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A RESTRICTION THEOREM FOR FLAT MANIFOLDS
OF CODIMENSION TWO

LAURA DE CARLI AND ALEX IOSEVICH

Introduction

Let M denote a submanifold of R**2of codimension 2. Let % denote a
restriction operator

(L) #f(n) = [e“Mf(x)ds, neM, fes(R"?).
We wish to find an optimal range of exponents p such that
(1~2) ||=9?f||L2(M,da) < CI,”f”LP(R"”),

where do is a compactly supported measure on M.

Let #ldo] denote the Fourier transform of do. By a theorem of
Greenleaf (see [G)), the inequality (1.2) holds for

2(2 +
p= (4 + ;I)
if
(1.3) |#{do (R¢)| < C(1+R)7, (e8!,

The purpose of this paper is to use Greenleaf’s result to establish a restric-
tion theorem for a class of degenerate submanifolds of R"*? of codimension
2. We shall assume that our manifold is given as a joint graph of two
homogeneous functions, where the first graphing function is homogeneous of
degree 1 and the second graphing function is homogeneous of degree m.
Under the appropriate curvature assumption we will show that (1.3) holds
with y = n/m.
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An application of Greenleaf’s result yields a restriction theorem with

_ 2(2m +n)
T 4dm+n

We shall need the following definitions.

Nonvanishing Gaussian curvature. Let 3 be a submanifold of RV*! of
codimension 1 equipped with a smooth compactly supported measure du.
Let J: 3 — SV be the usual Gauss map taking each point on 3 to the
outward unit normal at that point. We say that 3 has everywhere nonvanish-
ing Gaussian curvature if the differential of the Gauss map dJ is always
nonsingular.

Strong curvature condition. Let S be a submanifold of RV*? of codimen-
sion 2 equipped with a smooth compactly supported measure du. Suppose
that S is a joint graph of smooth functions g; and g,, where g;: RY - R. Let
4, (S) denote the two dimensional space of normals to S at a point x,. We
say that S satisfies the strong curvature condition (SCC) if for all x, € S in
some neighborhood of support(du),

det D*(v,g,(x) + v,8,(x)) #0, Wwes,

where D? denotes the Hessian matrix.
One can check that the above definitions are independent of the
parametrization. Our main result is the following:

MAIN THEOREM. Let M = {(x, X,,, X,.,) € R"*%: x,., = ¢,(x),

Xpin = &2}, n =2, where ¢, € "(R"\ {0}, ¢, is homogeneous of
degree 1, and ¢, is homogeneous of degree m > 2. Let 3; = {x: ¢(x) = 1}.
Assume also that ¢, only vanishes at the origin and that 22 has everywhere
nonvanishing Gaussian curvature. Let

F(£, A, A) = fRnei«5,x>+A1¢1(x>+Az¢z<x»X(x) dx,

where x € 5 (R").
(a) Suppose that the restriction of ¢, to the set where ¢, =1, ¢,ls,, is
constant. Then

(14) [F(&, Ay A)| < C>LE+ AL + Al) ™™™

when m > 2n.
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(b) Let M|, ,,-1y denote the restriction of M to the hyperplane {x,, ,, = 1}. If
M|y, ., -1y (viewed as a submanifold of codimension 2 of {x, ., = 1}) satisfies
the strong curvature condition, then (1.4) holds for m > 2.

The conclusions of part (a) do not in general hold if m < 2n. Let
d(x) = x|, dy(x) = Ix|™. Let €= 1(0,0,...,0). Then, in polar coordinates,

F(0, 21, 1,) = C [ el wrharrn=ly(r) dr.
0

It is not hard to see that the best isotropic decay for this integral cannot
exceed

0((m)“1/2).

Hence the restriction m > 2n is necessary.

Remarks. (1) It is known that isotropic decay estimates for the Fourier
transform of the surface-carried measure cannot be expected to yield an
optimal restriction theorem (see e.g., [C]). We shall apply a homogeneity
argument due to Knapp to the class of manifolds considered in the theorem
above. .

