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TANGENTIAL HARMONIC APPROXIMATION
ON RELATIVELY CLOSED SETS

STEPHEN J. OARDINER

1. Introduction

Let 12 be an open set in Euclidean space n (n > 2) and E be a relatively
closed subset of f. A subset A of will be called f-bounded if its closure
z is a compact subset of 12. We use / to denote the union of E with all
l-bounded (connected) components of 12 \ E. As usual, A and 0A will
denote respectively the interior and boundary of a set A. Also, C(A)will
denote the collection of all real-valued continuous functions on A, and
oe,C’(A) (resp. /(A)) will denote the collection of functions which are
harmonic (resp. positive and superharmonic) on some open set containing A.
We will say that the pair (f,E) satisfies the (K, L)-condition if, for each
compact subset K of lq, there is a compact subset L of 12 which contains
every f-bounded component of f \ (E u K)whose closure intersects K.
The Alexandroff compactification of will be denoted by 12". We note that
f*\ E is connected if and only if / E and that, if this is the case,
then f*\ E is locally connected if and only if (f, E) satisfies the (K, L)-
condition. The following result was recently established by Armitage and
Goldstein [3, Theorem 1.1].

THEOREM A. Let 12 be a connected open set in n which possesses a Green
function G(’," ), let E be a relatively closed subset of f and let P f. If
1" \ E is connected and locally connected, then for each h in (E) and for
each positive number e there exists H in () such that

IH(X)-h(X)I<emin{1,G(P,X)} (XE).
Using Theorem A and material from [9] we will prove the following. The

reader is referred to Helms [12] or Doob [7] for an account of thin sets and
the fine topology.

THEOREM 1. Let 12 be a connected open set in n and E a relatively closed
proper subset of 12. The following are equivalent.

(a) For each h in (E) and each positive number e, there exists H in
e(l)) such that IH- hl < e on E.
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(b) For each h in (E) and each s in +(ff), there exists H in eta(12)
such that O < H- h < s on E.

(c) l)\/ and l)\ E are thin at the same points of E, and (fl, E) satisfies
the (K, L)-condition.

The equivalence of (a) and (c) above is due to the author [9, Theorem 4];
condition (b) is new. Clearly Theorem 1 includes Theorem A, and it permits
faster approximation if we impose restrictions on the set E. A simple
example is given below to illustrate this comment and also the sharpness of
the speed of approximation in (b).

Example 1. Let - n, let a > 0 (m 1,..., n 1) and define

og=(--al, al) X’’’X(--an_l, an_l))< and a=(rc/2)l,an2l
\ ]m=l

Then:
(i). Given any pair (En, E) such that condition (c) of Theorem 1 holds and

E c w, any h in o(E) and any positive number e, there exists H in o(En)
such that

0 < H(X) h(X) < eexp(-alXnl ) (S--- (Xl,...,Xn)

(ii) The above statement becomes false if a is replaced by any larger
number.

1/2

The exponential decay of the error in (i) above compares favourably with
Theorem A, where the maximum error is e log(l/(1 + Isl)) when n 2, or
e(1 + [Sl)2-n when n > 3, and also with Theorem 1.1 of [2] where the
maximum error is of the form e(1 + ISl) -a for any predetermined choice of
the number a.

Further applications of Theorem 1 are given in Theorems 2, 3 and 5 below.

THEOREM 2. Let f be a connected open set in n and E a relatively closed
proper subset of 1. The following are equivalent.

(a) For each h in C(E) ( (E) and each positive number e, there exists
H in (f) such that [H- hl < e on E.

(b) For each h in C(E) 0 W(E) and each s in ,,+(1), there exists H in
(l) such that 0 < H- h < s on E.

(c) f \/ and f \ E are thin at the same points of E, and (1), E) satisfies
the (K, L)-condition.

Again the equivalence of (a) and (c) above is known (see [9, Theorem 5]),
the new feature being condition (b). Theorem 2 improves Theorem 1.2 in [3]
in the same way that Theorem 1 improves Theorem A. We note that
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Shaginyan [15] has announced a result related to Theorem 2, but no proof
has yet appeared.

In the next three results we investigate which pairs (12, E) permit approxi-
mation with an error function which decays arbitrarily quickly.

THEOREM 3. Let fl be a connected open set in " and E a relatively closed
proper subset of 1. The following are equivalent.

(a) For each h in (E) and each continuous function e: E --, (0, 1], there
exists H in (1) such that 0 < H h < e on E.

