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RATIOS OF VOLUMES AND FACTORIZATION
THROUGH e

Y. GORDON, M. MEYER AND A. PAJOR2

Introduction

The projection constant .(X) of a finite dimensional normed space X is often
difficult to compute, but it plays an important role in the classical and in the local
theory of Banach spaces. We extend its definition in a natural way so as to include
the class of quasi-normed spaces as well, and we present a new method for getting a
lower bound for.(X) in terms ofratios ofvolumes. This bound allows us for example
to to easily obtain the right asymptotic estimate for )(%) in the case 0 < p < and
dispenses with the logarithmic factor in the estimate obtained by Peck [Pe] who used
some involved probabilistic method. The method applies also for the Schatten classes

Spn (0 < p < 1)of operators on "2.Given a centrally symmetric body K in n wecan endow In with the quasi-norm
defined by

Ilxll inf{a > 0; x c=_ aK},
and let E (n, II. II) be the n-dimensional quasi-normed space with K as its unit
ball. Let B Bx be the unit ball of a given Banach space X. We define the volume
ratio vr(E, X), also denoted by vr(K, B), to be

(vol(K) ) l/n

vr(E,X) inf
vol.(T(e))

where the infimum ranges over all onto linear maps T X -+ " satisfying T(B) C
K. We define the extemal volume ratio evr(E, X), also denoted by evr(K, B), to be

evr(E, X)= inf(Vln(T(B)) ) 1/n

voln(K)
where the infimum ranges over all onto linearmaps T X ---> suchthatT (B) K.
For 0 < p < o, let Pn be the space ][n equipped with the quasi-norm

IIx lip Ixil p
i=1
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and let B be its unit ball:

BnP IX"- (XI Xn) " n IxilP <-- I"i=l
Let Qn [- 1, ]n B be the unit cube ofn and Cn B be its polar body:

Cn { (X1 Xn) " ’n; -[Xil <-- I"i----1
The ratio evr(K, B) evr(K, Qn), known also as the cubic ratio of K, was

studied by various authors (see [B ], [Ge], [PS]) in relation to the classical volume
ratio vr(K, B2). The zonoid ratio, which in our notation is vr(K, Be), was also
studied in [B ].
We prove that if K is the unit ball of a quasi-normed space X, then

evr(K, Qn)vr(K, Be) < )(X);

geometrically this means that there exist a parallelotope P and a zonoid Z such that
re o ,, rvol,.(e)al/n < .(X), and we study various relations among the

_ _. ., .volnZ)
above mentioned quantities and otherparameters associatedwith centrally symmetric,
and not necessarily convex, bodies K.

Notation

If I is a finite set, we shall denote by III its cardinality, and by ./n,m the set of
all matrices A [a/j]i=l n, j---- m with real entries consisting of n rows and m
columns. For I C 1, 2 n} and J C 1, 2 m}, let Atj [aij]il, jj. We
will make use of the following Cauchy-Binet formula: If A 6 .A4n,m and B .A/lm,n,
and ifN {1 n} and M {1 m}, < n < m, then

det(AB) E det(ANt)det(BlN).
ICM, II I=n

Let on zr /F (1 + 3) denote the volume of the Euclidean ball B. of n. then

olin If K is a centrally symmetric body (not necessarily convex) in/1n, we
note that by our definition

vr(K, ’) min
\voln (12)

12 K is the symmetric convex hull of n points

and

vr(K, B) min
voln(Z)

Z C K is a zonoid
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The cubic ratio of K is

evr(K, Q,) min v--/
and the classical volume ratio of K is

vr(K, B)= rain
vol(D)

P is a parallelotope containing K ]
D C K is an ellipsoid}

Since B is a zonoid and e has uniformly bounded volume ratio, it is clear that

vr(E, e) < vr(E, e) < vr(E, ) vr(e, e) Vvr(E,

Ratios of volumes and factorization through

The following proposition is essentially known [B ], [Ge], [PS].

