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RANDOM ELEMENTS OF A FREE PROFINITE GROUP
GENERATE A FREE SUBGROUP

ALEXANDER LUBOTZKY

Consider each profinite group as a probability space, the probability being
the normalized Haar measure. Jarden proved that almost all z Z generate
a closed subgroup of infinite index while almost all k-tuples with k > 2
generate an open subgroup [FJ, Lemma 16.15]. Moreover, the closed sub-
group of generated by an e-tuple (z1,... Ze) which is chosen at random is
isomorphic to Z. Fried and Jarden ask for e > 2 about the probability that a
etuple (x 1,..., Xe) /e generates a closed subgroup which is isomorphic to
Fe and about the probability that a e-tuple of elements of Fe generates an
open subgroup [FJ, Problem 16.16]. Here /e is the free profinite group of
rank e.
W. M. Kantor and the present author show [KL] that the second probabil-

ity is 0. The aim of this note is to prove that the first probability is 1. Actually
the full result is somewhat more general:

THEOREM 1. Let F be a free profinite group of rank at least 2, and let k be
a positive integer.

(a) The probability that a k-tuple of elements of F generates an open
subgroup is O.

(b) The probability that a k-tuple of elements of F generates a closed
subgroup which is isomorphic to Fk is 1.

As mentioned, part (a) is proved in [KL]. We supply a proof which replaces
the use of Dixon’s theorem by more elementary arguments. Some of the
ingredients of the proof of (a) are also used in the proof of (b).

Notation. For a finite group and a positive integer e let

de(G) max{m NIGm is generated by e elements}
De(G) {(Xl,... Xe) Gel (Xl,... Xe> G}

Received April 15, 1991
1991 Mathematics Subject Classification. Primary 20E18.
1partially supported by a grant from the G.I.F., the German-Israeli Foundation for Scientific

Research and Development.

(C) 1993 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

78



PROFINITE GROUPS 79

LEMMA 2 (P. Hall).
[De(G)[/[AutI(G)[.

If G is a simple nonabelian group, then de(G)

Proof. Fix a basis z1,... ze of the free discrete group Fe. The map

,1"-> (I#( Z1), ,l( Ze) )

establishes a bijection between the set of all epimorphisms g," Fe G and
De(G). Two epimorphisms have the same kernel if and only if their images in
De(G) belong to the same orbit under Aut(G). It follows that Fe has exactly
d’ IDe(G)I/IAut(G)I normal subgroups N such that Fe/N G.

List all these subgroups as N1,..., Nd, and let M N N N Nd,. As G
is simple and nonabelian Fe/M Gd’ (a simple consequence of [H, p. 51,
Satz 9.12]). In particular Gd’ is generated by e elements and therefore
d’ < d de(G).
On the other hand the definition implies that Gd is a quotient of Fe.

Hence Fe has at least d normal subgroups N with Fe/N G. Conclude that
d < d’ and therefore d d’, as desired.
Dixon [D] proves that the probability that a pair (x, y) A, generates An

tends to 1 as n oo. In other words

ID2(A.)I
(n!)2/4

Thus, if n is large enough, then ID2(An)I > (n!)2/8. This inequality is used
in [KL] to prove part (a) of the theorem. We would like here to prove a
weaker inequality which suffices for proving part (a) of the theorem.

LEMMA 3. Let n >_ 7 be an odd integer. Then ID2(A,)I >_ (n 3)!(n 7)l.

Proof. Let y (1 2 3) and let p (b3 b4 bn) be a cyclic permutation
of the set B {3, 4,..., n}. We claim that

(1) A

To prove (1) it suffices to prove that H (y,p) contains each 3-cycle.
Assume without loss that b3 3. Then

tr=pV= (lb4 bn) H and ,r=p’2= (2b4 bn) H.

Hence, for each k > 4

(bk23) =y’*-3, (lbk3) =y-3, and (12bk)
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belong to H. Finally, let b,c,d,e be distinct elements of B. Then
(2 cb)=(1 2 b)(12c), (cb 1)=(1 b 3)(lc3), (b 3 c)=(b 23)(c23), and
(d b c)= (2 b c)(2 d 3) belong to H. Conclude that every 3-cycle of
{1, 2,..., n} belongs to H. Hence, H An, as asserted.
An alternative argument was suggested to us by Michael Fried" One

observes that H is a primitive subgroup of An which contains a 3-cycle. A
consequence of a theorem of Jordan therefore implies that H An [H, p.
171, Satz 4.5c)].
Next check the residues modulo 6 to find a positive integer rn with

n 6 < rn < n 3 which is prime to 6. Each cyclic permutation a (ala 2
am) of rn integers in A =’{4,5,...,n} belongs to An. More-

over, (a)m olm]/m m ,)/+ 1. Hence, by (1), An (ay, p). There are
n(n 1)... (n rn + 1)/m permutations a and (n 3)! permutations p.
The former number is > (m 1)t. Hence, ID(A)I >_ (n 7)t(n 3)I, as
asserted, m

LEMMA 4. For each odd integer n >_ 7, the group Ln

generated by 2 elements.
A[(nn-3)t(n’-7)Vn!] is

Proof By [H. p. 175], Aut(An) Sn. Hence IAut(An)l n!. It follows
from Lemmas 2 and 3 that d2(An) ID2(An)l/n! > [(n 3)!(n 7)!/n!].
Conclude that L is generated by 2 elements, m

LEMMA 5. The probability that a k-tuple of elements of L generates L
tends to 0 as n tends to infinity over the odd positive integers.

