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RATIOS OF VOLUMES AND FACTORIZATION
THROUGH £«

Y. GORDON,! M. MEYER AND A. PAJOR?

Introduction

The projection constant A(X) of a finite dimensional normed space X is often
difficult to compute, but it plays an important role in the classical and in the local
theory of Banach spaces. We extend its definition in a natural way so as to include
the class of quasi-normed spaces as well, and we present a new method for getting a
lower bound for L(X ) in terms of ratios of volumes. This bound allows us forexample
to to easily obtain the right asymptotic estimate for A(¢) in the case 0 < p < 1 and
dispenses with the logarithmic factor in the estimate obtained by Peck [Pe] who used
some involved probabilistic method. The method applies also for the Schatten classes
sp (0 < p < 1) of operators on £3.

Given a centrally symmetric body K in R* wecan endow R* with the quasi-norm
defined by

lx]| = inf{a > 0; x € aK},

and let E = (R", ||.||) be the n-dimensional quasi-normed space with K as its unit
ball. Let B = By be the unit ball ofa given Banach space X. We define the volume
ratio vr(E, X), also denoted by vr(X, B), to be

vol(K) ) n
vol,(T (B))
where the infimum ranges over all onto linear maps 7 : X — R” satisfying T(B) C
K. We define the external volume ratio evr(E, X), also denoted by evr(K, B), to be
vol, (T (B)\ /"
voln(K) )

where the infimum ranges overallonto linearmaps 7 : X — R" suchthatT (B) D K.
For 0 < p < 00, let £, be the space R” equipped with the quasi-norm

n 1/p
lxll, = (Z |x,~|")

i=1

vir(E , X) =inf<

evr(E,X) = inf(
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92 Y. GORDON, M. MEYER AND A. PAJOR

and let BZ be its unit ball:

n
B, = lx = (x1,...,x,) € R"; leil” < 1} .

i=1

Let Qn = [—1, 11" = BZ, be the unit cube of R" and C, = B be its polar body:

n
C, = {(xl,...,x,,)e]R"; leil < 1} .
i=1

The ratio evr(K, B ) = evr(K, Qn), known also as the cubic ratio of K, was
studied by various authors (see [B1], [Ge], [PS]) in relation to the classical volume
ratio vr(K, B,f). The zonoid ratio, which in our notation is vr(K, Be, ), was also
studied in [B1].

We prove thatif K is the unit ball of a quasi-normed space X, then

evr(K, Q,)vr(K, B, ) < AM(X);

geometrically this means that there exist a parallelotope P and a zonoid Z such that
ZCKCP,and (%i(&)‘/ " < A(X), and we study various relations among the
above mentioned quantities and other parameters associated with centrally symmetric,
and not necessarily convex, bodies K.

Notation

If 1 is a finite set , we shall denote by || its cardinality, and by M, » the set of
all matrices A = [a)i=1,....n, j=1,...m With real entries consisting of n rows and m
columns. For I C {1,2,...,n}and J C {1,2,...,m]}, let A1y = [aijliel, jes. We
will make use of the following Cauchy-Binet formula: If A € M, » and B € M n,
andif N ={1,...,n}land M ={1,...,m}, 1 < n <m, then

det(AB) = »_ det(Ans)det(Bm).
ICM, |l |=n
Letv, = n%/T(1+ 3) denote the volume of the Euclidean ball B} of R?”; then

v,i/ "~ /%. If K is acentrally symmetric body (not necessarily convex) in R”, we

note that by our definition

| (volu(k)\" . . .
vr(K, £7) = min T(—é—)— ; CCK is the symmetric convex hull of »n points ¢,
VOIin

and

1/n
vi(K, B¢, ) = min V—OI-"—(—I-{—) ; ZC K isazonoid} .
vol,(Z)
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The cubic ratio of X is

vol,, (P)
vol,(K)

1/n
evr(K, Q,) = min [( ) ; P is a parallelotope containing K ] ,

and the classical volume ratio of K is

vol,(K)

vr(K, B3) = min [ (Vol,,(D)

1/n
) ; DC K isan ellipsoid} .
Since B;‘ is a zonoid and £] has uniformly bounded volume ratio, it is clear that

VI(E, L) < Vi(E, £}) < vr(E, £}) vr(£], £3) ~ ,/276 vi(E, £}).