(b) The pair (fl, E) satisfies:
(i) 1) \ E and gl \ E are thin at the same points of E, and
(ii) for each compact subset K of 1 there is a compact subset L of l-I which

contains every l-bounded component of 1 \ (E d K) whose closure
intersects K and also every fine component of the fine interior of E that
intersects K.

The following result solves a problem posed by Boivin and Gauthier [5].

THEOREM 4. Let l-I be a connected open set in " and E a relatively closed
proper subset of 1. The following are equivalent.

(a) For each h in C(E) A (E) and each continuous function e: E -(0, 1], there exists H in (E) such that [H- h[ < e on E.
(b) For each h in C(E) (E) and each continuous function e: E -(0,1], there exists H in (E) such that 0 < H h < e on E.
(c) The pair (, E) satisfies:
(i) \ E and l)\ E are thin at the same points of E, and
(ii) for each compact subset K of there is a compact subset L of 1) which

contains every component of E that intersects K.

Finally, the above results can be combined to obtain the following slight
refinement (the new feature is the introduction of condition (b)) of a recent
result of Goldstein and the author [10]. The proof given in that paper is more
direct, and independent of [3].

THEOREM 5. Let l) be a connected open set in " and E a relatively closed
proper subset of . The following are equivalent.

(a) For each h in C(E) o(E) and each continuous function e: E -(0, 1], there exists H in rt(gl) such that [H- hi < e on E.
(b) For each h in C(E) ( (E) and each continuous function e: E -(0, 1], there exists H in (ll) such that 0 < H h < e on E.
(c) The pair (, E) satisfies:
(i) l) \ E and f \ E are thin at the same points of E, and
(ii) for each compact subset K of l-I there is a compact subset L of fl which

contains every O-bounded component of 12 \ (E U K) whose closure
intersects K and also every component ofE that intersects K.
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The proofs of Theorem 1-5 are given in 2-6, and the details of Example
1 can be found in 7. In 8, we discuss the possibility of adding a third
equivalent condition to Theorem 3 corresponding to condition (a) of Theo-
rem 5.

2. Proof of Theorem 1

2.1. We will require the following lemmas.

LEMMA 1. Suppose that condition (c) of Theorem 1 holds. Then, for each h
in (E) and for each s in -(1) there exists H in (ff) such that
In-hi <s.

LEMMA 2. Let f be an open set in n, let E be a relatively closed subset of
f, and suppose that f* \ E is connected and locally connected. Then there is a
sequence (Km) of compact subsets of 12 such that O mKm f and such that,
for each m, we have Km cK/1 and the set 12" \ (E tO Km) is connected.

LEMMA 3. Let 1 be an open set in , let E be a relatively closed subset of
12, and suppose that f* \ E is connected and locally connected. Then, for each
h in o(E) and each s in a+(12), there exists H in o(O) such that
IH-hl <sonE.

To prove Lemma I we follow the argument of [9, 7.1, 7.2], replacing each
occurrence of e by s(X).
Lemma 2 is elementary and so its proof is left to the reader.
In proving Lemma 3 we may, be considering each component of D

separately, assume that 12 is connected. If 12 does not have a Green
function, then n 2 and s is constant by Myrberg’s theorem [12, Theorem
8.33]. The conclusion of the lemma then follows from a result of Gauthier,
Goldstein and Ow [11, Theorem 3] (which is a special case of the known
equivalence of (a) and (c) in Theorem 1). If possesses a Green function
G(’," ), then let B be a closed ball in f with centre P and choose a number
a in the interval [1, o)such that

a > sup{G(P,X): X f\B}.

Given s in -() we define

b inf{s(X)/min(a,G(P,X)}: X B}.
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It follows that

s(X) _> b min{ a, G(P, X)} _> b min{ 1, G(P, X)}

Hence Lemma 3 follows in this case from Theorem A.

(x a).

2.2. Theorem 1 will now be proved. Clearly (b) implies (a), and we know
from [9, Theorem 4] that (a) implies (c), so it remains to prove that (c) implies
(b).
Suppose that (c) holds, let h be a harmonic function on an open set 0)1

which contains E and let s be a positive superharmonic function on an open
set 0)2 which contains /. If/ 1, then E 1 by the thinness assumption
in (c), which yields a contradiction. So / 4: . Replacing s by its reduced
function (rduite) relative to a closed ball contained in W\/, for each
component W of 0)2, we can assume s to be harmonic on 0)2. Also, we can
assume that infE s--0, for otherwise the desired inequality in (b) is a
consequence of the known equivalence of (a) and (c). It will be enough to
show that there exists H in o(gl) such that IH- h < s on E. For, if
this can be done, then (since h + s/2 is in Jct(E)) we can find H in t(gl)
such that

[H- (h+s/2) l<s/2 onE,

and deduce that 0 < H h < s on E. In view of Lemma 1 we can assume
that / E. Thus 1* \ E is connected and (by (c)) locally connected.