Proof In order for a k-tuple of elements of Ln to generate L its
projection on each of the factors must generate A The probability of the
last event is at most 1 1/nk, since a k-tuple of elements which belong to
the subgroup An_ of index n, does not generate An. Hence the probability
that a k-tuple of elements of Ln generates Ln is at most

(1---1)(n-3)!(n-7)Vn! (( 1 ---1) n’ }
(n 3)!(n 7)Vn !n

The expression in the braces tends to 1/e (where here e is of course the basis
of the natural logarithms) while the exponent tends to infinity as n tends to
infinity over the odd positive integers. Conclude that the right hand side
tends to 0 as n oo.

PROPOSITION 6. For e >_ 2 and k >_ 1, the probability for a k-tuple of
elements of Pe to generate Pe is O.
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Proof Let n > 7 be an odd integer. By Lemma 4, there is an epimor-
phism :/e " Ln" If (Xl,..., xk) (e)k generates Fe, then its image under
b generates Ln. Hence, the probability for a k-tuple of elements of Fe to
generate e is at most the probability for a k-tuple of elements of Ln to
generate Ln. By Lemma 5, the latter probability tends to 0 as n o. Hence
the former probability is 0. m

Proof of Theorem l(a). If rank(F) is infinite, then so is the rank of each
open subgroup. Hence, we may assume that F Fe with e > 2.
Each open subgroup of/e is isomorphic to//for some f [FJ, Prop. 15.27].

For each f, the group/e has only finitely many open subgroups of index at
most f [FJ, Lemma 15.1]. So, apply Proposition 6, to these subgroups to
conclude that the probability of a k-tuple to generate an open subgroup of F
is O. m

Proof of Theorem l(b). First note that F can be mapped onto /e with
e > 2. If the theorem holds for the quotient, it holds for F. So, we may
assume that F Fe with e > 2. There are two cases to consider.

Case A. e > k + 3. To prove that G (Xl,... xk) is isomorphic to fik
it suffices to show that each finite group B which is generated by k elements
is a quotient of G [FJ, Lemma 15.29]. Since there are only countably many
finite groups, it suffices to fix a finite group B and to prove that for almost all
(x 1,. Xk) Fk the group B is a quotient of (Xl,. Xk ).

Indeed, fix such a B. Let IBI. Then B can be embedded in the
symmetric group St. Consider the cycle K (l + 1 + 2) of Sl/ 2. Define an
embedding f of S into At+ 2 by the following rule: f(Tr) 7r if r A and
f(r) 7rK if 7r A t. Let n(B)= max{7, + 2}. Then we can view B as a
subgroup of An for each n > n(B).

Let n > 7 be an odd integer. Since An is generated by two elements
(Lemma 3)2,

ID,(An) >_ IAnl e-2.

Also, IAut(An)l [Sn[ 2lAnl [H, p. 175]. Hence, by Lemma 2,

(2) de(An) > 1/2lAnl e-3 > -lZnl k.

2Of course, this is true also for n even. For example, for r (1 2) and tr (2.." n)we have
A (tr, ’o’,r). However, one of the goals of this proof is to be as self contained and as short as
possible. Hence we argue only with odd n.
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AI de(An) is aBy definition, Ade(An) is generated by e elements. Hence __,,n

quotient of F, with kernel N. Since A,, is simple nonabelian, it follows from
the proof of Lemma 2 that F has exactly de(A,,) open normal subgroups N/
which contain N such that F/N --A,,.

For each let 0i" F A,, be an epimorphism with kernel/V/, and

Bn, {(Xl,... Xk) F l( ,pg(Xl),. Oi(Xk)

Denote the probability that k elements of B generate B by Pk(B). Then

(3) /z(B,, i)= Prob(qi(Xl) qi(Xk) B)Pk(B)= (IBI)k]-n] Pk(B)"

The sets B,,,i, n > n(B), 1,..., de(A,,) are/x-independent (again, since
A,, are simple nonabelian). By (2) and (3),

de(an)

E E tz(Bn,i) E
nn(B) i--1 n>n(B)

nn(B)
pk( B)IB ,

because all terms are constant and Pk(B): 0, since B is generated by k
elements.

It follows that /z(U n, iBn, i)= 1 [FJ, Lemma 16.6]. Each k-tuple in the
union generates a closed subgroup of F which has B as a quotient.