Ratios of volumes and factorization through /»
The following proposition is essentially known [B1], [Ge], [PS].

PROPOSITION 1.  Let K be a centrally symmetric convex body in R" and K° be
its polar body with respect to the ordinary scalar product denotedby <, >. Suppose
thatu; € R", < uj,u; >=1landc; > 0,i = 1,..., m satisfy

m
E Ci <Ujy X > U =X

i=1

for every x € R". Then:

() Ifu; € K°, i =1...,m, there exists a parallelotope P such that K C P and
(vol, (P)'" < Je(vol,(Q)'/" =2./e.

(i) Ifu; € K,i =1...,m, there exists a cross-polytope C such that C C K and
(Voln(€) /" = = oln(Ca))' /" ~ 2°£.

Proof. If C € M, is the matrix whose columns are the coordinates of the
vectors /c; ui, 1 < i < m, in the canonical basis of R", wehave CC* = I,, where I,
denotes the identity on R" and thus Y| ¢; = n. It follows from the Cauchy-Binet
identity that

1= ¥ (ﬂci) (det(u;)ier)*
Ic{l,..m}|\I|=n \iel

m N N2 2ini=n [ lie Ci)
(n ) 1c|1,?.1,%{,|1|=n (det)icn) ( (9]

IA
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Now, since Y ;- ¢; = n, by Newton’s inequality we get

I= (r:) (%)nlcll,?}rg)}s ll=n (det(uiier)”

It follows that
1
det@)|Vr >
IC“,TZ)}(,|1|=,, | ieel(u’)l > ﬁ
In case (i) for some I C {1,...,m}, |I| = n, the parallelotope P = {x € R"; | <

x,u; > | < lforeveryi € I} satisfies the required properties. Case (ii) follows
from (i) by replacing K° with K and takingC = P°. O

The following results relate vr(K, B}) to evr(K, Q,). It is a direct consequence of
the preceding proposition.

COROLLARY 2. ([B2], [Ge], [PS]) Let K be a convex symmetric convex body.
Then

vi(Q,, By) <evr(K, Q,)vi(K, B)) < /e vi(Q,, B})

where vr(Q,,, BY) = ;12/_ ~y z.

n

Proof. The left-hand side inequality follows from the definition. For the right
hand-side, we may suppose that the Euclidean ball is the maximal volume ellipsoid
inside K, that is the John ellipsoid of K; then by [J], both assumptions (i), (ii) of
Proposition 1 are satisfied. The result follows. O

The next corollary is an improvement of an estimate due independently to many
authors ([BF], [BP], [C], [G]], and B. Maurey in [Pil]).

COROLLARY 3. There exists a constant ¢ > 0 such that if x1,...,%xm € R,
m > nand K =conv(xx;, 1 <i <m), then

[/
(vol,(K)'" < ¢ [In (_m) max  (vol, (conv(x;,i € )",
n Ic{l,...m},\I|=n

Proof. Let A € M, , be a matrix such that the minimal volume ellipsoid con-
taining the body K’ = AK is the Euclidean ball. Then again the assumptions of
Proposition 1,(ii) are satisfied. Thus there exists a cross-polytope C C K’ such that
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(vol, (C)/" > Jl;((voln (C))/". 1t follows that

( voln(K) )‘/"
maxy,,...y.ek Voln (conv(ky;, 1 <i <n))

.....

_ vol,,(K ') Vn
~ \max,, ek vol, (conv(z;, 1 <i <n))

.....

N~ 1/n I 1/n
- (voln(K)) Ny (VOln(K)) .
~ \vol,(C) - vol,(Cp)
But since K’ C B} is the convex hull of Axi, ..., AXn, it follows from [BP], [BF],
[C], [GI] or [Pi1] that for some constant d > 0, independent of » and m, we have

/ n 2 n
(vlu(K))"" < d. [In (—:1) Wolu(Ca) V" .
Combining the preceding inequalities, we get our estimate. [
Remark. If the convex body K is not supposed to be centrally symmetric, then
Proposition 1 can be generalizedin both cases if we replace the parallelotope P and the
cross-polytope C by a simplex, and @, and C, by the regular simplices circumscribed

to B} and inscribed in By . Observe alsothat Corollary 3 can be generalized asfollows:
if K = conv(xi,...,Xxm), then

