CONVEXITY OF THE GEODESIC DISTANCE ON SPACES OF POSITIVE OPERATORS

G. CORACH, H. PORTA AND L. RECHT

Let A be a C^* -algebra with 1 and denote by A^+ the set of positive invertible elements of A. The set A^+ being open in $A^s = \{a \in A; a^* = a\}$ it has a C^{∞} structure and we can identify TA_a^+ with A^s for each $a \in A^+$. We use G to denote the group of invertible elements of A. Notice that G operates on the left on A^+ by the rule

$$L_g a = (g^*)^{-1} a g^{-1} \quad (g \in G, a \in A^+).$$

This action allows us to introduce a natural reductive homogeneous space structure in the sense of [8] (for details see [2], [3], [4]).

The corresponding connection—which is preserved by the group action—has covariant derivative

$$\frac{DX}{dt} = \frac{dX}{dt} - \frac{1}{2} \left(\dot{\gamma} \gamma^{-1} X + X \gamma^{-1} \dot{\gamma} \right)$$

where X is a tangent field on A^+ along the curve γ and exponential

$$\exp_a X = e^{Xa^{-1}/2}ae^{a^{-1}X/2}, \quad a \in A^+, X \in TA_a^+.$$

The curvature tensor has the formula

$$R(X,Y)Z = -\frac{1}{4}a[[a^{-1}X, a^{-1}Y], a^{-1}Z]$$

for $X, Y, Z \in TA_a^+$. The manifold A^+ has also a natural Finsler structure given by

$$||X||_a = ||a^{-1/2}Xa^{-1/2}||$$
 for $X \in TA_a^+$

and the group G operates by isometries for this Finsler metric.

THEOREM 1. If J(t) is a Jacobi field along the geodesic $\gamma(t)$ in A^+ then $||J(t)||_{\gamma(t)}$ is a convex function of $t \in \mathbf{R}$.

Received February 11, 1992

1991 Mathematics Subject Classification. Primary 53C22; Secondary 58B20, 52AD5.

Proof. The method of proof is based on a similar strategy used in [4]. By definition J(t) satisfies the equation

$$\frac{D^2 J}{dt^2} + R(J, V)V = 0 {1}$$

where $V(t) = \dot{\gamma}(t)$.

Notice that by the invariance of the connection and the metric under the action of G we may assume that $\gamma(t) = e^{tX}$ is a geodesic starting at $\gamma(0) = 1 \in A$, where $X \in A^s$. Then for the field $K(t) = e^{-tX/2}J(t)e^{-tX/2}$ the differential equation (1) changes into

$$4\ddot{K} = KX^2 + X^2K - 2XKX,$$
 (2)

(where the dots indicate ordinary derivative with respect to t). Since the group G acts by isometries, we have $\|J(t)\|_{\gamma(t)} = \|\gamma(t)^{-1/2}J(t)\gamma(t)^{-1/2}\| = \|K(t)\|$. Thus the proof reduces to showing that for any solution K(t) of (2) the function $t \to \|K(t)\|$ is convex in $t \in \mathbb{R}$, where the norm is the *ordinary norm* in the C^* algebra A. So fix $u < v \in \mathbb{R}$ and let t satisfy $u \le t \le v$. We will prove that

$$||K(t)|| \le \frac{v-t}{v-u} ||K(u)|| + \frac{t-u}{v-u} ||K(v)||.$$
 (3)

Consider first the case where the selfadjoint element $X \in A$ has the form

$$X = \sum_{i=1}^{n} \lambda_i p_i \tag{4}$$

with $\lambda_1, \lambda_2, \dots \lambda_n$ real numbers and $p_1, p_2, \dots p_n$ selfadjoint elements of A satisfying $p_i p_j = 0$ for $i \neq j$ and $p_1 + p_2 + \dots + p_n = 1$.