PROPOSITION 1. Let K be a centrally symmetric convex body in IRn and K be
its polar body with respect to the ordinary scalarproduct denotedby <, >. Suppose
that u Rn, < ui, u > and c > O, m satisfy

m

E’C < Ui,X > U X

i=

for every x IRn. Then"

(i) IfU K, m, there exists a parallelotope P such that K C P and
(voln(P))1/n <_ /’(voln(Qn))l/n 2/-.

(ii) If ui K, m, there exists a cross-polytope C such that C C K and

(voln(C)) l/n > ee (VOln(Cn))l/n 2 n

Proof. If C ../n,m is the matrix whose columns are the coordinates of the
vectors /r’ Ui, < < m, in the canonical basis oflRn, wehave CC* In, where In
denotes the identity on IRn and thus _,im= ci n. It follows from the Cauchy-Binet
identity that

E (ilCi) (det(ui)il)2
IC{1

(m) ( )< max (det(ui)it)2 Y-Itl= IIit ci

n IC{1 m},lll=n (m)n
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Now, since -4m__l ci n, by Newton’s inequality we get

(m)(-) n
< max

n Ic{1 m}, Ill=n
(det(ui)il)2

It follows that

max det (u 1/ n >
IC{1 m},lll=n iEl //"

In case (i) for some I C m}, III n, the parallelotope P {x
x, ui >1 < for every 6 I} satisfies the required properties. Case (ii)follows
from (i) by replacing K with K and taking C po.

The following results relate vr(K, B’) to evr(K, an). It is a direct consequence of
the preceding proposition.

COROLLARY 2.
Then

([B2], [Ge], [PS])Let K be a convex symmetric convex body.

vr(Q., B.) _< evr(K, Qn) vr(K, B) _< / vr(Q., B’)

where vr(Qn, B) 2 2/nen.

Proof. The left-hand side inequality follows from the definition. For the fight
hand-side, we may suppose that the Euclidean ball is the maximal volume ellipsoid
inside K, that is the John ellipsoid of K; then by [J], both assumptions (i), (ii) of
Proposition are satisfied. The result follows. D

The next corollary is an improvement of an estimate due independently to many
authors ([BF], [BP], [C], [G1], and B. Maurey in [Pil]).

COROLLARY 3. There exists a constant c > 0 such that if Xl Xm . n,
m > n and K conv(+xi, 1 < < m), then

(voln(K))1/n < c n max
Ic{1 m},lll=n

(voln (conv(+xi, I))) l/n

Proof. Let A ./n,n be a matrix such that the minimal volume ellipsoid con-
taining the body K’ AK is the Euclidean ball. Then again the assumptions of
Proposition 1,(ii) are satisfied. Thus there exists a cross-polytope C c K’ such that
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(VOln(C)) 1In >" ((VOln (Cn))1/n. It follows that

( voln(K) )l/nmaxy, yn6K voln (conv(4-yi, < < n))

( voln(K,) )l/nmaxz z,K’ VOln (conv(-4-Zi, _< _< n))

(vOln(gt)) 1In
<q/’ (voln(gt)) 1In

<-- VOln (C) \voln(Cn)

But since K’ C B is the convex hull of Axl Axm, it follows from [BP], [BF],
[C], [G1] or [Pi that for some constant d > 0, independent of n and m, we have

1 (2m ) 1In(vOln(gt)) 1In < d n (VOln(Cn))
n

Combining the preceding inequalities, we get our estimate. []

Remark. If the convex body K is not supposed to be centrally symmetric, then
Proposition can be generalizedin both cases ifwe replace the parallelotope P and the
cross-polytope C by a simplex, and Qn and Cn by the regular simplices circumscribed
to B and inscribed in B. Observe alsothat Corollary 3can be generalized asfollows:
if K conv(xl Xm), then

1 (2m )(vol,,(K)) 1/" < d n --n- max{(vol (A))l/n; A simplex, A C K},

for some constant d > 0 independent ofn, m > n + and x Xm .
If E is a subspace of n, then Pe will denote the orthogonal projection onto E.

