RATIOS OF VOLUMES AND FACTORIZATION THROUGH ℓ_{∞}

Y. Gordon, ${ }^{1}$ M. MEYER AND A. PAJOR ${ }^{2}$

Introduction

The projection constant $\lambda(X)$ of a finite dimensional normed space X is often difficult to compute, but it plays an important role in the classical and in the local theory of Banach spaces. We extend its definition in a natural way so as to include the class of quasi-normed spaces as well, and we present a new method for getting a lower bound for $\lambda(X)$ in terms of ratios of volumes. This bound allows us for example to to easily obtain the right asymptotic estimate for $\lambda\left(\ell_{p}^{n}\right)$ in the case $0<p<1$ and dispenses with the logarithmic factor in the estimate obtained by Peck [Pe] who used some involved probabilistic method. The method applies also for the Schatten classes $s_{p}^{n}(0<p \leq 1)$ of operators on ℓ_{2}^{n}.

Given a centrally symmetric body K in \mathbb{R}^{n} we can endow \mathbb{R}^{n} with the quasi-norm defined by

$$
\|x\|=\inf \{a>0 ; x \in a K\}
$$

and let $E=\left(\mathbb{R}^{n},\|\cdot\|\right)$ be the n -dimensional quasi-normed space with K as its unit ball. Let $B=B_{X}$ be the unit ball of a given Banach space X . We define the volume ratio $\operatorname{vr}(E, X)$, also denoted by $\operatorname{vr}(K, B)$, to be

$$
\operatorname{vr}(E, X)=\inf \left(\frac{\operatorname{vol}_{n}(K)}{\operatorname{vol}_{n}(T(B))}\right)^{1 / n}
$$

where the infimum ranges over all onto linear maps $T: X \rightarrow \mathbb{R}^{n}$ satisfying $T(B) \subset$ K. We define the external volume ratio $\operatorname{evr}(E, X)$, also denoted by $\operatorname{evr}(K, B)$, to be

$$
\operatorname{evr}(E, X)=\inf \left(\frac{\operatorname{vol}_{n}(T(B))}{\operatorname{vol}_{n}(K)}\right)^{1 / n}
$$

where the infimum ranges over all onto linearmaps $T: X \rightarrow \mathbb{R}^{n}$ such that $T(B) \supset K$. For $0<p \leq \infty$, let ℓ_{n}^{p} be the space \mathbb{R}^{n} equipped with the quasi-norm

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

[^0]and let B_{p}^{n} be its unit ball:
$$
B_{p}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; \sum_{i=1}^{n}\left|x_{i}\right|^{p} \leq 1\right\}
$$

Let $Q_{n}=[-1,1]^{n}=B_{\infty}^{n}$ be the unit cube of \mathbb{R}^{n} and $\mathbf{C}_{n}=B_{1}^{n}$ be its polar body:

$$
\mathbf{C}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; \sum_{i=1}^{n}\left|x_{i}\right| \leq 1\right\}
$$

The ratio $\operatorname{evr}\left(K, B_{\infty}^{n}\right)=\operatorname{evr}\left(K, Q_{n}\right)$, known also as the cubic ratio of K, was studied by various authors (see [B1], [Ge], [PS]) in relation to the classical volume ratio $\operatorname{vr}\left(K, B_{n}^{2}\right)$. The zonoid ratio, which in our notation is $\operatorname{vr}\left(K, B_{\ell_{\infty}}\right)$, was also studied in [B1].

We prove that if K is the unit ball of a quasi-normed space X, then

$$
\operatorname{evr}\left(K, Q_{n}\right) \operatorname{vr}\left(K, B_{\ell_{\infty}}\right) \leq \lambda(X)
$$

geometrically this means that there exist a parallelotope P and a zonoid Z such that $Z \subset K \subset P$, and $\left(\frac{\operatorname{vol}_{n}(P)}{\operatorname{vol}_{n}(Z)}\right)^{1 / n} \leq \lambda(X)$, and we study various relations among the above mentioned quantities and other parameters associated with centrally symmetric, and not necessarily convex, bodies K.

Notation

If I is a finite set, we shall denote by $|I|$ its cardinality, and by $\mathcal{M}_{n, m}$ the set of all matrices $A=\left[a_{i}\right]_{i=1, \ldots, n, j=1, \ldots, m}$ with real entries consisting of n rows and m columns. For $I \subset\{1,2, \ldots, n\}$ and $J \subset\{1,2, \ldots, m\}$, let $A_{I J}=\left[a_{i j}\right]_{i \in I, j \in J}$. We will make use of the following Cauchy-Binet formula: If $A \in \mathcal{M}_{n, m}$ and $B \in \mathcal{M}_{m, n}$, and if $N=\{1, \ldots, n\}$ and $M=\{1, \ldots, m\}, 1 \leq n \leq m$, then

$$
\operatorname{det}(A B)=\sum_{I \subset M,|I|=n} \operatorname{det}\left(A_{N I}\right) \operatorname{det}\left(B_{I N}\right)
$$

Let $v_{n}=\pi^{\frac{n}{2}} / \Gamma\left(1+\frac{n}{2}\right)$ denote the volume of the Euclidean ball B_{2}^{n} of \mathbb{R}^{n}; then $v_{n}^{1 / n} \sim \sqrt{\frac{2 \pi e}{n}}$. If K is a centrally symmetric body (not necessarily convex) in \mathbb{R}^{n}, we note that by our definition $\operatorname{vr}\left(K, \ell_{1}^{n}\right)=\min \left\{\left(\frac{\operatorname{vol}_{n}(K)}{\operatorname{vol}_{n}(\mathbf{C})}\right)^{1 / n} ; \mathbf{C} \subset K\right.$ is the symmetric convex hull of n points $\}$, and

$$
\operatorname{vr}\left(K, B_{\ell_{\infty}}\right)=\min \left\{\left(\frac{\operatorname{vol}_{n}(K)}{\operatorname{vol}_{n}(Z)}\right)^{1 / n} ; Z \subset K \text { is a zonoid }\right\} .
$$

The cubic ratio of K is

$$
\operatorname{evr}\left(K, Q_{n}\right)=\min \left\{\left(\frac{\operatorname{vol}_{n}(P)}{\operatorname{vol}_{n}(K)}\right)^{1 / n} ; P \text { is a parallelotope containing } K\right\}
$$

and the classical volume ratio of K is

$$
\operatorname{vr}\left(K, B_{2}^{n}\right)=\min \left\{\left(\frac{\operatorname{vol}_{n}(K)}{\operatorname{vol}_{n}(D)}\right)^{1 / n} ; D \subset K \text { is an ellipsoid }\right\}
$$

Since B_{2}^{n} is a zonoid and ℓ_{1}^{n} has uniformly bounded volume ratio, it is clear that

$$
\operatorname{vr}\left(E, \ell_{\infty}\right) \leq \operatorname{vr}\left(E, \ell_{2}^{n}\right) \leq \operatorname{vr}\left(E, \ell_{1}^{n}\right) \operatorname{vr}\left(\ell_{1}^{n}, \ell_{2}^{n}\right) \sim \sqrt{\frac{2 e}{\pi}} \operatorname{vr}\left(E, \ell_{1}^{n}\right)
$$

Ratios of volumes and factorization through l_{∞}

The following proposition is essentially known [B1], [Ge], [PS].
Proposition 1. Let K be a centrally symmetric convex body in \mathbb{R}^{n} and K^{o} be its polar body with respect to the ordinary scalar product denoted by $<,>$. Suppose that $u_{i} \in R^{n},<u_{i}, u_{i}>=1$ and $c_{i}>0, i=1, \ldots, m$ satisfy

$$
\sum_{i=1}^{m} c_{i}<u_{i}, x>u_{i}=x
$$

for every $x \in \mathbb{R}^{n}$. Then:
(i) If $u_{i} \in K^{o}, i=1 \ldots, m$, there exists a parallelotope P such that $K \subset P$ and $\left(\operatorname{vol}_{n}(P)\right)^{1 / n} \leq \sqrt{e}\left(\operatorname{vol}_{n}\left(Q_{n}\right)\right)^{1 / n}=2 \sqrt{e}$.
(ii) If $u_{i} \in K, i=1 \ldots, m$, there exists a cross-polytope \mathbf{C} such that $C \subset K$ and $\left(\operatorname{vol}_{n}(\mathbf{C})\right)^{1 / n} \geq \frac{1}{\sqrt{e}}\left(\operatorname{vol}_{n}\left(\mathbf{C}_{n}\right)\right)^{1 / n} \sim 2 \frac{\sqrt{e}}{n}$.