Suppose that A is faithfully represented in a Hilbert space \mathscr{H} . For fixed $x \in A$ decompose $x \in \mathscr{H}$ as $x = \sum_{i=1}^n \xi_i x_i$ where x_i is a unit vector in the range of p_i and the ξ_i are appropriate scalars. Define next the matrix $k(t) = (k_{ij}(t))$ by $k_{ij}(t) = \langle K(t)x_i, x_j \rangle$ for all t. The differential equation (2) is equivalent to the equations

$$\ddot{k}_{ij}(t) = \delta_{ij}^2 k_{ij}(t) \tag{2ij}$$

where $\delta_{ij} = (\lambda_i - \lambda_j)/2$.

A simple verification (or Bernoulli's formula) shows that all solutions of $\ddot{f}(t) = c^2 f(t)$ satisfy

$$f(t) = \phi(u, v, c; t)f(u) + \psi(u, v, c; t)f(v)$$

where

$$\phi(u, v, c; t) = \begin{cases} \frac{\sinh c(v - t)}{\sinh c(v - u)} & \text{for } c \neq 0, \\ \frac{(v - t)}{(v - u)} & \text{for } c = 0, \end{cases}$$

$$\psi(u, v, c; t) = \begin{cases} \frac{\sinh c(t - u)}{\sinh c(v - u)} & \text{for } c \neq 0, \\ \frac{(t - u)}{(v - u)} & \text{for } c = 0. \end{cases}$$

Then each $k_{ij}(t)$ satisfies

$$k_{ii}(t) = \phi_{ii}(t)k_{ii}(u) + \psi_{ii}(t)k_{ii}(v)$$

where $\phi_{ij}(t) = \phi(u, v, \delta_{ij}; t)$ and $\psi_{ij}(t) = \psi(u, v, \delta_{ij}; t)$. This can be written in matrix form as

$$k(t) = \Phi(t) \circ k(u) + \Psi(t) \circ k(v)$$

where $\Phi(t) = \{\phi_{ij}(t)\}$ and $\Psi(t) = \{\psi_{ij}(t)\}$, and the symbol \circ denotes the Schur product $\{a_{ij}\} \circ \{b_{ij}\} = \{a_{ij}b_{ij}\}$ of matrices. It follows that

$$||k(t)|| \le ||\Phi(t) \circ k(u)|| + ||\Psi(t) \circ k(v)||.$$
 (5)

The final step is to prove the inequalities

$$\|\Phi(t) \circ k(u)\| \le \frac{v - t}{v - u} \|k(u)\|,$$

$$\|\Psi(t) \circ k(v)\| \le \frac{t - u}{v - u} \|k(v)\|.$$
 (6)

Notice that both $\Phi(t)$ and $\Psi(t)$ are positive semidefinite. This follows from Bochner's theorem [1] applied to $\phi(u,v,c;t)$ and $\psi(u,v,c;t)$ considered as functions of c. In both cases the matrix is of the form $\{F(\lambda_i - \lambda_j)\}$ where F(c) is the Fourier transform of a positive function (see [7], formula 1.9.14, page 31).

Next we apply a theorem of Davis (see [6] and the generalization in [9]) according to which for $n \times n$ -matrices A and P with P positive semidefinite we have

$$||P \circ A|| \leq \Big(\max_{1 \leq i \leq n} P_{ii}\Big) ||A||.$$

Taking $P = \Phi(t)$ and $P = \Psi(t)$ we get inequalities (6). Using now (5) and (6) we also get

$$||k(t)|| \le \frac{v-t}{v-u} ||k(u)|| + \frac{t-u}{v-u} ||k(v)||.$$
 (7)

Since the element x and the representation space \mathscr{H} were not specified, we may assume without loss of generality that for a given t between u and v we have $||K(t)x|| = |\langle K(t)x, x \rangle|$. Then writing $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ we conclude that

$$\begin{aligned} |\langle k(t)\xi,\xi\rangle| &= |\langle K(t)x,x\rangle| = ||K(t)|| \\ |\langle k(u)\xi,\xi\rangle| &= |\langle K(u)x,x\rangle| \le ||K(t)|| \\ |\langle k(v)\xi,\xi\rangle| &= |\langle K(v)x,x\rangle| \le ||K(t)|| \end{aligned}$$

and then (3) follows from (7) for X of the special form (4).