(vol,(K)Y" <d [In (ZTm) max{(vol, (A))"; A simplex , A C K},
for some constant d > O independent ofn, m > n 4+ land x4, ..., x,, € R".
If E is a subspace of R”, then Pr will denote the orthogonal projection onto E.
LEMMA 4. Let B be a symmetric body in R" (not necessarily convex). Let 1 <

k<n<mand T=VU,withT e M, ,,VeM,,, andU € M,, ,,rank(T) =k
and UB C ||U||Q,,, where |U|| > 0. Then

vol, (T B) k! [/n .
—_— < — Au(B°
Vol Pern B) — & (k) KB digz%));kvolk(PEVQm)

= (" k
= /() WWI* max  vole(PeV Q)

-1
X ( min k(evr(PEB,Qk)k vo]k(PEB))) .

dim(E)=

where B° = {y € R"*; (x, y) < 1, forall x € B} and for a subset C of R*, A, (C) =:
max{vol,(conv(tx, ..., £x;)); X1, ..., %, € C}.



96 Y. GORDON, M. MEYER AND A. PAJOR

Proof. By standard linear algebra methods, we have

172
volk(TB)=( Z (det(T,J))Z) Vol (Pier(ry2 B) .

=|J|=k

ForI,J C {1,...,n}with |I| =|J|= k define t;; = det(T;;) and similarly for u;,
and v;;. Then

Iy = Z VrKUK]T
Kc(l,..om),[K |=k

so that
2, = v v
1J = IKUKJVILULY
111=1J |=k |111=17|=k \IK|=IL|=k
= E E VIKVIL z UKJULJ
I \K,L J
=<

() (3 (50e) )

ForI C {1,...,n},card(/) = k, letIT; : R* — R denote the orthogonal
projection; we have

D ikl =27 vl (1,VQ,).
|K |=k

Indeed, O = Z;';l[—ej, ej]. Hence I1;VQm = Z;';l[—l'llvj, ;v] C IR =
R*, where {vj }1’."=1 denote the columns of the matrix V ;and now itis well known [Mc]
thatif Z = 3_7 | [—z, z;] is a zonotope in R* then

vok(Z)=2¢ ) |det(zj; je ).
Jc{l,...m},|J|=k

It follows that
2 2
n —k
EI : (EK ik |) < (k) (2 e olk(PeV Q,,,)) .

Observe also that since U (B) C ||U|| Q,,, the rows Uy,. .., U, of the matrix U are
vectors of R* which satisfy U; € ||U ||B° for 1 < i < m. Then, for K C {1, ..., m},
|K| = k, we have

1/2
k!
( Z u%g) =% vol (conv(+U;; i € K)) .
JC{L,en} | J =k
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This may requirean explanation: Let{Zi}f:] bekvectorsinR"and C = conv(+z;; 1 <
i <k). Denoteby Z € M, , the matrix withz;’s as rows. Then there is an orthogonal
matrix A € M, , such that ZA = [W, 0], where W € M, is a the matrix with
rows {w; }f.‘=1 and O denotes the zero matrix in M, ,_, . Obviously, WW* = Z Z*,
and we obtain

2k
vol, (C) = vol; (conv(w;, 1 <i <k)) = volp (W(Cy)) = ﬁl det(W)|

2k 2k
= F\/det(WW*) = ;{—'\/det(ZZ*)

" 12
= F( Z (det(ZKJ))2) ,

Jcil,nh =k

where K = {1, ... ,k}.
It follows that

172
k!
(mlgxz uzK,) = oz IUIF3(B?).
J

Finally, by duality we have

' -1
%Ak(B") =2k (dirlg(llist)l:k (evr(PeB, Q)" vo]k(PEB))) .

