ON THE COHOMOLOGY OF FINITE GROUPS OF LIE TYPE

BY

GUIDO MISLIN

Introduction

Let \mathbf{F}_q denote the finite field with q elements and let $G = X_{\mathbf{F}_q}$ be a connected (not necessarily split) reductive group scheme over spec(\vec{F}_a). We will be interested in the cohomology of the finite groups $G(\mathbf{F}_{a^n})$ of \mathbf{F}_{a^n} . rational points of G, with coefficients in \mathbb{Z}/l where l is a prime different from $p = char(\mathbf{F}_a)$. These groups are closely related and present special cases of the groups referred to in the title. A finite group of Lie type is, by definition, a central quotient of a group of the form $G(\mathbf{F}_{a^n})$. For instance, all finite Chevalley groups (as defined in [Gor] or [Car]) are of this kind. For simplicity, we will formulate our results for the groups $G(\mathbf{F}_{a^n})$ rather than for these more general central quotients; it should be clear to the reader how to apply the results, mutatis mutandis, to the general finite groups of Lie type. The basic references for reductive group schemes are [DeGr] or [Dem] (see also [Jan] for an account of the basic results).

It is well known that if a homomorphism $\phi: \tau \to \pi$ of finite groups induces an isomorphism in $H^*(; \mathbb{Z}/l)$, l a prime, then the kernel of ϕ has order prime to l and the image of ϕ has an index prime to l in π (cf. [Jac]); in particular, it will follow that τ and π will have isomorphic *l*-Sylow subgroups. Obviously, the converse statement is in general false, as one can see by looking at the inclusion map of an *l*-Sylow subgroup. Our main theorem shows, however, that for the natural inclusions of groups of Lie type a converse statement holds. The precise statement is as follows.

THEOREM. Let G be a connected reductive \mathbf{F}_q -group scheme and let l be a prime different from char(\mathbf{F}_q) = p. Then the following are equivalent: (i) The inclusion $G(\mathbf{F}_q) \rightarrow G(\mathbf{F}_{q^n})$ induces an $H^*(; \mathbb{Z}/l)$ -isomorphism. (ii) The groups $G(\mathbf{F}_q)$ and $G(\mathbf{F}_{q^n})$ have isomorphic l-Sylow subgroups.

In Section 1 we will discuss trace formulas and prove the theorem. We will also point out the relationship of the theorem with conjugacy questions

© 1992 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received August 8, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 20J06; Secondary 20G40.

GUIDO MISLIN

concerning the *l*-subgroups of $G(\mathbf{F}_q)$ and $G(\mathbf{F}_{q^n})$. In Section 2 we show how to adapt the proof of the theorem to cover the Suzuki and Ree groups (as defined in [Gor]).

The notational conventions of the Introduction will be kept throughout this paper.

1. Trace formulas

As in the Introduction, $G = X_{\mathbf{F}_q}$ denotes always a connected reductive \mathbf{F}_a -group scheme. Let $\overline{\mathbf{F}}_a$ be the algebraic closure of \mathbf{F}_a and put

$$\overline{G} = G \times_{\operatorname{spec}(\mathbf{F}_q)} \operatorname{spec}(\overline{\mathbf{F}}_q),$$

the reductive $\overline{\mathbf{F}}_q$ -group scheme obtained by base change from G. We will write $\phi: \overline{G} \to \overline{G}$ for the Frobenius endomorphism associated with the \mathbf{F}_q -form G of \overline{G} . Similarly, ϕ^n will denote the Frobenius of the \mathbf{F}_{q^n} -form $G \times_{\text{spec}(\mathbf{F}_q)} \text{spec}(\mathbf{F}_{q^n})$ of \overline{G} . Thus, if G = spec(A) and $\overline{G} = \text{spec}(A \otimes \overline{\mathbf{F}}_q)$ then ϕ is given by the \mathbf{F}_q -homomorphism which maps $x \in A \otimes \overline{\mathbf{F}}_q$ to x^q . One has therefore a natural diagram of Lang maps