LEMMA 4. Let B be a symmetric body in ,n (not necessarily convex). Let <
k < n < m and T V U, with T A4n,n, V .Mn,m and U A/In, n, rank(T) k
and UB C U Qm, where UII > 0. Then

volk(TB) k! (n)volg(ekrr)+/-n) <--- k z(n)llUIldim(E)=kmax volk(PeVQm)

k IIUII max volk(PEVQm)
dim(E)=k

)_lx ( min (evr(PEB, Qk)k VOlk(PeB))
\dim(E)=k

where B {y E n; (x, y) _< 1, for all x B} andfor a subset C of,n, Xk(C)
max{volk(COnV(+/-Xl +xk)); xl xk E C}.
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Proof. By standard linear algebra methods, we have

vol(TB) E (det(TIj))2 vol/(Pker(T)+/-B).
Ill--IJI--k

For I, J C {1 n} with III --IJI- k define tlj det(Tij) and similarly for Ulj
and vtJ. Then

tlj I)IKUKJ
K C{I m},lKl=k

so that

IIl--IJl=k IIl=lJl=k KI=ILI=k

< mKaxj bl2Kj i K IplKI

For I C {1 n }, card(l) k, let FII IRn IR denote the orthogonal
projection; we have

E IOlgl- 2-k VOlk(I’llgQm).
Igl=k

Indeed, am jm=l[--ej, ej]. Hence FIIVQm Ejm=l[-1-Ill)j, nil)j] c 1-11(]In)
]R, where {vj }jm=l denote the columns ofthe matrix V;and now it is well known [Mc]
that if Z jm__[-zj, zj] is a zonotope in ]R then

YOlk (Z)- 2 Idet(z; j
JC{I m},l JI------k

It follows that

( )2 ( )(n )2E E II)IKI < 2- max VOlk(PEVQm)
K k dim(E)=k

Observe also that since U(B) C IIUII Qm, the rows U1 Um of the matrix U are
vectors ofn which satisfy Ui U lIB for 1 _< _< m. Then, for K C m },
KI k, we have

n},IJIU2Kj "--" vol (conv(4-gi; K)).
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This may requirean explanation: Let{zi}i=l be k vectors in and C conv(+zi, <
’S< k). Denote by Z .A4k n the matrix withzi as rows. Then there is an orthogonal

matrix A e A4n,n such that ZA [W, 0], where W A4k, is a the matrix with
krows {wi}i= and 0 denotes the zero matrix in .M,n-k Obviously, WW* ZZ*,

and we obtain

2k
volk(C) volk (conv(+wi, _< _< k)) VOlk (W(Ck)) 77,1 det(W)l

K!

2k2k v/det(WW*) .v/det(Z Z*)k!

2k( (det(Zr )1/2k!
))2

J{1 n},lJI--k

where K k}.
It follows that

J

Finally, by duality we have

k
IIUIIx(n)"

2-,k(B) 2k ( min (evr(PeB Q)k volk(PeB))
\dim(E)=k

The lemma follows. [21

LEMMA 5. Let K be a symmetric body in n (not necessarily convex). Let <
n < m and T VU, with T .A/In,n, V .A/ln,m and U JVlm,n, with rank(T) n
and U(K) C IIUIIQm, where IIUII > 0. Then

(vln- !g (Qm)) )
1/n

VOln(K)
evr(K, Q,,)Idet(T)l /" < IIUII

\

Proof Apply Lemma 4 with k n.