The lemma follows. [

LEMMA 5. Let K be a symmetric body in R" (not necessarily convex). Let 1 <
n<mandT =VU,withT € Mpn,V € MumandU € Mp n, with rank(T) = n
and U(K) C ||U|| Qm, where |U || > O. Then

1/n
evr(K, Qn) |det(T)|'/* < |U|| (VOI"__(V(%)_) .

vol,(K)

Proof. Apply Lemma4 withk =n. 0O

Now let E and F be two n-dimensional quasi-normed spaces with unit balls Bg
and Br respectively. For T € L(E, F) define

Yool T) =inf {|U|IIIV ]I}

where the infimum is taken over all the factorizations T = VU, U € L(E, £,),V €
L(£y, F), and if B,, denotes the unit ball of £, ||U || = inf{a > 0; U(Bg) C a By}
and || V|| = inf{b > 0; V(B ) C bBr}.
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For a centrally symmetric body K in R",if E is the quasi-normed space such that
Bg = K, we define the projection constant of E or, of K, to be

MK) = A(E) = yoo()
where I : E — FE denotes the identity.

THEOREM 6. LetT € L(E,F),where E = (R", || ||g), and F = (R", || ||F) are
n-dimensional quasi-normed spaces. Then,

ln B 1/n
evi(E, £3) VI(F, £co)| det T|'" < yoo(T) (u)

vol, (BE)
Proof. By Lemma 5, if we let K = Bpg then for any factorization T = VU
through €%,

1/n
evi(E, £2.) | det(T)|V" < ||U|| (W) .

VOIn(BE)
Thus, if Z is the zonoid ||V ||~ V(Qm), then Z Cc Br. O

COROLLARY 7. If E is an n- dimensional quasi-normed space, with unitball Bg,
then

ME) = evr(E, £y) Vi(E, £oo)

1,(P)\""
ax i (%) ; Z zonoid, P parallelotope, Z C Bg C Pl .

Remarks. (1) It is easy to prove that, under the hypothesis of the preceding
corollary, we have

1/n
evi(E, £) < inf|||U|| (Mﬁw_))) ]

vol.(BE)

where the infimum is taken over all linear operators U : X — foo and V : £oo = X
such that VU is the identity on R".

(2) By Lemma S, if E, F are n-dimensional, then

| det(T)|V/» - 1 (vol,,(BF)>1/"
T:E-FT#0 Yoo(T) — evr(E,€%) vi(F, £c) \ vOlu(BE) '

In particular it follows that
: -1
eVI(E, L) eVi(F, £ ) VI(E, Loo) VI(F Loo) < inf {yoo(T)yec(T 7D} -
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Let us recall now some definitions; if X is a normed space, we define the following
quantities:

(1) The Gordon-Lewis constant gl,(X) (according to G. Pisier [Pil]) is the least
constant C such that for any operator T € L(X, I,),

n(T) < Cri(T).

(2) The Gordon-Lewis constant g /( X) of X (see [GL]), is the least constant C such
that for any normed space Y and any operator T € L (X, Y),

n(T) < Cr(T).

(3) The weak Gordon-Lewis constant wrgl2(X) of an n-dimensional space X
(according to K. Ball [B1], a different definition was introduced in [Pi3]) is the least
constant K such that for any T € L(X, l2)

ol (T(Bx)) /" < ZTKm(T) .

(For the definition of the ideal norm =, (T) the reader may refer to the books [K6],
[Pie], [Pi2], [Tj].) It was proved in [B2] that for some constant ¢ > 0, independent
of X,

() wrgh(X) < ¢ min{gly(X), vr(X, By ®)} .
and moreover, if X is finite dimensional,
wrglh(X) ~vr(X, £)
in the sense that there exist absolute constants ¢; and ¢, > 0 such that
(x%) c1 Vi(X, €oo) < wrgh(X) < 2 vi(X, o) -

To better see how these numbers are related, let us also define the local uncon-
ditional constant of X, x,(X) ([GL]): this is the least constant C such that for any
finite-dimensional subspace F' C X there exists a Banach space U with a finite un-
conditional basis constant x (U), and operators A € L(F, U) and B € L(U, X) with
BA = i (the inclusion of F into X), and satisfying

1A BIx(U) <C.
Of course if E is finite-dimensional, x, (E) = x.(E*), and clearly subspaces of L1,
and quotients of L «, have finite gl constants. We see then, by results of [GL] and

inequalities () and (xx) that for some absolute constants ¢ and d > 0, we have

(kxx) c<dwrghX) <ghX) <glX) =< xu(X) <x(X) < Vdim(X).
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The following result improves inequality (x):

COROLLARY 8. Thereis an absolute positive constant c such that for every finite
dimensional normed space F, if F* denotes the dual of F, we have

VI(F, £o) VI(F*, L) ~ wrghy(F) wrghy(F*) < ¢ min(gly(F), gl (F)).