where ψ_n is given on $\overline{\mathbf{F}}_q$ -rational points by $x \mapsto x \cdot \phi(x) \cdot \phi^2(x) \cdot \cdots \cdot \phi^{n-1}(x)$. We will write $H_{\text{et}}^*(\overline{G}; \mathbf{Z}/l^j)$ for the etale cohomology of \overline{G} with coefficients in the constant sheaf with stalks \mathbf{Z}/l^j , l a prime different from $p = \text{char}(\mathbf{F}_q)$. As usual, the *l*-adic cohomology $H_{\text{et}}^*(\overline{G}; \mathbf{Q}_l)$ is defined as

$$\left(\varprojlim_{j} H^*_{\mathrm{et}}(\overline{G}; \mathbf{Z}/l^j)\right) \otimes \mathbf{Q}.$$

For the convenience of the reader, we recall some basic facts on $H^*_{\text{et}}(\overline{G}; \mathbf{Q}_l)$. By the classification of connected reductive group schemes over an algebraically closed field, there exists a unique reductive algebraic group L over **C** with the same *Root Data* as \overline{G} . The associated Lie group of complex points $L(\mathbf{C})^{\text{top}}$, with the strong topology, satisfies (cf. [FrPa])

$$H^*_{\operatorname{sing}}(L(\mathbf{C})^{\operatorname{top}};\mathbf{Q}_l) \cong H^*_{\operatorname{et}}(\overline{G};\mathbf{Q}_l).$$

Moreover, the Lie group $L(\mathbf{C})^{\text{top}}$ has complex dimension $N = \dim(\overline{G})$, and $L(\mathbf{C})^{\text{top}}$ is homeomorphic to $K \times \mathbf{R}^N$, where K denotes a maximal compact subgroup of $L(\mathbf{C})^{\text{top}}$ and, of course,

$$H^*_{\operatorname{sing}}(L(\mathbf{C})^{\operatorname{top}};\mathbf{Q}_l) \cong H^*_{\operatorname{sing}}(K;\mathbf{Q}_l).$$

It is well known that $H_{sing}^{*}(K; \mathbf{Q}_{l})$ is an exterior algebra over \mathbf{Q}_{l} on odd dimensional generators. Thus

$$H^*_{\mathrm{et}}(\overline{G}; \mathbf{Q}_l) \cong \wedge W$$

with W a graded vector space over \mathbf{Q}_l . In particular,

$$H^N_{\mathrm{et}}(\overline{G};\mathbf{Q}_l)\cong\mathbf{Q}_l,$$

where $N = \dim(\overline{G})$, and therefore a morphism $f: \overline{G} \to \overline{G}$ of schemes over $\operatorname{spec}(\overline{F}_q)$ has a well-defined degree

$$d(f) \in \mathbf{Z}_l,$$

 $\mathbf{Z}_l \subset \mathbf{Q}_l$ the *l*-adic integers, satisfying

$$f^*(x) = d(f) \cdot x$$

for all $x \in H^N_{\text{et}}(\overline{G}; \mathbf{Q}_l)$. Because the algebra $H^*_{\text{et}}(\overline{G}; \mathbf{Z}/l)$ satisfies Poincaré duality it is clear that

$$H^*_{\text{et}}(f; \mathbb{Z}/l) \colon H^*_{\text{et}}(\overline{G}; \mathbb{Z}/l) \to H^*_{\text{et}}(\overline{G}; \mathbb{Z}/l)$$

is an isomorphism if and only if $d(f) \in \mathbb{Z}_l$ is a unit. It is also useful to observe that $H^*_{\text{et}}(\overline{G}; \mathbb{Q}_l)$ has the structure of a Hopf-algebra, with coalgebra structure induced by the multiplication in \overline{G} . If we put

$$V = PH_{\rm et}^*(\overline{G}; \mathbf{Q}_l),$$

the subspace of primitive elements, then we have a natural isomorphism

$$\wedge V = H^*_{\text{et}}(\overline{G}; \mathbf{Q}_l).$$

It follows that if $f: \overline{G} \to \overline{G}$ is a morphism of schemes over $\overline{\mathbf{F}}_q$, such that the induced map $f^*: H^*_{\text{et}}(\overline{G}; \mathbf{Q}_l) \to H^*_{\text{et}}(\overline{G}; \mathbf{Q}_l)$ maps $V = PH^*_{\text{et}}(\overline{G}; \mathbf{Q}_l)$ to itself (e.g., if f is a morphism of group schemes), then