Now let E and F be two n-dimensional quasi-normed spaces with unit balls BE
and BF respectively. For T 6 L (E, F) define

,(T) inf (IIUIIIIVII}

where the infimum is taken over all the factorizations T V U, U 6 L (E, e), V 6

L(e, F), and ifB denotes the unit ball ofe, IlU inf{a > 0; U(Be) C a B}
and V inf{b > 0; V (B) C bBF }.
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For a centrally symmetric body K in n, if E is the quasi-normed space such that
Be K, we define the projection constant of E or, of K, to be

,(K) .(E)= y(l)

where I E E denotes the identity.

THEOREM 6. Let T L( E, F), where E (n, liE), and F (n, IIF) are
n-dimensional quasi-normed spaces. Then,

VOln (BF) )
1/n

evr(E,) vr(F, )1 detTI 1/n < y(T)
VOln(BE)

Proof. By Lemma 5, if we let K Be then for any factorization T V U
through

evr(E, )1 det(T)ll/n<llUil_ (vOlnvoln(Be)(V(am)))l/n
Thus, if Z is the zonoid IIV -1 V(Qm), then Z C BF. [3

COROLLARY 7. IfE is an n- dimensional quasi-normedspace, with unit ball Be,
then

)(E) > evr(E, end) vr(E,

{(vln(e)) 1/n }max
voln (Z)

Z onoid, P parallelotope, Z C Bg C P

Remarks. (1) It is easy to prove that, under the hypothesis of the preceding
corollary, we have

evr(E, )_<inf{llUll(Vln(V(B)))l/n

where the infimum is taken over all linear operators U X e and V e X
such that VU is the identity on n.

(2) By Lemma 5, if E, F are n-dimensional, then

sup
[det(T)ll/n

< (VOln(BF)) 1/n

T:E--F,TO y(T) evr(E,) vr(F,) VOln(BE)

In particular it follows that

evr(E, )evr(F, )vr(E,) vr(F,) < inf {Yoo (T)Yoo(T-’)
TL(E,F)
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Let us recall now some definitions; if X is a normed space, we define the following
quantities:

(1) The Gordon-Lewis constant gl2 (X) (according to G. Pisier [Pi ]) is the least
constant C such that for any operator T L(X,/2),

J/l (T) < Czr (T).

(2) The Gordon-Lewis constant g l(X) ofX (see [GL]), is the least constant C such
that for any normed space Y and any operator T 6 L (X, Y),

1 (T) < Cyr (T).

(3) The weak Gordon-Lewis constant torgl2(X) of an n-dimensional space X
(according to K. Ball [B ], a different definition was introduced in [Pi3]) is the least
constant K such that for any T L(X, 12)

2K
(voln (T(Bx)))1In <_ I(T)

n

(For the definition of the ideal norm Zrp (T) the reader may refer to the books [K6],
[Pie], [Pi2], [Tj].) It was proved in [B2] that for some constant c > 0, independent
of X,

(*) wrgl2 (X _< c min {gl2 X), vr(X, "-’2//dim(X) )}.
and moreover, if X is finite dimensional,

to rg 12 (X) vr(X,

in the sense that there exist absolute constants Cl and c2 > 0 such that

I vr(X, Coo) < wrgl2(X) <_ c2 vr(X, Coo).

To better see how these numbers are related, let us also define the local uncon-
ditional constant of X, Xu(X) ([GL]): this is the least constant C such that for any
finite-dimensional subspace F C X there exists a Banach space U with a finite un-
conditional basis constant X (U), and operators A L(F, U) and B L(U, X) with
BA iF (the inclusion of F into X), and satisfying

A B X(U) C,

Of course if E is finite-dimensional, Xu (E) Xu(E*), and clearly subspaces of L l,

and quotients of L oo, have finite gl2 constants. We see then, by results of [GL] and
inequalities (.) and (**) that for some absolute constants c and d > 0, we have

(* * *) c < dwrgl2(X) < gl2(X) < gl(X) < Xu(X) < x(X) < v/dim(x).
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The following result improves inequality (.):

COROLLARY 8. There is an absolute positive constant c such thatfor everyfinite
dimensional normed space F, if F* denotes the dual of F, we have

vr(F,) vr(F*, ) wrgl2(F) wrgl2(F*) < c min(gl2(F),gl2(F*)).