Let # denote the restriction operator defined above. Let fy(x,x,,,
X,42) =h(8 'x,8 'x,,,, 8 ™x,,,), where h is the characteristic function of
a rectangle in R"*? with sides of lengths (1,1,...,1,C,C), C large.

Then

“f8”P =~ §Q-1/p)ntm+1) and IL%fa”p ~ 3n/2‘
Hence (1.2) can only hold if

<2(n+m+1)
P=yiam+1)

If we apply Greenleaf’s result (1.3) to the Main Theorem, we see that (1.2)
holds for

2(2m + n)
= 4m+n

The gap between this exponent and the exponent given by Knapp’s
homogeneity argument suggests that the restriction theorem (1.2) may hold
for a wider range of exponents. The result obtained using the Main Theorem
is not sharp. In order to obtain a sharp result one would probably have to
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obtain precise non-isotropic estimates for the Fourier transform of the
surface carried measure using the techniques of M. Christ (see [C]).

(2) The curvature conditions of the Main Theorem are not entirely satisfy-
ing because there is no natural transition between parts (a) and (b).

We hope to address these difficulties in a subsequent paper.

Proof of the main result

Notation. (1) Given a,b > 0 we say that a = b (a comparable to b) if
there exist ¢;, ¢, > 0 such that ¢c;,a < b < c,a. We say that a > b (a much
larger than b) if the inequality a < Cb is not satisfied for any C > 0. The
notion a < b is defined similarly.

(2) We denote by C a generic constant which may change from line to
line.

Proof of part (a) of the Main Theorem. Let W(x) = (&, x) + A (x) +
Ay d,(x). Then

VU(x) =&+ A Vy(x) + A, Voy(x).

Since ¢,|s, is constant by assumption, then ¢, # 0 away form the origin.
Hence, V¢ ,(x) # 0 away from the origin by the Euler homogeneity relation,
and since every component of V¢,(x) is homogeneous of degree zero, we
have |V¢,(x)| > C for all x € support(¢,).

Suppose that |£] < [A,] << [A] or [A,] << €] << [A]. Then [VW(x)| >
CIA | and so an integration by parts argument (see Theorem 1 in the
appendix) shows that

|F(& AL 0) | <c(1+InD)™ YN >o.
Similarly, if [A| < [A,| < [€], or [A] = |A,| < |€], then

|[F(&, A, 0) | <c(1+1e)™ VYN>o.

If we rewrite F using polar coordinates with réspect to %, and assume that
x is radial with respect to 3,, we get

+o ) "
F(&, A, M) =[0 r"‘l,\/(r)fze’(“f""H”‘l” 2 do(w) dr,
2

where do is the Lebesgue measure carried by 3,. Let I(¢) denote the
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Fourier transform of the surface-carried measure on 3,,

I(¢) =fze"<f"”>da'(w).

2

Since the Gaussian curvature on 3, never vanishes, we can use the method
of stationary phase (see theorem (3) in the appendix) to write I(¢) =
b(§)e'1Y), where ¢ belongs to a cone I' containing the normal directions to
2., on the support of do, and where b(£) is a symbol of order —(n — 1)/2,
q(§¢) is homogeneous of degree 1, and q(¢) = |€]. Away from T,
I(¢) decays rapidly in | €.