$$d(f) = \det(f^*|V),$$

because $H_{\text{et}}^{N}(\overline{G}; \mathbf{Q}_{l}) \cong \bigwedge^{\max} V$, the largest non-vanishing exterior power of V. Moreover, if we put $f^{*} = 1 - g$, then the linear map g maps V into itself and satisfies

$$\det(f^*|V) = \det(1 - g|V) = \operatorname{grTr}(g),$$

where by grTr(g) we mean the graded trace

$$\sum (-1)^{i} \operatorname{Tr} \left(g \colon H^{i}_{\text{et}} (\overline{G}; \mathbf{Q}_{l}) \to H^{i}_{\text{et}} (\overline{G}; \mathbf{Q}_{l}) \right).$$

This is a consequence of the fact that V has a bases consisting of elements of odd degrees, so that grTr(g), as defined above, is also equal to

$$\sum (-1)^{j} \operatorname{Tr}(\wedge^{j} Pg \colon \wedge^{j} V \to \wedge^{j} V),$$

where Pg denotes the restriction of g to V. Our next goal is to analyse the degree of the morphism ψ_n in the diagram (1). An easy spectral sequence argument, applied to the diagram (1), shows the following (see [FrMi] for the case of an \mathbf{F}_q -split G).

PROPOSITION 1.1. Let $G = X_{\mathbf{F}_q}$ and $\psi_n: \overline{G} \to \overline{G}$ be as above. Then for every prime l different from $p = \operatorname{char}(\mathbf{F}_q)$ the following are equivalent:

- (i) $G(\mathbf{F}_a) \to G(\mathbf{F}_{a^n})$ induces an $H_*(\mathbf{Z}/l)$ -isomorphism.
- (ii) The degree $d(\psi_n) \in \mathbf{Z}_l$ is an *l*-adic unit.

To prove the theorem of the Introduction, we need to express the degree $d(\psi_n)$ in terms of the orders of the groups $G(\mathbf{F}_q)$ and $G(\mathbf{F}_{q^n})$. This will be done by interpreting $d(\psi_n)$ in terms of graded traces and by relating these to the orders of the groups $G(\mathbf{F}_q)$ and $G(\mathbf{F}_{q^n})$ using the Lefschetz trace formula applied to the Frobenius endomorphism of \overline{G} .

LEMMA 1.2. Let \overline{G} be a connected reductive $\overline{\mathbf{F}}_q$ -group scheme and $\phi: \overline{G} \to \overline{G}$ the Frobenius endomorphism associated with an \mathbf{F}_q -form of \overline{G} . Then the degree $d(1/\phi)$ of the Lang map $1/\phi: \overline{G} \to \overline{G}$ is given by

$$d(1/\phi) = \sum (-1)^{i} \operatorname{Tr} \left(\phi^{*} \colon H^{i}_{\text{et}}(\overline{G}; \mathbf{Q}_{l}) \to H^{i}_{\text{et}}(\overline{G}; \mathbf{Q}_{l}) \right).$$

Proof. As observed above, the Hopf-algebra $H^*_{\text{et}}(\overline{G}; \mathbf{Q}_l)$ is an exterior algebra $\wedge V$ on $V = PH^*_{\text{et}}(\overline{G}; \mathbf{Q}_l)$, the subspace of primitive elements. If we denote by $\operatorname{grTr}(\phi^*)$ the graded trace

$$\sum (-1)^{i} \operatorname{Tr} \left(\phi^{*} \colon H^{i}_{\text{et}} \left(\overline{G}; \mathbf{Q}_{l} \right) \to H^{i}_{\text{et}} \left(\overline{G}; \mathbf{Q}_{l} \right) \right)$$

then, because all homogeneous elements of V have odd cohomological degree, we have

$$\operatorname{grTr}(\phi^*) = \sum (-1)^j \operatorname{Tr}(\wedge^{j} P \phi^* \colon \wedge^{j} V \to \wedge^{j} V), \qquad (2)$$