Let us go then to the general case—when X is an arbitrary selfadjoint element of A. The spectral theorem allows us to approximate X (in operator norm) by elements of the form (4). From the well-possedness of problem (2) we conclude that $(t, X) \to K(t)$ is norm continuous, and the inequality (3) for arbitrary X follows from the same inequality for X of the form (4). This completes the proof of Theorem 1.

For $a, b \in A^+$ let dist(a, b) denote the geodesic distance from a to b in the Finsler metric $||X||_a$ of A. It is not hard to prove (using the invariance of the metric) that

$$\operatorname{dist}(a,b) = \|\ln(a^{-1/2}ba^{-1/2})\|. \tag{8}$$

THEOREM 2. If $\gamma(t)$ and $\delta(t)$ are geodesics in A^+ then $t \to \text{dist}(\gamma(t), \delta(t))$ is a convex function of $t \in \mathbf{R}$.

Proof. Suppose the geodesics $\gamma(t)$ and $\delta(t)$ are defined for $u \le t \le v$. Define h(s,t) by the properties:

- (a) the function $s \to h(s, u)$, $0 \le s \le 1$ is the geodesic joining $\gamma(u)$ and $\delta(u)$;
- (b) the function $s \to h(s, v)$, $0 \le s \le 1$ is the geodesic joining $\gamma(v)$ and $\delta(v)$:
- (c) for each s, the function $t \to h(s, t)$, $u \le s \le v$ is the geodesic joining h(s, u) and h(s, v).

In particular $h(0,t) = \gamma(t)$ and $h(1,t) = \delta(t)$. Define also $J(s,t) = \partial h(s,t)/\partial s$. Then, for each $s,t \to J(s,t)$ is a Jacobi field along the geodesic

 $t \to h(s, t)$. Finally define

$$f(t) = \int_0^1 ||J(s,t)||_{h(s,t)} ds.$$

From Theorem 1, $t \to \|J(s,t)\|$ is convex for each s. Hence $t \to f(t)$ is also convex for $u \le t \le v$. But $f(u) = \int_0^1 \|J(s,u)\|_{h(s,u)} ds$ is the length of the geodesic $s \to h(s,u)$ and therefore $f(u) = \operatorname{dist}(\gamma(u),\delta(u))$. Similarly, $f(v) = \operatorname{dist}(\gamma(v),\delta(v))$. Now for $u \le t \le v$, the value $f(t) = \int_0^1 \|J(s,t)\|_{h(s,t)} ds$ is the length of the curve $s \to h(s,t)$ joining $\gamma(t)$ and $\delta(t)$ and then we have $\operatorname{dist}(\gamma(v),\delta(v)) \le f(t)$. Convexity of $\operatorname{dist}(\gamma(v),\delta(v))$ follows and Theorem 2 is proved.

COROLLARY 2.1. For any fixed $y \in A^+$ the function $f: A^+ \to \mathbb{R}$, $f(x) = \operatorname{dist}(x, y)$ is |convex in the geometric sense", that is, each geodesic $\gamma(t)$ satisfies

$$f(\gamma(t)) \leq (1-t)f(\gamma(0)) + tf(\gamma(1)).$$

In particular geodesic spheres are convex sets.

Proof. Take $\delta(t) = y$ for all t and apply Theorem 2.