Proof. If $C \in \mathcal{M}_{n, m}$ is the matrix whose columns are the coordinates of the vectors $\sqrt{c}_{i} u_{i}, 1 \leq i \leq m$, in the canonical basis of \mathbb{R}^{n}, we have $C C^{*}=I_{n}$, where I_{n} denotes the identity on \mathbb{R}^{n} and thus $\sum_{i=1}^{m} c_{i}=n$. It follows from the Cauchy-Binet identity that

$$
\begin{aligned}
1 & =\sum_{I \subset(1, \ldots, m\},|I|=n}\left(\prod_{i \in I} c_{i}\right)\left(\operatorname{det}\left(u_{i}\right)_{i \in I}\right)^{2} \\
& \leq\binom{ m}{n} \max _{I \subset\{1, \ldots, m),| |=n}\left(\operatorname{det}\left(u_{i}\right)_{i \in I}\right)^{2}\left(\frac{\sum_{|I|=n} \prod_{i \in I} c_{i}}{\binom{m}{n}}\right)
\end{aligned}
$$

Now, since $\sum_{i=1}^{m} c_{i}=n$, by Newton's inequality we get

$$
1 \leq\binom{ m}{n}\left(\frac{n}{m}\right)^{n} \max _{I \subset\{1, \ldots, m\},|I|=n}\left(\operatorname{det}\left(u_{i}\right)_{i \in I}\right)^{2}
$$

It follows that

$$
\max _{I \subset\{1, \ldots, m\},|I|=n}\left|\operatorname{det}_{i \in I}\left(u_{i}\right)\right|^{1 / n} \geq \frac{1}{\sqrt{e}} .
$$

In case (i) for some $I \subset\{1, \ldots, m\},|I|=n$, the parallelotope $P=\left\{x \in \mathbb{R}^{n} ; \mid<\right.$ $x, u_{i}>\mid \leq 1$ for every $\left.i \in I\right\}$ satisfies the required properties. Case (ii) follows from (i) by replacing K^{o} with K and taking $\mathbf{C}=P^{o}$.

The following results relate $\operatorname{vr}\left(K, B_{2}^{n}\right)$ to $\operatorname{evr}\left(K, Q_{n}\right)$. It is a direct consequence of the preceding proposition.

COROLLARY 2. ([B2], [Ge], [PS]) Let K be a convex symmetric convex body. Then

$$
\operatorname{vr}\left(Q_{n}, B_{2}^{n}\right) \leq \operatorname{evr}\left(K, Q_{n}\right) \operatorname{vr}\left(K, B_{2}^{n}\right) \leq \sqrt{e} \operatorname{vr}\left(Q_{n}, B_{2}^{n}\right)
$$

where $\operatorname{vr}\left(Q_{n}, B_{2}^{n}\right)=\frac{2}{v_{n}^{1 / n}} \sim \sqrt{\frac{2 n}{\pi e}}$.
Proof. The left-hand side inequality follows from the definition. For the right hand-side, we may suppose that the Euclidean ball is the maximal volume ellipsoid inside K, that is the John ellipsoid of K; then by [J], both assumptions (i), (ii) of Proposition 1 are satisfied. The result follows.

The next corollary is an improvement of an estimate due independently to many authors ([BF], [BP], [C], [Gl], and B. Maurey in [Pi1]).

COROLLARY 3. There exists a constant $c>0$ such that if $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$, $m \geq n$ and $K=\operatorname{conv}\left(\pm x_{i}, 1 \leq i \leq m\right)$, then

$$
\left(\operatorname{vol}_{n}(K)\right)^{1 / n} \leq c \sqrt{\ln \left(\frac{2 m}{n}\right)} \max _{I \subset\{1, \ldots, m\},|I|=n}\left(\operatorname{vol}_{n}\left(\operatorname{conv}\left(\pm x_{i}, i \in I\right)\right)\right)^{1 / n}
$$

Proof. Let $A \in \mathcal{M}_{n, n}$ be a matrix such that the minimal volume ellipsoid containing the body $K^{\prime}=A K$ is the Euclidean ball. Then again the assumptions of Proposition 1,(ii) are satisfied. Thus there exists a cross-polytope $\mathbf{C} \subset K^{\prime}$ such that
$\left(\operatorname{vol}_{n}(\mathbf{C})\right)^{1 / n} \geq \frac{1}{\sqrt{e}}\left(\left(\operatorname{vol}_{n}\left(\mathbf{C}_{n}\right)\right)^{1 / n}\right.$. It follows that

$$
\begin{aligned}
& \left(\frac{\operatorname{vol}_{n}(K)}{\max _{y_{1}, \ldots, y_{n} \in K} \operatorname{vol}_{n}\left(\operatorname{conv}\left(\pm y_{i}, 1 \leq i \leq n\right)\right)}\right)^{1 / n} \\
& \quad=\left(\frac{\operatorname{vol}_{n}\left(K^{\prime}\right)}{\max _{z_{1}, \ldots, z_{n} \in K^{\prime}} \operatorname{vol}_{n}\left(\operatorname{conv}\left(\pm z_{i}, 1 \leq i \leq n\right)\right)}\right)^{1 / n} \\
& \quad \leq\left(\frac{\operatorname{vol}_{n}\left(K^{\prime}\right)}{\operatorname{vol}_{n}(\mathbf{C})}\right)^{1 / n} \leq \sqrt{e}\left(\frac{\operatorname{vol}_{n}\left(K^{\prime}\right)}{\operatorname{vol}_{n}\left(\mathbf{C}_{n}\right)}\right)^{1 / n}
\end{aligned}
$$

But since $K^{\prime} \subset B_{2}^{n}$ is the convex hull of $A x_{1}, \ldots, A x_{m}$, it follows from [BP], [BF], [C], [Gl] or [Pi1] that for some constant $d>0$, independent of n and m, we have

$$
\left(\operatorname{vol}_{n}\left(K^{\prime}\right)\right)^{1 / n} \leq d \sqrt{\ln \left(\frac{2 m}{n}\right)}\left(\operatorname{vol}_{n}\left(\mathbf{C}_{n}\right)\right)^{1 / n}
$$