where $P\phi^*$: $PH^*_{\text{et}}(\overline{G}; \mathbf{Q}_l) \to PH^*_{\text{et}}(\overline{G}; \mathbf{Q}_l)$ is the map induced from the morphism of group schemes $\phi: \overline{G} \to \overline{G}$; as observed earlier, the right hand side of (2) is therefore just det $(1 - P\phi^*)$. On the other hand, $1/\phi: \overline{G} \to \overline{G}$ maps $x \in PH^*_{\text{et}}(\overline{G}; \mathbf{Q}_l)$ to $x - \phi^* x$, which is equal to $(1 - P\phi^*)x$. Thus det $(1 - P\phi^*) = d(1/\phi)$ which shows that $d(1/\phi) = \operatorname{grTr}(\phi^*)$ as claimed.

From the diagram (1) above we see that $\psi_n \circ (1/\phi) = 1/\phi^n$. The following corollary is then immediate.

COROLLARY 1.3. The degree of the map ψ_n in the diagram (1) is given by

$$d(\psi_n) = \frac{\operatorname{grTr}(\phi^n)^*}{\operatorname{grTr}(\phi^*)} \in \mathbf{Z}_l.$$

The Lefschetz trace formula in H_c^* , etale cohomology with compact supports, permits to relate the number of \mathbf{F}_{q^n} -rational points of certain schemes to a graded trace. The following proposition is well known (see [Mil], and also [DeLu] for a general discussion of the Lefschetz trace formula; the formula we use here is 1.9.4, page 174, of [Del]).

PROPOSITION 1.4. Let $X_{\mathbf{F}_q}$ be a quasi-projective \mathbf{F}_q -scheme,

$$\overline{X} = X_{\mathbf{F}_q} \times_{\operatorname{spec}(\mathbf{F}_q)} \operatorname{spec}(\overline{\mathbf{F}}_q),$$

and $\phi: \overline{X} \to \overline{X}$ the associated Frobenius endomorphism. Then

$$|X\mathbf{F}_{q}(\mathbf{F}_{q})| = \sum (-1)^{i} \operatorname{Tr}\left(\phi_{c}^{*} \colon H_{c}^{i}(\overline{X};\mathbf{Q}_{l}) \to H_{c}^{i}(\overline{X};\mathbf{Q}_{l})\right).$$
(3)

In accordance with the notation used above we will write $\operatorname{grTr}(\phi_c^*)$ for the right hand side of the formula (3). It remains to relate $\operatorname{grTr}(\phi^*)$ to $\operatorname{grTr}(\phi_c^*)$ in case $X_{\mathbf{F}_q} = G$. Since \overline{G} is a smooth quasi-projective variety of dimension N over $\overline{\mathbf{F}}_q$, there is a natural Poincaré-Duality pairing (cf. [Mil])

$$\langle , \rangle : H^j_{\text{et}}(\overline{G}; \mathbf{Q}_l) \times H^{2N-j}_c(\overline{G}; \mathbf{Q}_l) \to \mathbf{Q}_l(-N)$$

satisfying $\langle \phi^* x, \phi_c^* y \rangle = q^N \langle x, y \rangle$. Therefore $\langle x, \phi_c^* y \rangle = \langle q^N (\phi^*)^{-1} (x), y \rangle$ which, since the pairing \langle , \rangle is non-degenerate, implies that

$$\mathrm{Tr}(\phi_c^*|H_c^{2N-j}(\overline{G};\mathbf{Q}_l)) = q^N \,\mathrm{Tr}((\theta^*)^{-1}|H_{\mathrm{et}}^j(\overline{G};\mathbf{Q}_l)).$$

Thus, taking graded traces, we infer

$$\operatorname{grTr}(\phi_c^*) = q^N \cdot \operatorname{grTr}((\phi^*)^{-1}).$$
(4)