Let 0) be an open set such that

E c0) c C0)100)2,

let (Km) be a sequence of compact subsets of as in Lemma 2, and let

a inf{s(X): X K1}.

For each k in N we define the sets

Dk= {X0)2"s(X) <_2-ka} and fk=fi\(O0) C3Dk)

and the integer

m(k) sup{m N: K 0 (3 D: fJ}.

We observe that, for a fixed choice of m, the set K CI cI Dk is void for all
sufficiently large values of k. Hence m(k) o as k oo.

Since l*\ (E Km(k)) is connected (see Lemma 2), so too is the set

+ \ (E U gm(k)). The latter set is also locally connected. For, if this were
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not the case, then there would be a compact subset L of fig + (and hence of
) for which the 12g+l-bOunded components {} of 12g+1 \ (E U Km(g L)
do not have fig/ 1-bounded union. Thus there is a sequence of points (Xl)
such that each X belongs to some , and such that (Xt) converges to the
Alexandroff point for 12k+ 1. However, in view of the fact that 12"\ E is
locally connected, we know that LI jV. is l-bounded, and so there is a
subsequence of (Xl) which converges to some point of E. Since E n 0flk+__
E n 0w O, we obtain a contradiction. Thus ’+1 (E Km(k)) is lo-

cally connected, as claimed.
Next we define a function on fig by

fs(X) ifXeo3
Sk( X)

2-ha elsewhere in 12g.

Clearly. sk is positive and superharmonic on Ok, and satisfies sg
min{s, 2-ga} on o. Further, sg+ < Sk on 1)k.
We now define a sequence (hk) of harmonic functions inductively as

follows. By Lemma 3 there exists h in (1)1) such that Ih hi < 2-1Sl
on E. Given hg in (’(fk), we use Lemma 3 to obtain hg + in (fk+ 1)
such that

Ihk+ hk[ < 2-k-lsk+ on E Km(k).

On Km(g) we have

1-1 1-1

Ih hkl <_ [hj+ hyl < 2-J-Isj+I < 2-kSk+l < 2-2k-la
j=k j=k

when > k. Hence the sequence (hg) converges locally uniformly on ll to a
harmonic function H. On E we have

k k

Ihk hl < Ihy hj_ II -k- Ih hl < 2 Ys. < s,
j=2 j=l

and hence IH- hl _< s. This completes the proof of Theorem 1.

3. Proof of Theorem 2

The following lemma may be deduced from [3, Theorem 1.2] in the same
way that Lemma 3 was deduced from Theorem A.
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LEMMA 4. Let o9 be an open set in n and let E be a relatively closed subset
of w such that o9 \ E and o9 \ E are thin at the same points of E. Then, for
each h in C(E) q (E) and each s in (o9), there exists H in (E) such
that ]H-hi < s on E.

Theorem 2 will now be deduced from Theorem 1 and Lemma 4. Clearly (b)
implies (a), and we know from [9, Theorem 5] that (a) implies (c). Suppose
now that (c) holds, let h be in C(E)q (E) and let s be a positive
superharmonic function on some open set o9 which contains/. We note that
E is relatively closed in o9. Also, since E

___
E /, we know that fl \/,

12 \ E and 12 \ E (and, of course, o9 \ E and o9 \ E) are all thin at the same
points of E. Thus we can apply Lemma 4 to obtain h in (E) such that
[h hi < s/2 on E. Next we apply Theorem 1 to obtain he in Y’(f) such
that [h 2 hi[ < s/2 on E, and hence Ih 2 hl < s on E. In view of what
was said in the second paragraph of 2.2, this is enough to show that there
exists H in (12) such that 0 < H- h < s. Thus (b) is established.

4. Proof of Theorem 3

4.1. We will assume throughout Sections 4-6 that f is a connected open
set in n and that E is a relatively closed proper subset of f.

LEMMA 5. If the pair (, E) satisfies condition (b) of Theorem 3, then so
does the pair (12, ).