Combining the preceding inequalities, we get our estimate.
Remark. If the convex body K is not supposed to be centrally symmetric, then Proposition 1 can be generalized in both cases if we replace the parallelotope P and the cross-polytope \mathbf{C} by a simplex, and Q_{n} and \mathbf{C}_{n} by the regular simplices circumscribed to B_{2}^{n} and inscribed in B_{2}^{n}. Observe also that Corollary 3 can be generalized asfollows: if $K=\operatorname{conv}\left(x_{1}, \ldots, x_{m}\right)$, then

$$
\left(\operatorname{vol}_{n}(K)\right)^{1 / n} \leq d \sqrt{\ln \left(\frac{2 m}{n}\right)} \max \left\{\left(\operatorname{vol}_{n}(\Delta)\right)^{1 / n} ; \Delta \text { simplex }, \Delta \subset K\right\}
$$

for some constant $d>0$ independent of $n, m>n+1$ and $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$.
If E is a subspace of \mathbb{R}^{n}, then P_{E} will denote the orthogonal projection onto E.
Lemma 4. Let B be a symmetric body in \mathbb{R}^{n} (not necessarily convex). Let $1 \leq$ $k \leq n \leq m$ and $T=V U$, with $T \in \mathcal{M}_{n, n}, V \in \mathcal{M}_{n, m}$ and $U \in \mathcal{M}_{m, n}, \operatorname{rank}(T)=k$ and $U B \subset\|U\| Q_{m}$, where $\|U\|>0$. Then

$$
\begin{aligned}
& \frac{\operatorname{vol}_{k}(T B)}{\operatorname{vol}_{k}\left(P_{\left.\operatorname{ker}(T)^{\perp} B\right)} \leq\right.} \leq \frac{k!}{4^{k}} \sqrt{\binom{n}{k}} \lambda_{k}\left(B^{o}\right)\|U\|^{k} \max _{\operatorname{dim}(E)=k} \operatorname{vol}_{k}\left(P_{E} V Q_{m}\right) \\
&= \sqrt{\binom{n}{k}}\|U\|^{k} \max _{\operatorname{dim}(E)=k} \operatorname{vol}_{k}\left(P_{E} V Q_{m}\right) \\
& \times\left(\min _{\operatorname{dim}(E)=k}\left(\operatorname{evr}\left(P_{E} B, Q_{k}\right)^{k} \operatorname{vol}_{k}\left(P_{E} B\right)\right)\right)^{-1} .
\end{aligned}
$$

where $B^{o}=\left\{y \in \mathbb{R}^{n} ;\langle x, y\rangle \leq 1\right.$, for all $\left.x \in B\right\}$ and for a subset C of $\mathbb{R}^{n}, \lambda_{k}(C)=$: $\max \left\{\operatorname{vol}_{k}\left(\operatorname{conv}\left(\pm x_{1}, \ldots, \pm x_{k}\right)\right) ; x_{1}, \ldots, x_{k} \in C\right\}$.

Proof. By standard linear algebra methods, we have

$$
\operatorname{vol}_{k}(T B)=\left(\sum_{|I|=|J|=k}\left(\operatorname{det}\left(T_{I J}\right)\right)^{2}\right)^{1 / 2} \operatorname{vol}_{k}\left(P_{\left.\operatorname{ker}(T)^{\perp} B\right)}\right.
$$

For $I, J \subset\{1, \ldots, n\}$ with $|I|=|J|=k$ define $t_{I J}=\operatorname{det}\left(T_{I J}\right)$ and similarly for $u_{I J}$ and $v_{I J}$. Then

$$
t_{I J}=\sum_{K \subset\{1, \ldots, m\},|K|=k} v_{I K} u_{K J}
$$

so that

$$
\begin{aligned}
\sum_{|I|=|J|=k} t_{I J}^{2} & =\sum_{|I|=|J|=k}\left(\sum_{K|=|L|=k} v_{I K} u_{K J} v_{I L} u_{L J}\right) \\
& =\sum_{I}\left(\sum_{K, L} v_{I K} v_{I L}\left(\sum_{J} u_{K J} u_{L J}\right)\right) \\
& \leq\left(\max _{K} \sum_{J} u_{K J}^{2}\right)\left(\sum_{I}\left(\sum_{K}\left|v_{I K}\right|\right)^{2}\right)
\end{aligned}
$$

For $I \subset\{1, \ldots, n\}, \operatorname{card}(I)=k$, let $\Pi_{I}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{I}$ denote the orthogonal projection; we have

$$
\sum_{|K|=k}\left|v_{I K}\right|=2^{-k} \operatorname{vol}_{k}\left(\Pi_{I} V Q_{m}\right)
$$

Indeed, $Q_{m}=\sum_{j=1}^{m}\left[-e_{j}, e_{j}\right]$. Hence $\Pi_{I} V Q_{m}=\sum_{j=1}^{m}\left[-\Pi_{I} v_{j}, \Pi_{I} v_{j}\right] \subset \Pi_{I}\left(\mathbb{R}^{n}\right)=$ \mathbb{R}^{k}, where $\left\{v_{j}\right\}_{j=1}^{m}$ denote the columns of the matrix V; and now it is well known [Mc] that if $Z=\sum_{j=1}^{m}\left[-z_{j}, z_{j}\right]$ is a zonotope in \mathbb{R}^{k} then

$$
\operatorname{vol}_{k}(Z)=2^{k} \sum_{J \subset\{1, \ldots, m\},|J|=k}\left|\operatorname{det}\left(z_{j} ; j \in J\right)\right| .
$$

It follows that

$$
\sum_{I}\left(\sum_{K}\left|v_{I K}\right|\right)^{2} \leq\binom{ n}{k}\left(2^{-k} \max _{\operatorname{dim}(E)=k} \operatorname{vol}_{k}\left(P_{E} V Q_{m}\right)\right)^{2}
$$

Observe also that since $U(B) \subset\|U\| Q_{m}$, the rows U_{1}, \ldots, U_{m} of the matrix U are vectors of \mathbb{R}^{n} which satisfy $U_{i} \in\|U\| B^{o}$ for $1 \leq i \leq m$. Then, for $K \subset\{1, \ldots, m\}$, $|K|=k$, we have

$$
\left(\sum_{J \subset\{1, \ldots, n\},|J|=k} u_{K J}^{2}\right)^{1 / 2}=\frac{k!}{2^{k}} \operatorname{vol}_{k}\left(\operatorname{conv}\left(\pm U_{i} ; i \in K\right)\right)
$$

This may require an explanation: Let $\left\{z_{i}\right\}_{i=1}^{k}$ be k vectorsin \mathbb{R}^{n} and $C=\operatorname{conv}\left(\pm z_{i} ; 1 \leq\right.$ $i \leq k$). Denote by $Z \in \mathcal{M}_{k, n}$ the matrix with z_{i} 's as rows. Then there is an orthogonal matrix $\Lambda \in \mathcal{M}_{n, n}$ such that $Z \Lambda=[W, 0]$, where $W \in \mathcal{M}_{k, k}$ is a the matrix with rows $\left\{w_{i}\right\}_{i=1}^{k}$ and 0 denotes the zero matrix in $\mathcal{M}_{k, n-k}$. Obviously, $W W^{*}=Z Z^{*}$, and we obtain

$$
\begin{aligned}
\operatorname{vol}_{k}(C) & =\operatorname{vol}_{k}\left(\operatorname{conv}\left(\pm w_{i}, 1 \leq i \leq k\right)\right)=\operatorname{vol}_{k}\left(W\left(\mathbf{C}_{k}\right)\right)=\frac{2^{k}}{k!}|\operatorname{det}(W)| \\
& =\frac{2^{k}}{k!} \sqrt{\operatorname{det}\left(W W^{*}\right)}=\frac{2^{k}}{k!} \sqrt{\operatorname{det}\left(Z Z^{*}\right)} \\
& =\frac{2^{k}}{k!}\left(\sum_{J \subset\{1, \ldots, n\},|J|=k}\left(\operatorname{det}\left(Z_{K J}\right)\right)^{2}\right)^{1 / 2},
\end{aligned}
$$

where $K=\{1, \ldots, k\}$.
It follows that

$$
\left(\max _{K} \sum_{J} u_{K J}^{2}\right)^{1 / 2} \leq \frac{k!}{2^{k}}\|U\|^{k} \lambda_{k}\left(B^{o}\right)
$$

Finally, by duality we have

$$
\frac{k!}{2^{k}} \lambda_{k}\left(B^{o}\right)=2^{k}\left(\min _{\operatorname{dim}(E)=k}\left(\operatorname{evr}\left(P_{E} B, Q_{k}\right)^{k} \operatorname{vol}_{k}\left(P_{E} B\right)\right)\right)^{-1}
$$

The lemma follows.

