rdet(Pt*)-’det(1 -Pt*)

( 1)r det( Ptb* ) -1. grTr( 4)* )

where r dim PHe*t(G; Qt). Note that det Pb* u Z is a unit, because
b induces an isomorphism in He*t(G; Z/l) for any prime to p. Applying the
same reasoning to bn, we obtain

grTr(( ( 6 )* ) 1) ( 1)r/,/--n. grTr(n)*.

Therefore, combining this with Corollary 1.3, Proposition 1.4 and formula (4),
we obtain

d(n)
b/n. grTr((bn),)-I q-nN. bln. grTr(thc,)
u" grTr(6* ) -1 q-N. U" grTr(6* )

( b/ )n-1 [a(Fqn)]
u zT.

It is now plain that d(n) is an /-adic unit if and only if G(Fq) and G(Fqn)
have isomorphic /-Sylow subgroups and, in view of Proposition 1.1 the proof
of the theorem is therefore completed.
The following example illustrates the general result. Take G SI2. It is

easy to check the theorem in this case directly because the cohomology rings
H*(S12(Fq); Z/l), a prime different from the characteristic of Fq, are com-
pletely known (cf. [FiPr]). The cohomology is periodic of period 4, and for
an odd (prime prime to q)one has

O*(Sl2(Fq);Z/l)
E(u) (R) P(v),u H and v H4 (if/divides q2 1)
Z/l (if does not divide q2 1).

Here, E(u) denotes an exterior algebra on u, and P(v) a polynomial algebra
on u (over Z/1). Since the order of SI2(Fq) is q(q2_ 1)we see that the
/-Sylow subgroup of SI2(Fq) is non-trivial if and only if divides q2 1 and
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thus, by the formula above, one has abstract isomorphisms of rings

Hz(gl2(Fq); Z/t) H(gL2(Fqn); Z/l)

if l[q2- 1. But S12(Fq) and Sl2(Fqn) have isomorphic /-Sylow subgroups if
and only if q2_ 1 and qZn_ 1 contain the same power of l, that is
(assuming that divides q2_ 1), if and only if n is relatively prime to l.
Thus, in most cases, the isomorphism (5) is not induced by the restriction
map

res" H*(Sl2(Fq.);Z/l ) H*(Sl2(Fq);Z/1 ).

Our general setting will take the following form in case G SI2. One has

an exterior algebra over QI in w He3t (Recall that He(-2;Q/)
Hop(SI2(C); Q/), and S/2(C) is homotopy equivalent to a three-dimensional
sphere).

Clearly, PHe* H QI and one checks easily that b*w q2w so that

d(1/b) det(1 P4’*) 1 q2

and thus

q2n_ 1 1 IaZ(Fq.)l
d(I]tn) -- 1 qn-1 ISZ=(Fq)I

According to our general formula, we must have

n-1

where u det Pb* and N dim Sl2; this is indeed so, as det Pb* q2 and
dim SI2 3.
The theorem of the Introduction can also be viewed as a result concerning

the conjugacy relationship between the various l- subgroups of G(Fq) and
G(Fqn). For this purpose, denote by Frobt(F) the "Frobenius category" of
finite/-subgroups of the group F; its objects are the finite/-subgroups of F,
and morphisms are induced by inner automorphisms of F. It is a classical
result that for a finite group F, the restriction maps fit together to give rise to
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an isomorphism

H*(F;Z/l) li.__m H*(r;Z/l).
Frobl(F)p

Thus, any homomorphism of finite groups q" F - F2 inducing an equiva-
lence of categories Frobt(F1) Frobt(F2) will induce an isomorphism
H*(Fz;Z/I)-- H*(F1;Z/l). The converse of this statement is also true
according to [Mis]. Thus, our theorem implies the following corollary, which
in the case of G Gln is a well-known fact on the representation theory of
finite/-groups in characteristic p different from l.

COROLLARY 1.5. Let G be a connected reductive Fq-group scheme and let
be a prime different from p char(Fq). Suppose that G(Fq) and G(Fq,) have
isomorphic l-Sylow subgroups. Then the inclusion G(Fq) G(Fq,) induces an
equivalence of Frobenius categories offinite l-subgroups

Frobl(G(Fq) ) - Frobl(G(Fq.)).