To prove Lemma 5, su2pose that (12, E) satisfies condition (b) of Theorem
3 and let F =/. Then F F and so (12, F) trivially satisfies condition (b)(i).
We now define a function f on the fine interior of F by assigning it the value
0 at points which also belong to E, and the value k on the k th O-bounded
component of Xq \ E. To see that f is finely continuous, we need only check
that f-1({0}) is finely open. In fact, if Y f-1({0}), then Y E. Since 12 \ F
is thin at Y, so also is 12 \ E by hypothesis, and hence f-l({0}) is a fine
neighbourhood of Y, as required. It follows that each fine component of the
fine interior of/ is either a fine component of the fine interior of E or an
f-bounded component of l)\ E. Since (12, E) satisfies condition (b)(ii) it is
now clear that (f, F) satisfies this condition also.

4.2. One implication in Theorem 3 will be deduced from Theorem 1
using the following lemma.

LEMMA 6. Suppose that the pair (f, E) has the following property.

( ) For each compact subset K of f there is a compact subset L of 12 which
contains every fine component of the fine interior of E that intersects K.
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Then, for each continuous function e" E -o (0, 1], there exists s in +(E) such
that s < e onE.

In proving Lemma 6 we can assume, by deleting a closed ball contained in
fl \ E, if necessary, that f possesses a Green function. Using condition (.)
we can construct a sequence (Km) of compact subsets of f such that

K’ and u mgm -, and such that, for each m,
(I) K C Km+ 1, and

(II) every fine component V of the fine interior of E which satisfies
V c K 4= Q5 also satisfies V c K+ 1.

Next we define A(l, m) K \K whenever < m, and also

F(m;k) {XA(m,m + 3)’dist(X,E) > 1/k} (m,k )

and

tm inf{e(X)" X E NA(m,m + 1)) (m N).

Now let P K, let g denote the Green function for with pole at P,
cand let Rg denote the reduced function of g relative to a set C in 12. We

observe (see [7, 1.VI.3(e)]) that

RgF(m;k)(X) --g]A(m’m+3)\E(X) ( k "+ 00", X ’)

If u is a positive superharmonic function on 12 which satisfies u(X) > g(X)
when X A(m, rn + 3)\ E, then the same inequality holds for points X of
the set

X E" A(m, rn + 3) \ E is not thin at X}. (1)

In view of (II) above and the fine minimum principle (see [7, 1.XI.19] or [8,
Chapter III]), it follows that u > g on A(m + 1, rn + 2) and hence

Rv(m;k)(X) t g(X) (k ---> oo; X E NA(m + 1 m + 2))g

Dini’s theorem implies that this convergence is uniform, so there exists k
such that

in

F(m’km)(X) )" g(X)  m+lg( X) >__ Rg (X E (qA(m + 1, m + 2)).
(2)
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We now define the set

FI= (.J F(m;km).
ml

Clearly F is a relatively closed subset of 12 such that K, f3 F Q and
E c 12 \ F,. We also define the positive number

and the function

6o inf{e(X)" X e E Cq K2}

s(X) 2-’ min{g(X) RF(X) 2-’o} (Xf\F,) (3)

We observe that s, is non-negative and superharmonic on 12 \F,, and
positive on the component of K’ which contains P. Also, since

RF’(X) > ]F(m’km)(X) (X 12" m )----g

it follows from (2) and (3) that s,(X) < 2-1e(X) on E.
The above argument can be repeated, with (Km) >l in place of (gm)m >_ 1,

to obtain a relatively closed subset F of f satisfying K’ 6 F and
E c 12 \ FI, and also a non-negative superharmonic function s on 12 \ F
which is positive on the component of K’ which contains P and which
satisfies s < 2-re on E. If we define F U tFt, and s Etst on f \ F, then
F is a relatively closed subset of f satisfying E c f \ F, and s is a positive
superharmonic function on 12 \ F satisfying s < e on E as required.

4.3. To prove Theorem 3 we recall from Lemma 5 that, if the pair (12, E)
satisfies condition (b), then so does the pair (12,/). Further, any continuous
function e: E--, (0, 1] has a continuous extension to E which also takes
values in (0, 1]. Thus Lemma 6, applied to the pair (f,/), shows that there
exists s in (/) such that s < e on E. It now follows from Theorem 1 that
(a) holds. Conversely, if (a) holds, then Theorem 1 shows that (f, E) satisfies
(b)(i) and the (K, L)-condition. It remains to show that condition (.) of
Lemma 6 also holds.
We establish this by contradiction. Suppose that condition ( ) fails to hold.