From the computations in the proof of the Lemma 1.2 we see that

$$\operatorname{grTr}((\phi^*)^{-1}) = \operatorname{det}(1 - (P\phi^*)^{-1}) = (-1)^r \operatorname{det}(P\phi^*)^{-1} \operatorname{det}(1 - P\phi^*)$$
$$= (-1)^r \operatorname{det}(P\phi^*)^{-1} \cdot \operatorname{grTr}(\phi^*)$$

where $r = \dim PH^*_{\text{et}}(\overline{G}; \mathbf{Q}_l)$. Note that det $P\phi^* = u \in \mathbf{Z}_l$ is a unit, because ϕ induces an isomorphism in $H^*_{\text{et}}(\overline{G}; \mathbf{Z}/l)$ for any l prime to p. Applying the same reasoning to ϕ^n , we obtain

$$\operatorname{grTr}(((\phi^n)^*)^{-1}) = (-1)^r u^{-n} \cdot \operatorname{grTr}(\phi^n)^*.$$

Therefore, combining this with Corollary 1.3, Proposition 1.4 and formula (4), we obtain

$$d(\psi_n) = \frac{u^n \cdot \operatorname{grTr}((\phi^n)^*)^{-1}}{u \cdot \operatorname{grTr}(\phi^*)^{-1}} = \frac{q^{-nN} \cdot u^n \cdot \operatorname{grTr}(\phi^*_c)'}{q^{-N} \cdot u \cdot \operatorname{grTr}(\phi^*_c)}$$
$$= \left(\frac{u}{q^N}\right)^{n-1} \cdot \frac{|G(\mathbf{F}_q)|}{|G(\mathbf{F}_q)|}, \quad u \in \mathbf{Z}_l^*.$$

It is now plain that $d(\psi_n)$ is an *l*-adic unit if and only if $G(\mathbf{F}_q)$ and $G(\mathbf{F}_{q^n})$ have isomorphic *l*-Sylow subgroups and, in view of Proposition 1.1 the proof of the theorem is therefore completed.

The following example illustrates the general result. Take $G = Sl_2$. It is easy to check the theorem in this case directly because the cohomology rings $H^*(Sl_2(\mathbf{F}_q); \mathbf{Z}/l), l$ a prime different from the characteristic of \mathbf{F}_q , are completely known (cf. [FiPr]). The cohomology is periodic of period 4, and for lan odd (prime prime to q) one has

$$H^*(Sl_2(\mathbf{F}_q); \mathbf{Z}/l)$$

$$\cong \begin{cases} E(u) \otimes P(v), u \in H^3 \text{ and } v \in H^4 \text{ (if } l \text{ divides } q^2 - 1) \\ \mathbf{Z}/l \text{ (if } l \text{ does not divide } q^2 - 1). \end{cases}$$

Here, E(u) denotes an exterior algebra on u, and P(v) a polynomial algebra on v (over \mathbb{Z}/l). Since the order of $Sl_2(\mathbb{F}_q)$ is $q(q^2 - 1)$ we see that the *l*-Sylow subgroup of $Sl_2(\mathbb{F}_q)$ is non-trivial if and only if l divides $q^2 - 1$ and thus, by the formula above, one has abstract isomorphisms of rings

$$H^*(Sl_2(\mathbf{F}_q); \mathbf{Z}/l) \cong H^*(SL_2(\mathbf{F}_{q^n}); \mathbf{Z}/l)$$
(5)

if $l|q^2 - 1$. But $Sl_2(\mathbf{F}_q)$ and $Sl_2(\mathbf{F}_{q^n})$ have isomorphic *l*-Sylow subgroups if and only if $q^2 - 1$ and $q^{2n} - 1$ contain the same power of *l*, that is (assuming that *l* divides $q^2 - 1$), if and only if *n* is relatively prime to *l*. Thus, in most cases, the isomorphism (5) is not induced by the restriction map

res:
$$H^*(Sl_2(\mathbf{F}_{q^n}); \mathbf{Z}/l) \to H^*(Sl_2(\mathbf{F}_{q}); \mathbf{Z}/l).$$

Our general setting will take the following form in case $G = Sl_2$. One has

$$H^*_{\rm et}(\overline{Sl}_2; \mathbf{Q}_l) = E(w),$$

an exterior algebra over \mathbf{Q}_l in $w \in H^3_{\text{et}}$. (Recall that $H^*_{\text{et}}(\overline{SL}_2; \mathbf{Q}_l) \cong H^*_{\text{top}}(Sl_2(\mathbf{C}); \mathbf{Q}_l)$, and $Sl_2(\mathbf{C})$ is homotopy equivalent to a three-dimensional sphere).