COROLLARY 2.2. For any a_0 , a_1 , b_0 , and b_1 in A^+ we have

$$\left\| \left(a_0^{1/2} \left(a_0^{-1/2} a_1 a_0^{-1/2} \right)^t a_0^{1/2} \right)^{1/2} \left(b_0^{1/2} \left(b_0^{-1/2} b_1 b_0^{-1/2} \right)^t b_0^{1/2} \right)^{1/2} \right\|$$

$$\leq \| a_0^{1/2} b_0^{1/2} \|^{1-t} \| a_1^{1/2} b_1^{1/2} \|^t.$$
(9)

Proof. Take two geodesics $\gamma(t)$ and $\delta(t)$ and write them as

$$\gamma(t) = a_0^{1/2} \left(a_0^{-1/2} a_1 a_0^{-1/2} \right)^t a_0^{1/2},$$

$$\delta(t) = b_0^{1/2} \left(b_0^{-1/2} b_1 b_0^{-1/2} \right)^t b_0^{1/2}$$

where $a_0 = \gamma(0)$, $a_1 = \gamma(1)$, $b_0 = \delta(0)$, $b_1 = \delta(1)$. Then for each $0 \le t \le 1$ we have, by convexity,

$$\operatorname{dist}(\gamma(t), \delta(t)) \le (1 - t)\operatorname{dist}(a_0, b_0) + t\operatorname{dist}(a_1, b_1)$$

or

Next we apply this formula to the geodesics $\gamma(t)$ and $k\delta(t)$ where k>0. By choosing k large enough we can assume that

$$\gamma(t)^{-1/2}(k\delta(t))\gamma(t)^{-1/2} > 1$$

$$a_0^{-1/2}(kb_0)a_0^{-1/2} > 1$$

$$a_1^{-1/2}(kb_1)a_1^{-1/2} > 1$$

and therefore using $\|\ln x\| = \ln \|x\|$ for x > 1 and canceling out k, the last inequality for norms becomes

$$\left\|\gamma(t)^{-1/2}\delta(t)\gamma(t)^{-1/2}\right\| \leq \|a_0^{-1/2}b_0a_0^{-1/2}\|^{1-t}\|a_1^{-1/2}b_1a_1^{-1/2}\|^t.$$

Notice that $\gamma(t)^{-1}$ is also a geodesic so that the last formula gives also:

$$\left\|\gamma(t)^{1/2}\delta(t)\gamma(t)^{1/2}\right\| \leq \|a_0^{1/2}b_0a_0^{1/2}\|^{1-t}\|a_1^{1/2}b_1a_1^{1/2}\|^t$$

or equivalently

$$\|\gamma(t)^{1/2}\delta(t)^{1/2}\| \le \|a_0^{1/2}b_0^{1/2}\|^{1-t}\|a_1^{1/2}b_1^{1/2}\|^t.$$

which is another way to write (9).

This inequality has many variations. For example, replacing a_i by a_i^2 and b_i by b_i^2 and using the definition of the geodesics, we get

$$\left\| \left(a_0 \left(a_0^{-1} a_1^2 a_0^{-1} \right)^t a_0 \right)^{-1/2} \left(b_0 \left(b_0^{-1} b_1^2 b_0^{-1} \right)^t b_0 \right)^{-1/2} \right\| \leq \| a_0 b_0 \|^{1-t} \| a_1 b_1 \|^t$$

or using $|z| = (zz^*)^{1/2}$:

$$\left\| \left| a_0 \left(a_0^{-1} a_1^2 a_0^{-1} \right)^{t/2} \right| \left| b_0 \left(b_0^{-1} b_1^2 b_0^{-1} \right)^{1/2} \right| \right\| \le \| a_0 b_0 \|^{1-t} \| a_1 b_1 \|^t.$$

As special cases of (9) we can also get $||ab^ta|| \le ||aba||^t$ and $||a^tb^t|| \le ||ab||^t$ for any $a, b \in A^+$ and $0 \le t \le 1$.

THEOREM 3 (see [3]). The exponential function in A^+ increases distances.