LEMMA 5. Let K be a symmetric body in \mathbb{R}^{n} (not necessarily convex). Let $1 \leq$ $n \leq m$ and $T=V U$, with $T \in \mathcal{M}_{n, n}, V \in \mathcal{M}_{n, m}$ and $U \in \mathcal{M}_{m, n}$, with $\operatorname{rank}(T)=n$ and $U(K) \subset\|U\| Q_{m}$, where $\|U\|>0$. Then

$$
\operatorname{evr}\left(K, Q_{n}\right)|\operatorname{det}(T)|^{1 / n} \leq\|U\|\left(\frac{\operatorname{vol}_{n}\left(V\left(Q_{m}\right)\right)}{\operatorname{vol}_{n}(K)}\right)^{1 / n}
$$

Proof. Apply Lemma 4 with $k=n$.
Now let E and F be two n-dimensional quasi-normed spaces with unit balls B_{E} and B_{F} respectively. For $T \in L(E, F)$ define

$$
\gamma_{\infty}(T)=\inf \{\|U\|\|V\|\}
$$

where the infimum is taken over all the factorizations $T=V U, U \in L\left(E, \ell_{\infty}\right), V \in$ $L\left(\ell_{\infty}, F\right)$, and if B_{∞} denotes the unit ball of $\ell_{\infty},\|U\|=\inf \left\{a>0 ; U\left(B_{E}\right) \subset a B_{\infty}\right\}$ and $\|V\|=\inf \left\{b>0 ; V\left(B_{\infty}\right) \subset b B_{F}\right\}$.

For a centrally symmetric body K in \mathbb{R}^{n}, if E is the quasi-normed space such that $B_{E}=K$, we define the projection constant of E or, of K, to be

$$
\lambda(K)=\lambda(E)=\gamma_{\infty}(I)
$$

where $I: E \rightarrow E$ denotes the identity.
THEOREM 6. Let $T \in L(E, F)$, where $E=\left(\mathbb{R}^{n},\| \|_{E}\right)$, and $F=\left(\mathbb{R}^{n},\| \|_{F}\right)$ are n-dimensional quasi-normed spaces. Then,

$$
\operatorname{evr}\left(E, \ell_{\infty}^{n}\right) \operatorname{vr}\left(F, \ell_{\infty}\right)|\operatorname{det} T|^{1 / n} \leq \gamma_{\infty}(T)\left(\frac{\operatorname{vol}_{n}\left(B_{F}\right)}{\operatorname{vol}_{n}\left(B_{E}\right)}\right)^{1 / n}
$$

Proof. By Lemma 5, if we let $K=B_{E}$ then for any factorization $T=V U$ through ℓ_{∞}^{m},

$$
\operatorname{evr}\left(E, \ell_{\infty}^{n}\right)|\operatorname{det}(T)|^{1 / n} \leq\|U\|\left(\frac{\operatorname{vol}_{n}\left(V\left(Q_{m}\right)\right)}{\operatorname{vol}_{n}\left(B_{E}\right)}\right)^{1 / n}
$$

Thus, if Z is the zonoid $\|V\|^{-1} V\left(Q_{m}\right)$, then $Z \subset B_{F}$.
COROLLARY 7. If E is an n-dimensional quasi-normed space, with unit ball B_{E}, then

$$
\begin{aligned}
\lambda(E) & \geq \operatorname{evr}\left(E, \ell_{\infty}^{n}\right) \operatorname{vr}\left(E, \ell_{\infty}\right) \\
& =\max \left\{\left(\frac{\operatorname{vol}_{n}(P)}{\operatorname{vol}_{n}(Z)}\right)^{1 / n} ; Z \text { zonoid, P parallelotope, } Z \subset B_{E} \subset P\right\} .
\end{aligned}
$$

Remarks. (1) It is easy to prove that, under the hypothesis of the preceding corollary, we have

$$
\operatorname{evr}\left(E, \ell_{\infty}^{n}\right) \leq \inf \left\{\|U\|\left(\frac{\operatorname{vol}_{n}\left(V\left(B_{\infty}\right)\right)}{\operatorname{vol}_{n}\left(B_{E}\right)}\right)^{1 / n}\right\}
$$

where the infimum is taken over all linear operators $U: X \rightarrow \ell_{\infty}$ and $V: \ell_{\infty} \rightarrow X$ such that $V U$ is the identity on \mathbb{R}^{n}.
(2) By Lemma 5, if E, F are n-dimensional, then

$$
\sup _{T: E \rightarrow F, T \neq 0} \frac{|\operatorname{det}(T)|^{1 / n}}{\gamma_{\infty}(T)} \leq \frac{1}{\operatorname{evr}\left(E, \ell_{\infty}^{n}\right) \operatorname{vr}\left(F, \ell_{\infty}\right)}\left(\frac{\operatorname{vol}_{n}\left(B_{F}\right)}{\operatorname{vol}_{n}\left(B_{E}\right)}\right)^{1 / n}
$$

In particular it follows that

$$
\operatorname{evr}\left(E, \ell_{\infty}^{n}\right) \operatorname{evr}\left(F, \ell_{\infty}^{n}\right) \operatorname{vr}\left(E, \ell_{\infty}\right) \operatorname{vr}\left(F, \ell_{\infty}\right) \leq \inf _{T \in L(E, F)}\left\{\gamma_{\infty}(T) \gamma_{\infty}\left(T^{-1}\right)\right\}
$$

Let us recall now some definitions; if X is a normed space, we define the following quantities:
(1) The Gordon-Lewis constant $g l_{2}(X)$ (according to G. Pisier [Pi1]) is the least constant C such that for any operator $T \in L\left(X, l_{2}\right)$,

$$
\gamma_{1}(T) \leq C \pi_{1}(T)
$$

(2) The Gordon-Lewis constant $g l(X)$ of X (see [GL]), is the least constant C such that for any normed space Y and any operator $T \in L(X, Y)$,

$$
\gamma_{1}(T) \leq C \pi_{1}(T) .
$$

(3) The weak Gordon-Lewis constant $\mathrm{wrg}_{2}(X)$ of an n-dimensional space X (according to K . Ball [B1], a different definition was introduced in [Pi3]) is the least constant K such that for any $T \in L\left(X, l_{2}\right)$

$$
\left(\operatorname{vol}_{n}\left(T\left(B_{X}\right)\right)\right)^{1 / n} \leq \frac{2 K}{n} \pi_{1}(T)
$$

(For the definition of the ideal norm $\pi_{p}(T)$ the reader may refer to the books [Kö], [Pie], [Pi2], [Tj].) It was proved in [B2] that for some constant $c>0$, independent of X,

$$
\begin{equation*}
w r g l_{2}(X) \leq c \min \left\{g l_{2}(X), \operatorname{vr}\left(X, B_{2}^{\operatorname{dim}(X)}\right)\right\} \tag{*}
\end{equation*}
$$

and moreover, if X is finite dimensional,

$$
w r g l_{2}(X) \sim \operatorname{vr}\left(X, \ell_{\infty}\right)
$$

in the sense that there exist absolute constants c_{1} and $c_{2}>0$ such that

$$
\begin{equation*}
c_{1} \operatorname{vr}\left(X, \ell_{\infty}\right) \leq \operatorname{wrgl}_{2}(X) \leq c_{2} \operatorname{vr}\left(X, \ell_{\infty}\right) \tag{**}
\end{equation*}
$$