1In/

Proof Take E in Theorem 6tobe the spacel, then evr(E, e) z, }voI,(BE)

’. Now, multiplying the inequality ofTheorem 6 by (vol,, (B )) 1/,,, and using San-
tal6’s inequality, we have that

The inequality

c
wrgl2(F) (voln (T*BF,)) 1/n < -%(T)

n

wrgl2(F) wrglz(F*) < c gl2(F)

follows now immediately from the fact that T* L(F* ,l), and that %(T)
’1 (T*) <_ glz(F*)zrl (T*), and the definition of wrgl2(F*). For the second inequality
replace F by F*. We use then (**).

Remarks. (a) In particular, since gl2( F*) <_ /dim(F)and,k(F*) < /dim(F),it
follows from Corollaries 7 and 8 that if wrgl2(F*) /dim(F), thenevr(F*, gdornV))

1. In otherwordsthere is a cross-polytope C contained in BF (see the commentsbe-

(VOIn(BF)) 1In
fore Proposition 10) such that vol,(C) 1; in ’volume sense’ Br is equivalent to
a cross-polytope; moreover both )(F*), glz(F*) and glz (F) are then asymptotically
equivalent to /dim(F).

(b) If glz(F) 1, which happens for example when F is ’well’ complemented in
a Banach lattice, then both BF and BF, are in ’volume sense’ equivalent to zonoids.

As we shall see, the estimate given by Corollary 7 for Z(K) can provide good
information about its real value; however, we ignore whether it is a sharp estimate.
The weaker estimate, evr(F, dm(F)) < .(F), is not sharp, as it is shown by the
following example.

Example. There is an n-dimensional subspace F ofe such that

,k(F)- V’-ff and evr(F, e) < /e

(for another example ofthe same type, see [B 1 ]). In order to show this we first prove:

(a) Let E.be a n-dimensional subspace ofe with Be as unit ball. Then

((m))l/n e
evr(Be, Q,) < <

n
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Let Pe be the orthogonal projection of ]1m onto E. Then Be, can be described as
follows"

Be,= {x E; < x, Pe‘ei >l <1, forl <i< m}.

Let U un be an orthonormal basis of E, and set Pe, -mi_. -=1 lzijei (R) uj.
Denote by M .h4m,n the matrix (lZij)l<i<m,l<j<n which represents Pe,. Since Pe,
is an orthogonal projection, the matrix M*M .n,n is the identity on E. Therefore
by the Cauchy-Binet formula,

det(M*M) (det(Mtv))2

Ic{ m}, I11=n

where N {1 n}. The matrix Mtv represents the operator Pe,lspan{ei, I}
which maps ei to Pe,(ei) -’=1 lzijuj for every I. Hence, denoting by C the
cross-polytope conv(+ Pe,(ei), I), we obtain

n

voln(Ct) ..I det(Mtv)l.

It follows that

N ol (C’ =1.

Therefore there exists J C m }, IJI n such that

voln(CJ) >
n

Now the parallelotope Q J {x E; < x, Pe, ei > < for J} contains Be,,
and moreover since (Q)o C, we have vol (Q) vol,(C) 4n/n!, from which
it follows that

(VOln(aJ))l/n < 2 (/(m)’)l/n <_2

But it follows from [V] that vol(Be,) > voln( Qn 2n. Therefore we have

evr(Be, Qn) <ne

(b) Under the same hypothesis as in (a), if e denotes the identity map,
and if ie‘ denotes its restriction to E, we have
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In fact, if we set U mj=l uijej < < n, then

ie tli ( ui Uijtli ej
i=1 i=1 j=l

so that

Iliel12 max max aiuij max
a+...+< =1 rn j--1 rn

i=

n - /2j
n

max u/j> u =--.
j--1 rn

i--1
rn

j=l i-1
rn

(c) Now let F be an n-dimensional subspace of and let qF e e/F be
the quotient mapping. If P is any linear projection of onto F, set E -1 (ker P)
and Q I P, where I denotes the identity mapping on . If we set

ra(qFY) Qy for every y E ,
we get a mapping rQ /F ker P such that rQqF is the identity on ker P, hence

ie ra qF ie, and moreover Ilrall QII III PII, so that

Ilie I P IIqF e II.