2. Suzuki and Ree groups

We will be considering the three families of groups, which in [Gor] are
denoted by

2B2(2n), 2G2(3n), 2F4(2n )

with n odd, say n 2m + 1; 2B2(2n) is isomorphic to the Suzuki group
Sz(2n), which is simple for n > 1, and the groups 2Gz(3n),zF4(2n) are the
simple groups of Ree type. The orders of these groups are (cf. [Gor]):

12B2(q)l q2(q2 + 1)(q 1) where q 22m+l,

12a2(q)l q3(q3 + 1)(q 1) where q 32m+l,

[2F4(q)l q12(q6 + 1)(q4 1)(q3 + 1)(q- 1) where q 22m +

Let G Gv denote the split reductive group scheme over spec(Fq) of type
B2, G2 respectively F4. Then G G specvqspecFq admits an exceptional
isogeny

O’GG



COHOMOLOGY OF FINITE GROUPS OF LIE TYPE 283

such that 02 b, the Frobenius of the Fq-form G of G. Moreover

2G(q) {x G(Fq)IOx x}

agrees with 2B2(q), 2G2(q) respectively 2F4(q) for G of type 92, G2 respec-
tively F4 (we always assume q 22m + 1, 32m + respectively 22m + 1, according
to the case one considers). As in [FrMi], one gets then a commutative
diagram of finite etale maps arising from Lang’s construction

eG(q) - G(q
1/4,

where d is an odd natural number; 0 is given on a point x G(Fq) by

0(x) x. 4’(x) 4,:(x)

As before, it follows that the inclusion 2G(q)-->2G(qd) is an H,(;Z/I)
isomorphism (l as always prime to q) if and only if 0"" He](G;Qt)
H*t(G; Qt) has a degree prime to (the degree of 0* is an /-adic integer).
There are now three cases to consider. For the computation of the relevant
degrees of (B0)* we refer the reader to [AdMa].

(i) G of type B2

In this case, H2*t(BG; Qt) Q1[x4, x8] and (B0)*x4 qx4, (B0)*x8
--qZx8. Therefore

degO (1 +q +q2 + +qa-1)(1 _q

q2-2al2B2(qa)l/12B2(q)l.

2 -l- q4 +q2d-2)

We conclude that deg 0 is prime to if and only if 2B2(q) and 2B2(qd) have
isomorphic /-Sylow subgroups. Thus the following holds.

PROPOSITION 2.1. Let q 22m+l and d > 1 be an odd integer. Let be an
odd prime. Then 2B2(q) - 2B2(qd) induces an isomorphism in Z/l-homology if
and only if 2B2(q) and 2B2(qd) have isomorphic l-Sylow subgroups.

(ii) G of type G2
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We have He*tt(BG; Q) Q/[x4, X12 and (B0)*x4 qX4, (B0)*x12
q 3x la which yields

deg0 (l+q +q2+ +qd-1)(1 _q+q6 +qd-)
q3-3dl2G2(qd)l/12G2(q)l

and the next result follows.

PROPOSITION 2.2. Let q 32m + and d be odd. Let be a prime different
from 3. Then 2G2(q) - 2G2(qd) induces a Z/l-homology isomorphism if and
only if 2G2(q) and 2G(qd) have isomorphic 1-Sylow subgroups.

(iii) G of type F4

We proceed as in the other two cases and obtain

H*(B’QI) Ql[X4, X12,x16, x24],

( B0)*x4 qx4 (BO)* x12 -q3x12, (B0)* x16 q4x16,

( Bd/)* X24 q6X24.

This implies that

deg 0 qle-12aleFn(qd)[/12Fa(q)l

and we get our final result.

PROPOSITION 2.3. Let q 22m+1, and d > 1 be odd. Let be an odd
prime. Then 2E4(q) - 2F4(qd) induces a Z/l-homology isomorphism if and only
if 2F4(q) and 2F4(qd) have isomorphic l-Sylow subgroups.
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