Clearly, $PH_{et}^* = H_{et}^3 \cong \mathbf{Q}_l$ and one checks easily that $\phi^* w = q^2 w$ so that

$$d(1/\phi) = \det(1 - P\phi^*) = 1 - q^2$$

and thus

$$d(\psi_n) = rac{q^{2n}-1}{q^2-1} = rac{1}{q^{n-1}} \cdot rac{|SL_2(\mathbf{F}_{q^n})|}{|Sl_2(\mathbf{F}_{q})|}.$$

According to our general formula, we must have

$$\frac{1}{q^{n-1}} = \left(\frac{u}{q^N}\right)^{n-1}$$

where $u = \det P\phi^*$ and $N = \dim Sl_2$; this is indeed so, as det $P\phi^* = q^2$ and dim $Sl_2 = 3$.

The theorem of the Introduction can also be viewed as a result concerning the conjugacy relationship between the various *l*- subgroups of $G(\mathbf{F}_q)$ and $G(\mathbf{F}_{q^n})$. For this purpose, denote by $\operatorname{Frob}_l(F)$ the "Frobenius category" of finite *l*-subgroups of the group *F*; its objects are the finite *l*-subgroups of *F*, and morphisms are induced by inner automorphisms of *F*. It is a classical result that for a finite group *F*, the restriction maps fit together to give rise to an isomorphism

$$H^*(F; \mathbf{Z}/l) \rightarrow \varprojlim_{\pi \in \operatorname{Frob}_l(F)^{\operatorname{op}}} H^*(\pi; \mathbf{Z}/l).$$

Thus, any homomorphism of finite groups $\varphi: F_1 \to F_2$ inducing an equivalence of categories $\operatorname{Frob}_l(F_1) \to \operatorname{Frob}_l(F_2)$ will induce an isomorphism $H^*(F_2; \mathbb{Z}/l) \to H^*(F_1; \mathbb{Z}/l)$. The converse of this statement is also true according to [Mis]. Thus, our theorem implies the following corollary, which in the case of $G = Gl_n$ is a well-known fact on the representation theory of finite *l*-groups in characteristic *p* different from *l*.

COROLLARY 1.5. Let G be a connected reductive \mathbf{F}_q -group scheme and let l be a prime different from $p = \operatorname{char}(\mathbf{F}_q)$. Suppose that $G(\mathbf{F}_q)$ and $G(\mathbf{F}_{q^n})$ have isomorphic l-Sylow subgroups. Then the inclusion $G(\mathbf{F}_q) \to G(\mathbf{F}_{q^n})$ induces an equivalence of Frobenius categories of finite l-subgroups

$$\operatorname{Frob}_l(G(\mathbf{F}_q)) \to \operatorname{Frob}_l(G(\mathbf{F}_{q^n})).$$

2. Suzuki and Ree groups

We will be considering the three families of groups, which in [Gor] are denoted by

$${}^{2}B_{2}(2^{n}), {}^{2}G_{2}(3^{n}), {}^{2}F_{4}(2^{n})$$

with *n* odd, say n = 2m + 1; ${}^{2}B_{2}(2^{n})$ is isomorphic to the Suzuki group $Sz(2^{n})$, which is simple for n > 1, and the groups ${}^{2}G_{2}(3^{n})$, ${}^{2}F_{4}(2^{n})$ are the simple groups of Ree type. The orders of these groups are (cf. [Gor]):

$$|{}^{2}B_{2}(q)| = q^{2}(q^{2} + 1)(q - 1)$$
 where $q = 2^{2m+1}$,
 $|{}^{2}G_{2}(q)| = q^{3}(q^{3} + 1)(q - 1)$ where $q = 3^{2m+1}$,
 $|{}^{2}F_{4}(q)| = q^{12}(q^{6} + 1)(q^{4} - 1)(q^{3} + 1)(q - 1)$ where $q = 2^{2m+1}$.