Let now rn 2n; then it follows from a result of Kashin [K1 that for some constant
c > 0, independent of n, there exists an n-dimensional subspace F of g so that,
with the previous notation,

Applying (b), we get

< IIi < IIIo -PIIIIqF/ell < III ellllqF ill < (1 + Ilell) c--

for every projection P g -- F, with -1 (ker P) E. It follows that

)(F) >_ 1,

but by (a) applied to F, we have

evr(BF, Qn) <- ’.



RATIOS OF VOLUMES 103

THEOREM 9. For every 0 < p < there exists a constant c(p) > 0 such thatfor
every integer n, we have

c(p)n- < evr ,oo) < ( < n

nProof Observe that a parallelotope contains the unit ball B/ of ep, 0 < p < 1,
if and only if it contains Cn B’. Therefore, since vr(Cn, B) is bounded and hence
from Corollary 2, evr(Cn, Qn) //’, it follows from Corollary 7 that

)
1/n

n vOln(Cn)
2.(e) > evr(Bp, an)--evr(Cn, an) \oln(B

> c (p) n-1+ c (p) n -1/2.

The upper estimate is trivial, since the distance between and is nl/P-1, and

Remark. The preceding lower estimate for ,k() has been obtained in [Pe], with
an extra multiplicative ln(n), using a much more involved proof.

nWe also observe that easy calculation of evr(p, Qn) yields the known asymptotic
estimates of the projection constants for all values ofp > 1.

For 0 < p < +oo, let s, be the n2-dimensional space of all real [n n] matrices A
equipped with the quasi-norm

n

IIAIIp (Y X)/
i=1

where (1 n) are the eigenvalues of (A’A)1 and let S be the unit ball of s.
THEOREM 10.

that
For every 0 < p < 1, there exists a positive constant a(p) such

a(p)n1/p <_ evr(Sff, Qnz) <_ )(S) < n 1/p

Proof. By Corollary 8 of [S], for some constant d(p) > 0, (voln2(S)) l/n2

d(p)n-1/2+a; (the proof of [S] considers only the case p > 1, but it is easily seen that
it yields this estimate for 0 < p < 1). As in Theorem 9, we. have

(VOln2(S))evr(S, Qn evr(S, Q.2)
VOlnZ(S)

1/n
--1+2> d (p) evr(S2, Qn2)n
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But S’ C S C /fiS[’ and vr(S’, B) _< (voln2(S)/voln2(S))l/n2/-ff < Cl.
Hence, by Corollary 2, evr(S’, Qn2 >_ c2n, from which the lower estimates follows.
For the upper estimate, observe that

(S;) (S;
l --I /

X _< X(s)d ,s) <_ n.np =rip

where d(., .) denotes here the Banach-Mazur distance. E3

Remark. If K is a centrally symmetric convex body in n, let

K {x 6 ]ln; < X, y > < for every x 6 K}

be its polar body. Then for some absolute constant c > 0,

2 evr(K, Qn)
--< <C.
zr vr(K,Cn)

Indeed,

evr(K, Qn)
vr(K, Cn)

=inf sup (Vln(P) vln(C) )
l/n

ex CcKo VOln (K) voln(K)

> inf(VOln(P)voln(P))
1/n

PK vOln(K) vOln(K)
4n ) 1In

n! vOln(/ vo1n (K)

and by Santalb’s inequality we get

(4)
1/n 2evr(K, Q)

> >
Cn)