Then there is a compact subset K of lq, a sequence (Vk) of fine components
(not necessarily distinct) of the fine interior of E which satisfy Vk c K 4= ,
and a sequence (Xk) of points such that Xk Vk for each k and such that
(Xk) converges to the Alexandroff point for 12. Now let U be an f-bounded
connected open set which contains K, and define w U td (td kVk). Then w
is a finely connected finely open set. Let u be the fine regularized reduced
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function of the constant function 1 relative to U in the finely open set to (see
[8, 11]), and let 6k 2-ku(Xk). Since to is finely connected, we know (see
[8, Theorem 12.6]) that 6k > 0 for each k, and so we can choose a continuous
function e: E (0, 1] such that e(Xk) 6k for each k.

If we define h 0, then by hypothesis there exists H in (12) such that
0 < H < e on E. We define the positive number

a =inf{H(X)’X NE}

and the function

[ min{ H(X), a/2}
u( X)

a/2
(xen\u)
(x u)

so that v is positive and superharmonic on an open set containing to. Hence
v > (a/2)u on to, and so

2-ku( X,) , e( X,) > v( X,) > ( a/2)u( X,) ( k N),

a contradiction. Thus condition ( ) must hold, and the proof of Theorem 3 is
complete.

5. Proof of Theorem 4

5.1. We begin by establishing the following analogue of Lemma 6.

LEMMA 7. Suppose the pair (12, E) satisfies condition (c) of Theorem 4
and e: E (0, 1] is continuous. Then there exists s in -(E) such that s < e
on E.

The proof of Lemma 7 is similar in pattern to that of Lemma 6, so we will
refer to 4.2 for some of the argument. As before, we can assume that
possesses a Green function. Using condition (c) of Theorem 4 we can
construct a sequence (Km) of compact subsets of f such that K 4: and
[,.J mKm ,, and such that, for each m,

(I) K c K + 1’ and
(II) every component V of E which satisfies V K

g c Kn+l.
also satisfies

Further, let A(1, m), F(m; k), tm, P and g be as defined in 4.2, and let/gC
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denote the regularized reduced function (balayage) of g relative to a set C in
12. We observe that

A(m, + 3)\EF(m k)( s) ’ Rg ( X) ( k ; X

If u is a positive superharmonic function on 12 which satisfies u > g on
A(m, m + 3)\ E, then the same inequality holds on the set described in (1).
Since condition (c) of Theorem 4 holds, we know that 12 \ E and 12 \ E are
thin at the same points of E. Further, the set of points of OE where l-I \ E is
thin is a polar set. It follows (see [7, 1.VI.3(c)]) that

where

Rg^F(m" k)(x) ’ kS(g X) (k ; X f),

S [A(m,m + 3)\E] J [(A(m,m + 3))\E].

Condition (II) above, the minimum principle and Dini’s theorem allow us to
conclude that there exists k such that

g(X) . lF(m’km)(X) > g(X) am+ (X E AA(m + 1 rn + 2))

The remainder of the proof of Lemma 7 now proceeds exactly as the part of
the proof of Lemma 6 which follows (2).

5.2. To prove Theorem 4, we observe from Lemmas 4 and 7 that (c)
implies (b). Clearly (b) implies (a). If (a) holds, then (c)(i) follows from work
of Keldy [13], Deny [6] and Labrche [14] (or see [4, 8]) on local uniform
harmonic approximation. It remains to establish (c)(ii), and we will do this by
refining an argument in [10, 4]. We will require the following result of
Armitage, Bagby and Gauthier [1].

THEOREM B. Let to be an unbounded connected open set in ". Then there
exists a continuous function e,,,: [0, o) (0, 1] with the following property: if
h o(to) and Ih(X)l < e,o(lXI) on w, then h =- O.

Suppose now that condition (c)(ii) fails to hold. Then there is a sequence
(Vk) of components (not necessarily distinct) of E and two sequences
(X,),(Y,) of points such that X,, Y V for each k, such that (Xk)
converges either to a point P in 0f or to the Alexandroff point for En,
and such that (Y) converges to a point Q in 0E A 12. By using a Kelvin
transformation centered at P, if necessary, we can suppose that X ..
(The transformed pair (f’, E’) would still satisfy (a) but not (c).) We can also
assume that Q is the origin O, and that YI < k- for each k. As in the
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proof of Lemma 6 we can assume, without loss of generality, that
possesses a Green function. Next, let (Be) be a sequence of pairwise disjoint
closed balls in f\E with centers Zg such that Zk O, let vg be the
capacitary potential on f valued 1 on Bg, and define

h(X) E 2-gvg(X) (Xf).
k=l

It is easy to see that h C(E)f3 o(E). For each k, let tok be the
unbounded connected open set defined by