To better see how these numbers are related, let us also define the local unconditional constant of $X, \chi_{u}(X)$ ([GL]): this is the least constant C such that for any finite-dimensional subspace $F \subset X$ there exists a Banach space U with a finite unconditional basis constant $\chi(U)$, and operators $A \in L(F, U)$ and $B \in L(U, X)$ with $B A=i_{F}$ (the inclusion of F into X), and satisfying

$$
\|A\|\|B\| \chi(U) \leq C
$$

Of course if E is finite-dimensional, $\chi_{u}(E)=\chi_{u}\left(E^{*}\right)$, and clearly subspaces of L_{1}, and quotients of L_{∞}, have finite $g l_{2}$ constants. We see then, by results of [GL] and inequalities (*) and ($* *$) that for some absolute constants c and $d>0$, we have

$$
(* * *) \quad c \leq d w r g l_{2}(X) \leq g l_{2}(X) \leq g l(X) \leq \chi_{u}(X) \leq \chi(X) \leq \sqrt{\operatorname{dim}(X)}
$$

The following result improves inequality ($*$):

COROLLARY 8. There is an absolute positive constant c such thatfor every finite dimensional normed space F, if F^{*} denotes the dual of F, we have

$$
\operatorname{vr}\left(F, \ell_{\infty}\right) \operatorname{vr}\left(F^{*}, \ell_{\infty}\right) \sim \operatorname{wrgl}_{2}(F) \operatorname{wrgl_{2}}\left(F^{*}\right) \leq c \min \left(g l_{2}(F), g l_{2}\left(F^{*}\right)\right) .
$$

Proof. Take E in Theorem 6 to be the space l_{2}^{n}, then $\operatorname{evr}\left(E, \ell_{\infty}^{n}\right)=\left(\frac{2^{n}}{\operatorname{vol}_{n}\left(B_{E}\right)}\right)^{1 / n} \sim$ \sqrt{n}. Now, multiplying the inequality of Theorem 6 by $\left(\operatorname{vol}_{n}\left(B_{F^{*}}\right)\right)^{1 / n}$, and using Santalò's inequality, we have that

$$
w r g l_{2}(F)\left(\operatorname{vol}_{n}\left(T^{*} B_{F^{*}}\right)\right)^{1 / n} \leq \frac{c}{n} \gamma_{\infty}(T)
$$

The inequality

$$
\operatorname{wrgl}_{2}(F) \underset{\operatorname{wrg}}{2}\left(F^{*}\right) \leq c g l_{2}(F)
$$

follows now immediately from the fact that $T^{*} \in L\left(F^{*}, l_{2}^{n}\right)$, and that $\gamma_{\infty}(T)=$ $\gamma_{1}\left(T^{*}\right) \leq g l_{2}\left(F^{*}\right) \pi_{1}\left(T^{*}\right)$, and the definition of $w r g l_{2}\left(F^{*}\right)$. For the second inequality replace F by F^{*}. We use then (${ }^{* *}$).

Remarks. (a) In particular, since $g l_{2}\left(F^{*}\right) \leq \sqrt{\operatorname{dim}(F)}$ and $\lambda\left(F^{*}\right) \leq \sqrt{\operatorname{dim}(F)}$, it follows from Corollaries 7 and 8 that if $\operatorname{wrgl}_{2}\left(F^{*}\right) \sim \sqrt{\operatorname{dim}(F)}$, thenevr $\left(F^{*}, \ell_{\infty}^{\operatorname{dim}(F)}\right)$ ~ 1. In other wordsthere is a cross-polytope C contained in B_{F} (see the comments before Proposition 10) such that $\left(\frac{\operatorname{vol}_{n}\left(B_{F}\right)}{\operatorname{vol}_{n}(C)}\right)^{1 / n} \sim 1$; in 'volume sense' B_{F} is equivalent to a cross-polytope; moreover both $\lambda\left(F^{*}\right), g l_{2}\left(F^{*}\right)$ and $g l_{2}(F)$ are then asymptotically equivalent to $\sqrt{\operatorname{dim}(F)}$.
(b) If $g l_{2}(F) \sim 1$, which happens for example when F is 'well' complemented in a Banach lattice, then both B_{F} and $B_{F^{*}}$ are in 'volume sense' equivalent to zonoids.

As we shall see, the estimate given by Corollary 7 for $\lambda(K)$ can provide good information about its real value; however, we ignore whether it is a sharp estimate. The weaker estimate, $\operatorname{evr}\left(F, \ell_{\infty}^{\operatorname{dim}(F)}\right) \leq \lambda(F)$, is not sharp, as it is shown by the following example.

Example. There is an n-dimensional subspace F of $\ell_{\infty}^{2 n}$ such that

$$
\lambda(F) \sim \sqrt{n} \text { and } \operatorname{evr}\left(F, \ell_{\infty}^{n}\right) \leq \sqrt{2} e
$$

(for another example of the same type, see [B1]). In order to show this we first prove:
(a) Let E be a n-dimensional subspace of ℓ_{∞}^{m} with B_{E} as unit ball. Then

$$
\operatorname{evr}\left(B_{E}, Q_{n}\right) \leq\left(\sqrt{\binom{m}{n}}\right)^{1 / n} \leq \sqrt{\frac{m e}{n}}
$$

Let P_{E} be the orthogonal projection of \mathbb{R}^{m} onto E. Then B_{E} can be described as follows:

$$
B_{E}=\left\{x \in E ;\left|<x, P_{E} e_{i}>\right| \leq 1, \text { for } 1 \leq i \leq m\right\}
$$

Let u_{1}, \ldots, u_{n} be an orthonormal basis of E, and set $P_{E}=\sum_{i=1}^{m} \sum_{j=1}^{n} \mu_{i j} e_{i} \otimes u_{j}$. Denote by $M \in \mathcal{M}_{m, n}$ the matrix $\left(\mu_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ which represents P_{E}. Since P_{E} is an orthogonal projection, the matrix $M^{*} M \in \mathcal{M}_{n, n}$ is the identity on E. Therefore by the Cauchy-Binet formula,

$$
1=\operatorname{det}\left(M^{*} M\right)=\sum_{I \subset\{1, \ldots, m\},|I|=n}\left(\operatorname{det}\left(M_{I N}\right)\right)^{2}
$$

where $N=\{1, \ldots, n\}$. The matrix $M_{I N}$ represents the operator $P_{E} \mid \operatorname{span}\left\{e_{i}, i \in I\right\}$ which maps e_{i} to $P_{E}\left(e_{i}\right)=\sum_{j=1}^{n} \mu_{i j} u_{j}$ for every $i \in I$. Hence, denoting by \mathbf{C}^{I} the cross-polytope $\operatorname{conv}\left(\pm P_{E}\left(e_{i}\right), i \in I\right)$, we obtain

$$
\operatorname{vol}_{n}\left(\mathbf{C}^{I}\right)=\frac{2^{n}}{n!}\left|\operatorname{det}\left(M_{I N}\right)\right|
$$

It follows that

$$
\sum_{|I|=n}\left(\frac{n!}{2^{n}} \operatorname{vol}_{n}\left(\mathbf{C}^{I}\right)\right)^{2}=1
$$

Therefore there exists $J \subset\{1, \ldots, m\},|J|=n$ such that

$$
\operatorname{vol}_{n}\left(\mathbf{C}^{J}\right) \geq \frac{2^{n}}{n!\sqrt{\binom{m}{n}}}
$$

Now the parallelotope $Q^{J}=\left\{x \in E ;\left|<x, P_{E} e_{i}>\right| \leq 1\right.$ for $\left.i \in J\right\}$ contains B_{E}, and moreover since $\left(Q^{J}\right)^{o}=\mathbf{C}^{J}$, we have $\operatorname{vol}_{n}\left(Q^{J}\right) \operatorname{vol}_{n}\left(\mathbf{C}^{J}\right)=4^{n} / n!$, from which it follows that

$$
\left(\operatorname{vol}_{n}\left(Q^{J}\right)\right)^{1 / n} \leq 2\left(\sqrt{\binom{m}{n}}\right)^{1 / n} \leq 2 \sqrt{\frac{m e}{n}}
$$