Let $G = G_{\mathbf{F}_q}$ denote the split reductive group scheme over $\operatorname{spec}(\mathbf{F}_q)$ of type B_2, G_2 respectively F_4 . Then $\overline{G} = G \times_{\operatorname{spec} \mathbf{F}_q} \operatorname{spec} \mathbf{F}_q$ admits an exceptional isogeny

$$\psi \colon \overline{G} \to \overline{G}$$

such that $\psi^2 = \phi$, the Frobenius of the \mathbf{F}_a -form G of \overline{G} . Moreover

$${}^{2}G(q) = \left\{ x \in G(\mathbf{F}_{q}) | \psi x = x \right\}$$

agrees with ${}^{2}B_{2}(q)$, ${}^{2}G_{2}(q)$ respectively ${}^{2}F_{4}(q)$ for G of type B_{2} , G_{2} respectively F_{4} (we always assume $q = 2^{2m+1}$, 3^{2m+1} respectively 2^{2m+1} , according to the case one considers). As in [FrMi], one gets then a commutative diagram of finite etale maps arising from Lang's construction

$$\overset{^{2}G(q)}{\downarrow} \overset{\longrightarrow}{\overline{G}} \overset{\overline{1/\psi}}{\longrightarrow} \overset{\overline{G}}{\overline{G}} \overset{\overline{1/\psi}}{\downarrow_{\theta}} \overset{\varphi}{\overline{G}} \\ \overset{^{2}G(q^{d})}{\longrightarrow} \overset{\longrightarrow}{\overline{G}} \overset{\overline{1/\psi^{d}}}{\xrightarrow{\overline{I/\psi^{d}}}} \overset{\overline{G}}{\overline{G}}$$

where d is an odd natural number; θ is given on a point $x \in \overline{G}(\mathbf{F}_a)$ by

$$\theta(x) = x \cdot \psi(x) \cdot \psi^2(x) \cdots \psi^{d-1}(x)$$

As before, it follows that the inclusion ${}^{2}G(q) \rightarrow {}^{2}G(q^{d})$ is an $H_{*}(; \mathbb{Z}/l)$ isomorphism (*l* as always prime to *q*) if and only if θ^{*} : $H_{et}^{*}(\overline{G}; \mathbb{Q}_{l}) \rightarrow H_{et}^{*}(\overline{G}; \mathbb{Q}_{l})$ has a degree prime to *l* (the degree of θ^{*} is an *l*-adic integer). There are now three cases to consider. For the computation of the relevant degrees of $(B\psi)^{*}$ we refer the reader to [AdMa].

(i) G of type B_2

In this case, $H_{\text{et}}^*(B\overline{G}; \mathbf{Q}_l) \cong \mathbf{Q}_l[x_4, x_8]$ and $(B\psi)^* x_4 = qx_4, (B\psi)^* x_8 = -q^2 x_8$. Therefore

deg
$$\theta = (1 + q + q^2 + \dots + q^{d-1})(1 - q^2 + q^4 - \dots + q^{2d-2})$$

= $q^{2-2d}|^2 B_2(q^d)|/|^2 B_2(q)|.$

We conclude that deg θ is prime to l if and only if ${}^{2}B_{2}(q)$ and ${}^{2}B_{2}(q^{d})$ have isomorphic *l*-Sylow subgroups. Thus the following holds.

PROPOSITION 2.1. Let $q = 2^{2m+1}$ and $d \ge 1$ be an odd integer. Let l be an odd prime. Then ${}^{2}B_{2}(q) \rightarrow {}^{2}B_{2}(q^{d})$ induces an isomorphism in \mathbb{Z}/l -homology if and only if ${}^{2}B_{2}(q)$ and ${}^{2}B_{2}(q^{d})$ have isomorphic l-Sylow subgroups. (ii) G of type G_{2} We have $H_{\text{et}}^*(B\overline{G}; \mathbf{Q}_l) \cong \mathbf{Q}_l[x_4, x_{12}]$ and $(B\psi)^* x_4 = qx_4, (B\psi)^* x_{12} = -q^3 x_{12}$ which yields

deg
$$\theta = (1 + q + q^2 + \dots + q^{d-1})(1 - q^3 + q^6 - \dots + q^{3d-3})$$

= $q^{3-3d}|^2 G_2(q^d)|/|^2 G_2(q)|$

and the next result follows.