Suppose that we are in one of the cases where |¢| dominates:

@ 12, < Iyl = 1€,
@ M < (A = 1€,
@ Iy < x| < 1€,
@ Il < Iyl < 18,
& M1 = 12yl = 1€l

Using our observation about I(¢), we write
+ oo . m
F(&E A, MN) = f rnlefralOrriAr"p(rg ) x (1) dr.
0
Then
2 n-1
[F(& A, %) | < €[ b(r¢) | dr-
Let s = r|£|, and define £ = £|£| ™" The integral above is bounded by

cle™ [*sp(sé )|as
= clel™ [t b(sE Y|ds + clel™ [ ¥sn1|p(sE )|as,
0 N

where N is large. The first integral is O(|£™") and the second integral is
bounded by

cle™ sz'g's“—l)/Z ds < C(1+ |&))~ V72,

Note that (n — 1)/2 > n/m when m > 2n/(n — 1).
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We are left to consider the cases where A, dominates:
@ & = IM] < A,
@ 18 < M| = |0,
Q) lE < |)\1| < M2|,
@ |/\1| < |¢& < I)t2|-

As before, let
+ o0 ) "
F( ga /\1a Az) = j(; rn~lel(rq(§)+rA1+r ’\Z)b(rf)x(r) dr,

Let sA; /™ =r. Then
F(&, A5 4;)

-+ 00
_ /\Z—n/mf sn~1ei(q(s/\;1/'”§)+sA2“/MA1+s'")b(s/\2—1/m§)X(SAZ—Vm)ds.
0

Let
+e i(A=1/m —1/m m
G(&, My L) =f0 §" 1l A AT At () 1/ Mg Y x (sA5 M/ ™) ds.

It suffices to show that |G(&, A, A,)| is uniformly bounded. When

A+ L€
Ay m

is sufficiently small, then |G| is bounded by C| /[y “e’"t"~! dt|. An integra-
tion by parts argument shows that this integral converges. In particular the
above integral equals

ermi/m —;l-l“(—r%)

Thus we may assume that

A+ L€ s cC.
A"
Let
At
O(s) =s—L1——=>~ 9(¢) + s™.

1
AYm™
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Then

2

1/(m—-1)
A+
®'(s) =0 ifs= c(————~1 Alf’,gf) )
2

and
®"(s) =m(m — 1)s™ 2.

If we apply the van der Corput Lemma (see Theorem 2 in the appendix) in
the case k = 2, and recall that in particular |b| is uniformly bounded, we see
that |G| is bounded by

—-(m-2)/2(m-1)+(n-1)/(m-1)
A+ €

da]

The power of |(A, + |£)/AY ™| in the expression above is non-positive if
m > 2n, and so G(¢, A, A,) is uniformly bounded. This completes the proof
of part (a) of the Main Theorem.

Proof of part (B) of the Main Theorem. As before, we rewrite F using
polar coordinateds associated to %,. We get

+o . m
F(&, A, A,) = fo fzet<r<w,f>+m1¢l(w)+z\zr e (r) do dr,
2

where, as before, ¢ is a smooth cutoff function which is radial with respect to
the polar coordinates associated to 2,. Let

I(£,)) = fzei«w,f)ﬂl%(w))dw'

2

Using the implicit function theorem we can parametrize 3, near a point s,
by a smooth function ¢: R""! — R. Without loss of generality, we can
assume that V¢,(s,) = 0 and that V¢,(s,) = (0,0,...,0,1). Thus, we can
locally write 3, = {(0’, w,): @, = ¢(w')}. The restriction of M to the
hyperplane {x,,, = 1} can thus be locally parametrized by the functions
Y(w') and ¢y(o’, P(w"). If we let & = (¢, £,), we can write I(£, A) as a
finite sum of terms of the form

(1.5) [R”_let«w',§'>+§nv/<w'>+A1¢1<w',w(w'»)xl(w/) do',
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where y, is a smooth cutoff function supported in a neighborhood of s,. It
was observed by M. Christ (see [C]) that the strong curvature condition (see
the introduction) implies the following result.

LEMMA. Let Q be a submanifold of RN*? of codimension 2 locally
parametrized by smooth functions g, and g,, where g;: RN - R. Let do denote

a smooth measure on (). Suppose that () satisfies the strong curvature condition.
Then

|71do 1(Rn)| < C(1 + R) ™.