On the other hand, by the inverse Santalb’s inequality (see [BM] or [Pi2])

evr(K, Qn)< sup (VOln(C) VOln(C) )l/n-ffr(i C,) ccro vol (K) voln(K)

If we suppose that K or K is a zonoid, using [R] or [GMR] we have

so that

n

voln(K) voln (K) >_ --,
n!

evr(K, Qn)
<1.

vr(Ko, C,)
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PROPOSITION 11. LetZbeazonoid in". Thenvr(Z BT) > vr(Qn Cn) > 4"ff

Proof. Let us observe first that

( n!)l/n/’ff
vr(Qn, Cn)

max{Idet(0i, 1 _< i,j < n)l; IOijl <_ 1} e

Indeed, any cross-polytope C C Qn has the form conv(+ Y=l Oijej, < < n),
for some choice of the n x n matrix (R) (Oij) and clearly

2n voln(an
voln(C) . Idet((R))l

n!
Idet((R))l.

1/2
By Hadamard’s inequality, det((R))] < FIi= (-7= Oij2) < nn/2 hence

(n!)l/n/-ffvr(Qn, Cn) > > ’e
Since a zonoid can be approximated by zonotopes in the Hausdorff metric, we may
reduce to the latter case and suppose that Z _,m [-zj zj for some zj n, <j=l
j < m andn <m.

Let A dn,m be the matrix with the coordinates of zj, < j < m in the
canonical basis ofRn as columns. Ifxl x are points in Z, then they have the form

j=l Oijzj, with Oij e [- 1, ], so letting C conv(+xl +Xn) C Z, and
denoting by L [x Xn .A//,,,n the corresponding matrix, and by (R)

the matrix with entries i in the i-th row andj-th column for < < m, < j < n,
we have L A (R). By the Cauchy-Binet formula,

det(L) det(ANt)det((R)uv).
Ic{l m}, Ill=n

But voln(Z) 2n (/c{l m},l/l=n det(aNt)l), and hence

voln(Z)
21 det(L)l < vol(Z) max det((R)zN)l < (n !)

ll--n (vr(Qn, Cn ))n

Therefore

>vr(Qn C) >.
k,vol(C) 1 det(L)l e

Remarks. (1) The estimate vr(Qn, C,,) > (n!)v, is sharpin thecase when n 2k4ff
k 1, 2 (use Walsh matrix). For an upper estimate of vr(K, C) valid for every
convex symmetric body K, observe that the quantity

max det (Xl x)
xn.K
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decreases under Steiner symmetrization of K (see [M] for instance ). It follows that

(Vnn!)
1/n

vr(K, Cn) < vr(B, Cn)
\ 2n

This estimate was proved in [K2], up to a multiplicative constant.

(2) Proposition 11 allows us to give an easy geometric proofofthe following result,
which is also a consequence ofthe fact, originally due to Bourgain and Milman [BM],
that the finite-dimensional subspaces F} of an infinite-dimensional normed space

dim(F)of cotype 2, have uniformly bounded volume ratios vr(F, e2 (see also [Pi2],
[Tj], and [GK] for the general quasi-normed case). This applies in particular for
el which has cotype 2: In this case, we see that every zonoid Z in I1n satisfies
vr(Z, B) _< ev/ Indeed, by Corollary 2, the remarks preceding Proposition 11
and Proposition 11 itself, we have successively

V//2n zr/2 zrne’-d-vr(Z,B)< < ( < <e
zre evr(Zo, an) vr n) 2

It was proved by K. Ball [B2], using more involved arguments, that if Z is a zonoid
in I1", one always has

vr(Z, B) <_ vr(C,, B’) V/.
It may be observed thatfinding the exactmaximum ofevr (K, Qn overall the centrally
symmetric convex bodies K inI is still an open problem forn > 3 (see [Ba], where
it is solved for n 2).

[Ba]

[BI]

[B2]

[BP]
[BF]

IBM]

[C]

[Gel

[G1]
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