PROPOSITION 2.2. Let $q = 3^{2m+1}$ and d be odd. Let l be a prime different from 3. Then ${}^{2}G_{2}(q) \rightarrow {}^{2}G_{2}(q^{d})$ induces a \mathbb{Z}/l -homology isomorphism if and only if ${}^{2}G_{2}(q)$ and ${}^{2}G(q^{d})$ have isomorphic l-Sylow subgroups. (iii) G of type F_{4}

We proceed as in the other two cases and obtain

$$H^*(BG; \mathbf{Q}_l) \cong \mathbf{Q}_l[x_4, x_{12}, x_{16}, x_{24}],$$

$$(B\psi)^* x_4 = qx_4, (B\psi)^* x_{12} = -q^3 x_{12}, (B\psi)^* x_{16} = q^4 x_{16},$$

$$(B\psi)^* x_{24} = -q^6 x_{24}.$$

This implies that

$$\deg \theta = q^{12-12d} |{}^{2}F_{4}(q^{d})| / |{}^{2}F_{4}(q)|$$

and we get our final result.

PROPOSITION 2.3. Let $q = 2^{2m+1}$, and $d \ge 1$ be odd. Let l be an odd prime. Then ${}^{2}F_{4}(q) \rightarrow {}^{2}F_{4}(q^{d})$ induces a \mathbb{Z}/l -homology isomorphism if and only if ${}^{2}F_{4}(q)$ and ${}^{2}F_{4}(q^{d})$ have isomorphic l-Sylow subgroups.

References

- [AdMa] F. ADAMS and Z. MAHMUD, *Maps of classifying spaces*, Inven. Math., vol. 35 (1976), pp. 1–41.
- [Car] R.W. CARTER, Simple groups of Lie type, Wiley, New York, 1989.
- [Dem] M. DEMAZURE, Schémas en groupes réductifs, Bull. Soc. Math. France, vol. 93 (1965), pp. 369–413.
- [DeGr] M. DEMAZURE, A. GROTHENDIECK ET AL., Séminaire de géométrie algébrique (SGA 3): Schémas en groupes III; Lecture Notes in Math., vol. 153, Springer-Verlag, New York, 1970.
- [Del] P. DELIGNE ET AL., Séminaire de géométrie algébrique (SGA $4\frac{1}{2}$): Cohomologie Etale, Lecture Notes in Math., vol. 569, Springer-Verlag, New York, 1977.
- [DeLu] P. DELIGNE and G. LUSZTIG, Representations of reductive groups over finite fields, Ann. of Math., vol. 103 (1976), pp. 103–161.
- [FiPr] Z. FIEDOROWICZ and ST. PRIDDY, Homology of classical groups over finite fields and their associated infinite loop spaces, Lecture Notes in Math., vol. 674, Springer-Verlag, New York, 1978.

284

- [FrMi] E.M. FRIEDLANDER and G. MISLIN, *Galois descent and cohomology for algebraic groups*, Math. Zeitschrift, vol. 205 (1990), pp. 177–190.
- [FrPa] E.M. FRIEDLANDER and B. PARSHALL, *Etale cohomology of reductive groups*, Lecture Notes in Math., vol. 854, Springer-Verlag, New York, 1981, pp. 127–140.
- [Gor] G. GORENSTEIN, Finite simple groups, Plenum Press, New York, 1982.
- [Jac] S. JACKOWSKI, Group homomorphisms inducing isomorphisms of cohomology, Topology, vol. 17 (1978), pp. 303–307.
- [Jan] J.C. JANTZEN, *Representations of algebraic groups*, Pure and Appl. Mathematics, vol. 131, Academic Press, New York, 1987.
- [Mil] J.S. MILNE, *Etale Cohomology*, Princeton University Press, Princeton, New Jersey, 1980.
- [Mis] G. MISLIN, On group homomorphisms inducing mod-p cohomology isomorphisms, Comment Math. Helv., vol. 65 (1990), pp. 454–461.

ETH-Zentrum

ZURICH, SWITZERLAND

Ohio State University Columbus, Ohio