But it follows from [V] that $\operatorname{vol}_{n}\left(B_{E}\right) \geq \operatorname{vol}_{n}\left(Q_{n}\right)=2^{n}$. Therefore we have

$$
\operatorname{evr}\left(B_{E}, Q_{n}\right) \leq \sqrt{\frac{m e}{n}}
$$

(b) Under the same hypothesis as in (a), if $i: \ell_{2}^{m} \rightarrow \ell_{\infty}^{m}$ denotes the identity map, and if i_{E} denotes its restriction to E, we have

$$
\left\|i_{E}\right\| \geq \sqrt{\frac{n}{m}}
$$

In fact, if we set $u_{i}=\sum_{j=1}^{m} u_{i j} e_{j}, 1 \leq i \leq n$, then

$$
i_{E}=\sum_{i=1}^{n} u_{i} \otimes u_{i}=\sum_{i=1}^{n} \sum_{j=1}^{m} u_{i j} u_{i} \otimes e_{j}
$$

so that

$$
\begin{aligned}
\left\|i_{E}\right\|^{2} & =\max _{a_{1}^{2}+\ldots+a_{n} \leq 1}\left(\max _{j=1, \ldots, m}\left(\sum_{i=1}^{n} a_{i} u_{i j}\right)^{2}\right)=\max _{j=1, \ldots, m}\left(\max _{a_{1}^{2}+\ldots+a_{n}^{2} \leq 1}\left(\sum_{i=1}^{n} a_{i} u_{i j}\right)^{2}\right) \\
& =\max _{j=1, \ldots, m} \sum_{i=1}^{n} u_{i j}^{2} \geq \frac{1}{m} \sum_{j=1}^{n} \sum_{i=1}^{m} u_{i j}^{2}=\frac{n}{m} .
\end{aligned}
$$

(c) Now let F be an n-dimensional subspace of ℓ_{∞}^{m} and let $q_{F}: \ell_{\infty}^{m} \rightarrow \ell_{\infty}^{m} / F$ be the quotient mapping. If P is any linear projection of ℓ_{∞}^{m} onto F, set $E=i^{-1}(\operatorname{ker} P)$ and $Q=I_{\infty}-P$, where I_{∞} denotes the identity mapping on ℓ_{∞}^{m}. If we set

$$
r_{Q}\left(q_{F} y\right)=Q y \text { for every } y \in \ell_{\infty}^{m}
$$

we get a mapping $r_{Q}: \ell_{\infty}^{m} / F \rightarrow$ ker P such that $r_{Q} q_{F}$ is the identity on $\operatorname{ker} P$, hence $i_{E}=r_{Q} q_{F} i_{E}$, and moreover $\left\|r_{Q}\right\|=\|Q\|=\left\|I_{\infty}-P\right\|$, so that

$$
\left\|i_{E}\right\| \leq\left\|I_{\infty}-P\right\|\left\|q_{F} i_{E}\right\| .
$$

Let now $m=2 n$; then it follows from a result of Kashin [K1] that for some constant $c>0$, independent of n, there exists an n-dimensional subspace F of $\ell_{\infty}^{2 n}$ so that, with the previous notation,

$$
\left\|q_{F} i\right\| \leq \frac{c}{\sqrt{n}}
$$

Applying (b), we get

$$
\frac{1}{\sqrt{2}}=\sqrt{\frac{n}{2 n}} \leq\left\|i_{E}\right\| \leq\left\|I_{\infty}-P\right\|\left\|q_{F} i_{E}\right\| \leq\left\|I_{\infty}-P\right\|\left\|q_{F} i\right\| \leq(1+\|P\|) \frac{c}{\sqrt{n}}
$$

for every projection $P: \ell_{\infty}^{m} \rightarrow F$, with $i^{-1}(\operatorname{ker} P)=E$. It follows that

$$
\lambda(F) \geq \frac{\sqrt{n}}{c \sqrt{2}}-1
$$

but by (a) applied to F, we have

$$
\operatorname{evr}\left(B_{F}, Q_{n}\right) \leq \sqrt{2 e}
$$

THEOREM 9. For every $0<p \leq 1$ there exists a constant $c(p)>0$ such thatfor every integer n, we have

$$
c(p) n^{\frac{1}{p}-\frac{1}{2}} \leq \operatorname{evr}\left(\ell_{p}^{n}, \ell_{\infty}^{n}\right) \leq \lambda\left(\ell_{p}^{n}\right) \leq n^{\frac{1}{p}-\frac{1}{2}} .
$$

Proof. Observe that a parallelotope contains the unit ball B_{p}^{n} of $\ell_{p}^{n}, 0<p \leq 1$, if and only if it contains $C_{n}=B_{1}^{n}$. Therefore, since $\operatorname{vr}\left(C_{n}, B_{2}^{n}\right)$ is bounded and hence from Corollary $2, \operatorname{evr}\left(C_{n}, Q_{n}\right) \sim \sqrt{n}$, it follows from Corollary 7 that

$$
\begin{aligned}
\lambda\left(\ell_{p}^{n}\right) & \geq \operatorname{evr}\left(B_{p}^{n}, Q_{n}\right)=\operatorname{evr}\left(C_{n}, Q_{n}\right)\left(\frac{\operatorname{vol}_{n}\left(C_{n}\right)}{\operatorname{vol}_{n}\left(B_{p}^{n}\right)}\right)^{1 / n} \\
& \geq c(p) \sqrt{n} n^{-1+\frac{1}{p}}=c(p) n^{\frac{1}{p}-\frac{1}{2}}
\end{aligned}
$$

The upper estimate is trivial, since the distance between ℓ_{p}^{n} and ℓ_{1}^{n} is $n^{1 / p-1}$, and $\lambda\left(\ell_{1}^{n}\right)<\sqrt{n}$.

Remark. The preceding lower estimate for $\lambda\left(\ell_{p}^{n}\right)$ has been obtained in [Pe], with an extra multiplicative $\ln (n)$, using a much more involved proof.
We also observe that easy calculation of $\operatorname{evr}\left(\ell_{p}^{n}, Q_{n}\right)$ yields the known asymptotic estimates of the projection constants for all values of $p \geq 1$.
For $0<p \leq+\infty$, let s_{p}^{n} be the n^{2}-dimensional space of all real [$n \times n$] matrices A equipped with the quasi-norm

$$
\|A\|_{p}=\left(\sum_{i=1}^{n} \lambda_{i}^{p}\right)^{1 / p}
$$

where $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ are the eigenvalues of $\left(A^{*} A\right)^{1 / 2}$, and let S_{p}^{n} be the unit ball of s_{p}^{n}.
THEOREM 10. For every $0<p \leq 1$, there exists a positive constant $a(p)$ such that

$$
a(p) n^{1 / p} \leq \operatorname{evr}\left(S_{p}^{n}, Q_{n^{2}}\right) \leq \lambda\left(s_{p}^{n}\right) \leq n^{1 / p}
$$

Proof. By Corollary 8 of [S], for some constant $d(p)>0,\left(\operatorname{vol}_{n^{2}}\left(S_{p}^{n}\right)\right)^{1 / n^{2}} \sim$ $d(p) n^{-\left(\frac{1}{2}+\frac{1}{p}\right)}$ (the proof of $[\mathrm{S}]$ considers only the case $p \geq 1$, but it is easily seen that it yields this estimate for $0<p \leq 1$). As in Theorem 9, we have

$$
\operatorname{evr}\left(S_{p}^{n}, Q_{n^{2}}\right)=\operatorname{evr}\left(S_{1}^{n}, Q_{n^{2}}\right)\left(\frac{\operatorname{vol}_{n^{2}}\left(S_{1}^{n}\right)}{\operatorname{vol}_{n^{2}}\left(S_{p}^{n}\right)}\right)^{1 / n^{2}} \geq d(p) \operatorname{evr}\left(S_{1}^{n}, Q_{n^{2}}\right) n^{-1+\frac{1}{p}}
$$