Ok Vm X" 0 < IXI < k-1 and X ff U Bm
=k m

and let e, be as in Theorem B. We define 6: [0, ) (0, 1] by

a(t) min{eo,l(t),...,eo,ktt)} (t [k 1, k);k

and let e: [0, ) (0, 1] be a continuous function satisfying e < 3. From our
hypothesis that (a) holds, we know that there is a harmonic function H on an
open set W which contains E such that IH- h < e on E. There exists k’
such that W contains the closed ball B of centre O and radius 1/k’. If we
define

a sup{IH(x) h( X) I/e,(lXI)" X g, and IXl < k’},
it follows that

](H(X) h(X))/(a + 1)l < ,(Ixl) (x Ok,).

Hence, by Theorem B, H h on tog,. This contradicts the mean value
property of H on a neighbourhood of any Bk contained in the set {X:
0 < Isl < 1/k’}. Hence condition (c)(ii) must hold, as required.

6. Proof of Theorem 5

6.1. First we give the following analogue of Lemma 5.

LEMMA 8. /f the pair (fl, E) satisfies condition (c) of Theorem 5, then so
does the pair (l), 1).

To prove Lemma 8, suppose that (l, E) satisfies condition (c) of Theorem
5 and let F =/. Since E c F c F, it is certainly true that f \ ff (which
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equals 12 \ F) and l) \ F are thin at the same points of E, and thus clearly
also at the same points of F. Hence (fI, F) satisfies condition (c)(i) of
Theorem 5. Secondly, if V is an O-bounded component of [l \ E, then
condition (c)(i) implies that OV

_
01 (see [9, 7.1]), and so V is also a

component of F. It follows that (II, F) satisfies condition (c)(ii) of Theorem
5, as required.

6.2. To prove Theorem 5 we suppose that (c) holds and use Lemmas 7
and 8 (extending e continuously to/ as in 4.3) to observe that there exists s
in -(/) such that s < e on E. It now follows from Theorem 2 that (b)
holds. Clearly (b) implies (a). If (a) holds, then it follows from Theorem 2 that
(fl, E) satisfies (c)(i) and the (K, L)-condition. This, together with Theorem
4, shows that (c)(ii) also holds. The proof of Theorem 5 is now complete.

7. Details of Example 1

Let a > 0 (m 1,..., n 1), and let a be as in Example 1. For each
in (0, 1] we define the set

o (--al,al) X X (--6an_l,6an_l) X

and the functions

u6( X) cos(Trxll(2c al) ) cos(’n’Xn_ll(2 an_ l) )exp(
s (X) e min{u ( Xl, Xn), xl, Xn_ --Xn)

Then u is positive and harmonic on to, and so s ,_((.O1)o (In fact, s is
a potential on to.) Assertion (i) of Example 1 now follows immediately from
Theorem 1.
To prove (ii), let /3 > a and choose 6 in (0, 1) close enough to 1 so that

a/6 < ft. Let P be the point (al, 0,..., 0) in n and let

h(X) log(l/IX-PI) (n 2), h(X) IX-PI2-" (n >_ 3),

so that certainly h (o)ii/))2). Now suppose that H is a harmonic
function on Nn such that H- h > 0 on 0(1 +)/2. We must have H- h > 0
on 09(1+)/2, for otherwise H h on 09(1+)/2 and hence on Nn\ {P}, which
contradicts the fact that H F’(En). If we define

c inf{(H(X) -h(X))/s(X)" X= (Xl,...,Xn_l,O) 00},

then H- h > cs on w by the Maria-Frostman domination principle [12,
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Theorem 8.43], and so

n(0,..., 0, Xn) h(O,..., 0, Xn) " C exp(--alXnl/6)

This establishes (ii).

(X ).

8. An open problem

In view of Theorem 5 it seems plausible that the assertion below is
equivalent to conditions (a) and (b) of Theorem 3.

For each h in o(E) and each continuous function e: E - (0, 1], there exists
H in (f) such that [H- hl < e on E.

It would be possible to prove this by imitating the reasoning of [10, 4] if
the following generalization of Theorem B is valid.

For each unbounded finely connected finely open subset oo of n there is a
continuous function e,o: [0,) (0, 1] so that if h () and Ih(X)l _<

e(IXI) on , then h 0 on w.

We do not know whether this latter assertion is true.
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