Case B. The general case. By Part (a) of Theorem 1, almost all (Xl,... Xk)
generate a closed subgroup G of F of infinite index. The group G is
contained in an open subgroup H of F of index at least k + 2 [R, p. 11].
Since e >_ 2, the group H is free of rank at least k + 3 [FJ, Prop. 15,27]. So,
by Case A, the probability for G to be contained in H and not to be free is
zero. Since F has only countably many open subgroups, the probability for G
not to be free is zero. This concludes the proof of Theorem l(b). m

Theorem 1 gets a new form if we consider free pro-p-groups instead of free
profinite groups.

PROPOSITION 7. Let F e(P) be the free pro-p-group of rank e and let k
be a positive integer. Let

Ak {(Xl,... Xk) F ’I( Xl,... Xk) is open in F}
Bk {(Xl,’’’,Xk) Fkl(Xl,’’’,Xk /k(P)}"
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Then:
(a) If k < e, then tx(Zk) 0 and (nk) 1;
(b) 0 < Ix(Ae) < 1 and I(Be) 1;
(c) If k > e, then O < lz(Ak) < 1 and O < tz(Bk) < 1.

Proof of (b). By the Nielsen-Schreier Formula [FJ, Prop. 15.27], the rank
of each proper open subgroup of F is greater than e. Hence,

(4) Ze {(Xl,...,Xe) Fel(xl,...,Xe) F}.
Let V F; =- F/dp(F), where (F) is the Frattini subgroup of F [FJ,
Lemma 20.36]. The basic property of the Frattini subgroup implies that
Xl,..., Xe generate F if and only if their reductions Vl,..., ue modulo (F)
generate V. The latter happens exactly if v 1,..., Ue are linearly independent.
Hence, tz(Ae) is the probability in Ve that Vl,..., Ue, are linearly indepen-
dent. Thus

1 1

So, 0 <tz(Ae) < 1.
eTo compute tz(Be) let Z Zp and choose an epimorphism 7r" F Z.

Consider each element of Z as a column of e elements of Zp. In this notation
(Zl Ze) denotes an e e matrix with entries in Z,. Then

nL {(z1,... Ze) zel(z1,... Ze) Z}
{(z1,... Ze) - Zelrank( z1,... Ze) e}
{(Zl,...,Ze) e Z;=lrank(z Ze) e}
{(el,... Ze) zep2ldet(zl."Ze) 0}.

It is well known, that for each n and each nonzero polynomial f
Zp[Xl,... Sn] the hypersurface_ {(Xl,... Xn)lf(x,..., xn) 0} has mea-
sure 0 in Z. Hence, I(Be) 1.
Now, if Xl,..., Xe F and (Tr(xl),..., "n’(Xe)) - Be, then

rank(x1,..., xe} e. Since each closed subgroup of F is a free pro-p-group
[FJ, Cor. 20.38], this implies that (Xl,. Xe } F and therefore (Xl, Xe)
Be. Thus 7r-l(e)_ Be. It follows from the preceding paragraph that

I(Be) 1.

Proof of (a). By the above mentioned formula of Nielsen and Schreier,
the rank of each open subgroup of F is at least e. Hence, in case (a),
Ak and therefore/Z(Ak) 0.
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To compute ix(Bk) consider the projection z: Fe---) Fk on the first k
coordinates. If (xl, xe) Be, then rank(x1,..., xk) k hence,
(Xl,..., Xk) k(P), and therefore (Xl,..., xk) Bk. Thus Be c_ ,r-l(Bk ).
By (b),/x(Bk) 1.

Proof of (c). Let p: F --, Fe be the projection on the first e coordinates.
Suppose that (xa,..., Xe) Ae. By (4), (Xl,..., Xe) F and therefore
(Xl,..., xg) F. Thus p-l(Ae) c_Ag. Hence, by (b), 0 < tz(Ae) < la,(Ak).
Also, since F k(P), we have, p(Bk) < 1.

Next use the Nielsen-Schreier formula to choose an open subgroup U of F
such that rank(U) > k. The rank of each open subgroup of U is also
greater than k. Hence Uk CAk . Since I(Uk) > 0, this implies that
ix(Ak) < 1.

Finally,let A" F Fk be the projection on the first k coordinates. Then
B cc. A-(Bk). Hence, I(Bl) < tZ(Bk). Apply (b) to U and instead of to F
and e and conclude that tx(Bl) > 0. Hence ix(Bk) > 0. This concludes the
proof of (c) and the proposition, m

It will be interesting to compute the measure of Ak and Bk in the case
where F is the free prosolvable group on e generators. The methods of this
note do not apply to this case.

Acknowledgement. The author is indebted to Moshe Jarden for his help
in writing this paper, and in particular for encouraging him to find a self
contained proof of Theorem 1.

Added in proof. Recently, A. Mann showed that for the free prosolvable
group on q generators tx(Ak) > 0 when k is sufficiently large (k > 13/4q +
constant).
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