But $S_{1}^{n} \subset S_{2}^{n} \subset \sqrt{n} S_{1}^{n}$ and $\operatorname{vr}\left(S_{1}^{n}, B_{2}^{n^{2}}\right) \leq\left(\operatorname{vol}_{n^{2}}\left(S_{1}^{n}\right) / \operatorname{vol}_{n^{2}}\left(S_{2}^{n}\right)\right)^{1 / n^{2}} \sqrt{n} \leq c_{1}$. Hence, by Corollary $2, \operatorname{evr}\left(S_{1}^{n}, Q_{n^{2}}\right) \geq c_{2} n$, from which the lower estimates follows. For the upper estimate, observe that

$$
\lambda\left(s_{p}^{n}\right) \leq \lambda\left(s_{1}^{n}\right) \mathrm{d}\left(s_{p}^{n}, s_{1}^{n}\right) \leq n \cdot n^{\frac{1}{p}-1}=n^{\frac{1}{p}}
$$

where $\mathrm{d}(.,$.$) denotes here the Banach-Mazur distance.$
Remark. If K is a centrally symmetric convex body in \mathbb{R}^{n}, let

$$
K^{o}=\left\{x \in \mathbb{R}^{n} ;<x, y>\leq 1 \text { for every } x \in K\right\}
$$

be its polar body. Then for some absolute constant $c>0$,

$$
\frac{2}{\pi} \leq \frac{\operatorname{evr}\left(K, Q_{n}\right)}{\operatorname{vr}\left(K^{o}, C_{n}\right)} \leq c
$$

Indeed,

$$
\begin{aligned}
\frac{\operatorname{evr}\left(K, Q_{n}\right)}{\operatorname{vr}\left(K^{o}, C_{n}\right)} & =\inf _{P \subset K} \sup _{\mathbf{C} \subset K^{o}}\left(\frac{\operatorname{vol}_{n}(P) \operatorname{vol}_{n}(\mathbf{C})}{\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{o}\right)}\right)^{1 / n} \\
& \geq \inf _{P \supset K}\left(\frac{\operatorname{vol}_{n}(P) \operatorname{vol}_{n}\left(P^{o}\right)}{\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{o}\right)}\right)^{1 / n} \\
& =\left(\frac{4^{n}}{n!\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{o}\right)}\right)^{1 / n},
\end{aligned}
$$

and by Santalò's inequality we get

$$
\frac{\operatorname{evr}\left(K, Q_{n}\right)}{\operatorname{vr}\left(K^{o}, C_{n}\right)} \geq\left(\frac{4^{n}}{n!v_{n}^{2}}\right)^{1 / n} \geq \frac{2}{\pi}
$$

On the other hand, by the inverse Santalò's inequality (see [BM] or [Pi2])

$$
\frac{\operatorname{evr}\left(K, Q_{n}\right)}{\operatorname{vr}\left(K^{o}, C_{n}\right)} \leq \sup _{\mathbf{C} \subset K^{o}}\left(\frac{\operatorname{vol}_{n}(\mathbf{C}) \operatorname{vol}_{n}\left(\mathbf{C}^{o}\right)}{\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{o}\right)}\right)^{1 / n} \leq c
$$

If we suppose that K or K^{o} is a zonoid, using [R] or [GMR] we have

$$
\operatorname{vol}_{n}(K) \operatorname{vol}_{n}\left(K^{o}\right) \geq \frac{4^{n}}{n!}
$$

so that

$$
\frac{\operatorname{evr}\left(K, Q_{n}\right)}{\operatorname{vr}\left(K^{o}, C_{n}\right)} \leq 1
$$

PROPOSITION 11. Let Z be a zonoid in \mathbb{R}^{n}. Then $\operatorname{vr}\left(Z, B_{1}^{n}\right) \geq \operatorname{vr}\left(Q_{n}, C_{n}\right) \geq \frac{\sqrt{n}}{e}$.
Proof. Let us observe first that

$$
\operatorname{vr}\left(Q_{n}, C_{n}\right)=\left(\frac{n!}{\max \left\{\left|\operatorname{det}\left(\theta_{i j}, 1 \leq i, j \leq n\right)\right| ;\left|\theta_{i j}\right| \leq 1\right\}}\right)^{1 / n} \geq \frac{\sqrt{n}}{e}
$$

Indeed, any cross-polytope $\mathbf{C} \subset Q_{n}$ has the form $\operatorname{conv}\left(\pm \sum_{j=1}^{n} \theta_{i j} e_{j}, 1 \leq i \leq n\right)$, for some choice of the $n \times n$ matrix $\Theta=\left(\theta_{i j}\right)$ and clearly

$$
\operatorname{vol}_{n}(\mathbf{C})=\frac{2^{n}}{n!}|\operatorname{det}(\Theta)|=\frac{\operatorname{vol}_{n}\left(Q_{n}\right)}{n!}|\operatorname{det}(\Theta)|
$$

By Hadamard's inequality, $|\operatorname{det}(\Theta)| \leq \Pi_{i=1}^{n}\left(\sum_{j=1}^{n} \theta_{i j}{ }^{2}\right)^{1 / 2} \leq n^{n / 2}$, hence

$$
\operatorname{vr}\left(Q_{n}, C_{n}\right) \geq\left(\frac{n!}{n^{n / 2}}\right)^{1 / n} \geq \frac{\sqrt{n}}{e}
$$

Since a zonoid can be approximated by zonotopes in the Hausdorff metric, we may reduce to the latter case and suppose that $Z=\sum_{j=1}^{m}\left[-z_{j}, z_{j}\right]$ for some $z_{j} \in \mathbb{R}^{n}, 1 \leq$ $j \leq m$ and $n \leq m$.

Let $A \in \mathcal{M}_{n, m}$ be the matrix with the coordinates of $z_{j}, 1 \leq j \leq m$ in the canonical basis of \mathbb{R}^{n} as columns. If x_{1}, \ldots, x_{n} are points in Z, then they have the form $x_{i}=\sum_{j=1}^{m} \theta_{i j} z_{j}$, with $\theta_{i j} \in[-1,1]$, so letting $\mathbf{C}=\operatorname{conv}\left(\pm x_{1}, \ldots, \pm x_{n}\right) \subset Z$, and denoting by $L=\left[x_{1}, \ldots, x_{n}\right] \in \mathcal{M}_{n, n}$ the corresponding matrix, and by $\Theta \in \mathcal{M}_{m, n}$ the matrix with entries $\theta_{j i}$ in the i-th row and j-th column for $1 \leq i \leq m, 1 \leq j \leq n$, we have $L=A \Theta$. By the Cauchy-Binet formula,

$$
\operatorname{det}(L)=\sum_{I \subset\{1, \ldots, m\},|I|=n} \operatorname{det}\left(A_{N I}\right) \operatorname{det}\left(\Theta_{I N}\right) .
$$

But $\operatorname{vol}_{n}(Z)=2^{n}\left(\sum_{I \subset\{1, \ldots, m\},|I|=n}\left|\operatorname{det}\left(A_{N I}\right)\right|\right)$, and hence

$$
2^{n}|\operatorname{det}(L)| \leq \operatorname{vol}_{n}(Z) \max _{|I|=n}\left|\operatorname{det}\left(\Theta_{I N}\right)\right| \leq(n!) \frac{\operatorname{vol}_{n}(Z)}{\left(\operatorname{vr}\left(Q_{n}, C_{n}\right)\right)^{n}}
$$

Therefore

$$
\left(\frac{\operatorname{vol}_{n}(Z)}{\operatorname{vol}_{n}(\mathbf{C})}\right)^{1 / n}=\left(\frac{\operatorname{vol}_{n}(Z)}{\frac{2^{n}}{n!}|\operatorname{det}(L)|}\right)^{1 / n} \geq \operatorname{vr}\left(Q_{n}, C_{n}\right) \geq \frac{\sqrt{n}}{e}
$$