The proof of the lemma shows that the integral in (1.5) can be written as
b(&, 1)e14 2 where (&, A,) belongs to a cone containing the normal
directions to M|, -1, on the support of do, b(¢, A,) is a symbol of order
—(n —1/2, q(&, 1) is homogeneous of degree 1, and [g(&, A)| =
(1€l + 1A D.

We must analyze the integral
+o0 ) m
(1.6) [ et T p (g r0) x () dr.
0

We may assume that [g(&, A))| < C|A,l, since if |g(&, A)| = c|A,| for a
sufficiently large ¢ > 0, then the integral in (1.6) decays rapidly in [&] + [A].
(See Theorem 1 in the appendix.)

Let s = rAY/ ™. Then, the integral in (1.6) can be written as

+ i =1/ m m
/\Z_n/mfo sn—qet(s)\zl/ q(€, A)+s )b(s)tz‘l/"f,s)\z‘l/'”)\l)x(s)tz‘l/’")dr.
Let
+ | -1/ m m
G(&, A, \) = [0 s 1gi(sAy/ "q(4, A)+s b(sAy Y 7E, sA Y A ) x (sAg Y ) dr.

As before, it suffices to show that |G(¢&, A, A,)| is uniformly bounded. When
[AX ] + 1ED/AY ™| is sufficiently small, then |G| is bounded by
Cl[f=e""t"~! dt|. Hence we can assume

b+ lel|
e

We can write

N

G(&, M h) = [

1/m
+/c|/\2| , N large.
0 N
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The first integral is uniformly bounded. In order to handle the second
integral let

D(s) =sA YV mg( €, ) + 5™
Then

®'(s) =0 if s =c,(A Y "q(& )",
and
(I)"(S) — m(m _ 1)sm—2‘

If the critical point is smaller then N the integral has rapid decay, so we may
assume that |A; Y/ "q( €, A is large. If we recall that |g(&, A)| = & + [A],
then by the van der Corput lemma (see Theorem 2 in the appendix) we get
|/\1| + |§| —(m=2)/2(m-1D)+(n-1)/(m-1)—(n—-1)/2(m-1)-(n—-1)/2

1/m

Note that the third and the fourth terms in the power of [(|A,]| + [£))/AY ™|
arise from the fact that b is a symbol of order —(n — 1)/2, and |(JA;| +
[ED/AY ™| is large.

The power of |(IA,| + |€)/AY ™| in (1.7) is nonnegative provided that
m > 2. Hence, |G(&, A, A,)| is bounded and the proof is complete.

Appendix
In this section we recall a few classical results that we used to prove the
Main Theorem. The first two theorems, which deal with oscillatory integrals,
can be found for example in [St].

THEOREM 1. Suppose ¢ € &, (R") and suppose that ¢ is a real-valued and
smooth function which has no critical point on the support of ¢. Then

‘f NI x) dx{ -o(x)
Rn
as A — », for every N > 0.

THEOREM 2. Suppose that  is real-valued and smooth and that ¢ is
complex-valued and smooth in [a, b]. If | (x)| > 1, then

‘fbe“"/’("%i)(x) dx

sca i)+ [1ow]al
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holds when
D k=2
or
(2) k =1, if in addition it is assumed that {'(x) is monotonic.

THEOREM 3. Let S be a smooth hypersurface in R" with nonvanishing
Gaussian curvature, and let do be a €~ measure on S. Then

lau( &) < c@ + 1)~ "2,

Moreover suppose that T € R"\ {0} is the cone consisting of all ¢ which are
normal to some point x € S belonging to some compact neighborhood ¥ of
support(d ). Then,

9% — - .
GEAn(§) =O((1+16)™"), YN, if£¢T,
dp(€) = La(£)e O, ifEeT,
where the finite sum is taken over all points x; €4 having & as a normal and

@
‘%g— du(f)‘ < Co(1 + gy~ led

Proof.  See [So], pp. 50-51.
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