Proof. By invariance it suffices to show that the exponential function increases distances at the identity $1 \in A^+$. Consider two geodesics of the form $\gamma(t) = e^{tX}$ and $\delta(t) = e^{tY}$. Then according to Theorem 2 the function

$$f(t) = \text{dist}(\gamma(t), \delta(t)) = \|\ln(e^{-tX/2}e^{tY}e^{-tX/2})\|$$

is convex. Since f(0) = 0 this implies that $f(t)/t \le f(1)$ for each $0 < t \le 1$. Taking limits we have $\lim_{t\to 0} f(t)/t \le f(1)$.

Observe next that $\ln x$ can be approximated on any interval $[x_0, x_1]$ with $0 < x_0 < x_1$ uniformly in the C^1 sense by polynomials $p_n(x)$. In particular $\lim_{n \to \infty} p_n(x) = \ln x$ and $\lim_{n \to \infty} p'_n(x) = 1/x$. Then

$$\lim_{t \to 0} \frac{1}{t} \ln(e^{-tX/2}e^{tY}e^{-tX/2})$$

$$= \lim_{n \to \infty} \lim_{t \to 0} \frac{1}{t} p_n(e^{-tX/2}e^{tY}e^{-tX/2})$$

$$= \lim_{n \to \infty} \frac{d}{dt} p_n(e^{-tX/2}e^{tY}e^{-tX/2})\Big|_{t=0} = Y - X$$

(the last inequality is justified below). Now from this equality and convexity we conclude that $f(t) \ge t||Y - X||$ and this means that

$$\operatorname{dist}(\exp_a(tX), \exp_a(tY)) \ge t\|Y - X\|$$
 for all $a \in A^+$ and all $X, Y \in TA_a^+$.

To finish the proof write the polynomials p_n explicitly as $p_n(x) = \sum r_{n,k} x^k$. Then

$$\begin{split} \frac{d}{dt} \ln(e^{-tX/2}e^{tY}e^{-tX/2})\big|_{t=0} \\ &= \lim_{n \to \infty} \frac{d}{dt} p_n (e^{-tX/2}e^{tY}e^{-tX/2})\Big|_{t=0} \\ &= \lim_{n \to \infty} \sum_{n \to \infty} r_{n,k} \frac{d}{dt} (e^{-tX/2}e^{tY}e^{-tX/2})^k \Big|_{t=0} \\ &= \lim_{n \to \infty} \sum_{n \to \infty} r_{n,k} (Y - X)^k = \lim_{n \to \infty} p'_n(1)(Y - X) = (Y - X). \end{split}$$

As observed in [3] this property of the exponential is equivalent to Segal's inequality ($||e^{X+Y}|| \le ||e^Xe^{tY}||$ for X, Y selfadjoint) which is therefore another consequence of the convexity of the distance function in A^+ .

REFERENCES

- 1. S. Bochner, Vorlesungen über Fouriersche Integrale, Leipzig, 1932.
- G. CORACH, H. PORTA and L. RECHT, The geometry of the space of self-adjoint invertible elements of a C*-algebra, to appear (preprint form in Trabajos de Matemática #149, Instituto Argentino de Matemática.)
- 3. _____, A geometric interpretation of Segal's inequality, Proc. Amer. Math. Soc., 115 (1992), 229-231.
- 4. _____, Jacobi fields on spaces of positive operators, Linear Algebra Appl., to appear.
- 5. _____, Geodesics and operator means in the space of positive operators, Internat. J. Math., to appear.

- 6. C. Davis, On the norm of the Schur product operation, Numer. Math. 4 (1962), 343-344.
- A. Erdelyi et al., Tables of integral transforms (The Bateman manuscript), Volume 1, McGraw-Hill, New York, 1954.
- 8. M. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience, New York, 1969.
- 9. M. Walter, On the norm of the Schur product, Linear Algebra Appl. 79 (1986), 209-213.

Instituto Argentino de Matemática Buenos Aires, Argentina

University of Illinois Urbana, Illinois

Universidad Simón Bolívar Caracas, Venezuela