Remarks. (1) The estimate $\operatorname{vr}\left(Q_{n}, C_{n}\right) \geq \frac{(n!)^{1 / n}}{\sqrt{n}}$ is sharp in the case when $n=2^{k}$, $k=1,2, \ldots$ (use Walsh matrix). For an upper estimate of $\operatorname{vr}\left(K, C_{n}\right)$, valid for every convex symmetric body K, observe that the quantity

$$
\max _{x_{1}, \ldots, x_{n} \in K} \operatorname{det}\left(x_{1}, \ldots, x_{n}\right)
$$

decreases under Steiner symmetrization of K (see [M] for instance). It follows that

$$
\operatorname{vr}\left(K, C_{n}\right) \leq \operatorname{vr}\left(B_{2}^{n}, C_{n}\right)=\left(\frac{v_{n} n!}{2^{n}}\right)^{1 / n} \sim \sqrt{\frac{\pi n}{2 e}}
$$

This estimate was proved in [K2], up to a multiplicative constant.
(2) Proposition 11 allows us to give an easy geometric proof of the following result, which is also a consequence of the fact, originally due to Bourgain and Milman [BM], that the finite-dimensional subspaces $\{F\}$ of an infinite-dimensional normed space of cotype 2, have uniformly bounded volume ratios $\operatorname{vr}\left(F, \ell_{2}^{\operatorname{dim}(F)}\right)$ (see also [Pi2], [Tj], and [GK] for the general quasi-normed case). This applies in particular for ℓ_{1} which has cotype 2 : In this case, we see that every zonoid Z in \mathbb{R}^{n} satisfies $\operatorname{vr}\left(Z^{o}, B_{2}^{n}\right) \leq e \sqrt{\frac{\pi}{2}}$. Indeed, by Corollary 2, the remarks preceding Proposition 11 and Proposition 11 itself, we have successively

$$
\operatorname{vr}\left(Z^{o}, B_{2}^{n}\right) \leq \sqrt{e} \sqrt{\frac{2 n}{\pi e}} \cdot \frac{1}{\operatorname{evr}\left(Z^{o}, Q_{n}\right)} \leq \sqrt{\frac{2 n}{\pi}} \cdot \frac{\pi / 2}{\operatorname{vr}\left(Z, C_{n}\right)} \leq \sqrt{\frac{\pi n}{2}} \cdot \frac{e}{\sqrt{n}} \leq e \sqrt{\frac{\pi}{2}}
$$

It was proved by K. Ball [B2], using more involved arguments, that if Z is a zonoid in \mathbb{R}^{n}, one always has

$$
\operatorname{vr}\left(Z^{o}, B_{2}^{n}\right) \leq \operatorname{vr}\left(\mathbf{C}_{n}, B_{2}^{n}\right) \sim \sqrt{\frac{2 e}{\pi}}
$$

It may be observed that finding the exact maximum of $\operatorname{evr}\left(K, Q_{n}\right)$ over all the centrally symmetric convex bodies K in \mathbb{R}^{n} is still an open problem for $n \geq 3$ (see [Ba], where it is solved for $n=2$).

References

[Ba] I. K. Babenko, Asymptotic volume of tori and geometry of convex bodies, Mat. Zametki 44 (1988), 177-190.
[B1] K. BaLL, "Normed spaces with a weak Gordon-Lewis property" in Functional analysis, Lectures Notes in Math., vol. 1470, Springer-Verlag, New York, 1991.
[B2] , "Volumes of sections of cubes and related problems" in Geometric aspects of Functional analysis, Lecture Notes in Math., vol. 1376, Springer-Verlag, New York, 1991.
[BP] K. Ball and A. Pajor, Convex bodies withfewfaces, Proc. Amer. Math. Soc. 110 (1990), 225-231.
[BF] I. Barany and Z. Furedi, Computing volume is difficult, Discrete Comput. Geom. 2 (1987), 319-326.
[BM] J. Bourgain and V.D. Milman, New volume ratio properties for convex symmetric bodies in \mathbb{R}^{n}, Invent. Math. 88 (1987), 319-340.
[C] B. CARL, Inequalities of Bernstein-Jackson type and the degree of compactness of operators in Banach spaces, Ann. Inst. Fourier Grenoble 35 (1985), 79-118.
[Ge] S. Geiss, Antisymmetric tensor products of absolutely p-summing operators, J. Approximation Theory 68 (1992), 223-246.
[G1] E. D. Glus Kin, Extremal properties and orthogonal parallelepipeds and their applications to the geometry of Banach spaces, Math. USSR Sbornik 64 (1989), 85-96.
[GK] Y. Gordon and N. J. Kalton, Local structure theory for quasi-normed spaces, Bull. Sci. Math., to appear.
[GL] Y. GORDON and D. R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27-48.
[GMR] Y. Gordon, M. Meyer and S. Reisner, Zonoids with minimal volume product, Proc. Amer. Math. Soc. 104 (1988), 273-276.
[J] F. John, Extremum problems with inequalities as subsidiary conditions, Courant anniversary volume, Interscience, New York, 1948, pp. 187-204.
[K1] B. Kashin, Sections of some finite dimensional sets and classes of smooth functions, Izv. Acad. Nauk. SSSR 41 (1977), 334-351.
[K2] , On parallelepipeds of minimal volume containing a convex body (Russian), Mat. Zametki 45 (1989), 134-135.
[Kö] H. Konig, Eigenvalue distribution of compact operators, Operator Theory: Adv. App. vol. 16, Birkhäuser, Basel, 1986.
[M] A. M. Macbeath, An extremal property of the hypersphere, Proc. Cambridge Philos. Soc. 47 (1951), 245-247.
[Mc] P. McMullen, Volume of pmjections of unit cubes, Bull. London Math. Soc. 16 (1984), 278-280.
[Pe] N. T. PECK, A factorization constant for $\ell_{p}^{n}, 0<p<1$, Preprint.
[PS] A. Pelczynski and S. J. SZArek, On parallelepipeds of minimal volume containing a convex symmetric body in \mathbb{R}^{n}, Math. Proc. Cambridge Philos. Soc. 109 (1991), 125-148.
[Pie] A. PIETSCH, Operators ideals, North-Holland, Amsterdam, 1980.
[Pi1] G. PISIER, Remarque sur un résultat de B. Maurey, Séminaire d'Analyse Fonctionnelle 1980-81, Ecole Polytechnique, Paris.
[Pi2] , The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, vol. 94, Cambridge Univ. Press, Cambridge, 1989.
[Pi3] , Weak Hilbert spaces, Proc. London Math. Soc. 56 (1988), 547-579.
[R] S. REISNER, Random polytopes and the volume of product of symmetric convex bodies, Math. Scand. 57 (1985), 396-392.
[S] J. SAINT-RAYMOND, Les volumes d'idéaux d'overtures classiques, Studia Math. 80(1984), 63-75.
[Tj] N. TOMCZAK-JAEGERMANN, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surve ys in Pure and Applied Mathematics, Longman Scientific \& Technical, Wiley, New York, 1989.
[V] G. VAALER, A geometric inequality with applications to linear forms, Pacific J. Math. 83 (1979), 543-553.

TECHNION
HAIFA, ISR AEL
Université de Marne-LA-Vallée Noisy-Le-Grand, France
Université de Marne-La-Vallée
Noisy-Le-Grand, France

[^0]: Received January 18, 1994.
 1991 Mathematics Subject Classification. Primary 46B; Secondary 52A.
 ${ }^{1}$ Partially supported by the fund for the Promotion of Research at the Technion, and the V.P.R. grant.
 ${ }^{2}$ The authors wish to thank E. D. Gluskin for valuable discussions and suggestions in the preparation of this article.