1/n
Proof. Take EinTheorem 6tobe the spacel;, thenevr(E, £ ) = ( z ) ~

vol,(Bg)
+/n. Now, multiplying the inequality of Theorem 6 by (vol, (B)) r and using San-
tald’s inequality, we have that

wrgly(F) (vol, (T* Bp.)) /" < '—fyw(T) .

The inequality
wrgh(F)wrgh(F") < c gh(F)

follows now immediately from the fact that 7* € L(F*,l7), and that yoo(T) =
y1I(T*) < gl(F*)m1(T*), and the definition of wr gl (F*). For the second inequality
replace F by F*. We usethen (**). O

Remarks. (a) Inparticular, since gl,(F*) < +/dim(F) and A(F*) < +/dim(F), it
follows from Corollaries 7 and 8 that if wrgl,(F*) ~ «/dim(F), thenevr(F*, £2m®)
~ 1. In other wordsthere is a cross-polytope C containedin B (see the commentsbe-

1/n
fore Proposition 10) such that Vf;"n(B L2 ~ 1; in ‘volume sense’ Br is equivalent to

a cross-polytope; moreover both L(F*), gl,(F*) and gl,(F ) are then asymptotically

equivalent to /dim(F).

(b) If gl,(F) ~ 1, which happens for example when F is ‘well’ complemented in
a Banach lattice, then both By and Bp. are in ‘volume sense’ equivalent to zonoids.

As we shall see, the estimate given by Corollary 7 for A(K) can provide good
information about its real value; however, we ignore whether it is a sharp estimate.
The weaker estimate, evr(F, Zdoi,m(F)) < A(F), is not sharp, as it is shown by the
following example.

Example. There is an n-dimensional subspace F of £2 such that
A(F) ~ /n and ev(F, £") < +/2¢
(for another example of the same type, see [B1]). In order to show this we first prove:

(a) Let E be a n-dimensional subspace of £7 with By as unit ball. Then

evr(BE, Qn) < (\/@)”" < \/7%7.
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Let Pr be the orthogonal projection of R™ onto E. Then Bg can be described as
follows:

Br={x€E; | <x,Pge; >| <1, forl <i<mj.

Letuy, ..., u, be an orthonormal basis of E, and set Pg = ) 1" ZJ'.;] uije; @u;.
Denote by M € M,,,, the matrix (u;;)1<i<m, 1<j<» Which represents Pg. Since Pg
is an orthogonal projection, the matrix M*M € M, , isthe identity on E. Therefore
by the Cauchy-Binet formula,

I=detM*™M)= Y (de(My))?,
Ic{l,...m},|I |=n

where N = {1, ...,n}. The matrix M;y represents the operator Pg|span{e;,i € I}
which maps e; to P (ei) = ) i wiju; forevery i € I. Hence, denoting by C' the
cross-polytope conv(+ Pe(ei), i € I), we obtain

271
vol,(C') = — | det(Min)].
It follows that

§ (nZ‘!' I (CI))
— vol, =1.
|I|=n

Therefore there exists J C {1,...,m}, |J| =n such that

2n
vol,(C’) > .

n!\/m

Now the parallelotope Q7 = {x € E; | < x, Pge; > | < 1fori € J} contains B,
and moreover since (Q”)° = C’, we have vol, (Q”7) vol,,(C’) = 4" /n!, from which

it follows that
: 1/n
J 1/n m me
(vol.(0")'" < 2 (‘/(n)) <2,/=.

But it follows from [V] that vol,,(Bg) > vol,(Q,) = 2". Therefore we have

evi(BE, On) <,/ —.
n

(b) Under the same hypothesis as in (a), if i : £ — £7 denotes the identity map,
and if i denotes its restriction to E, we have

. n
ligl > \/—.
m
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In fact, if we set u; = Z;';l uijej, 1 <i <n, then

iE =Xn:ui Qui = ZZ“:/“l@e] )
i=l i=l j=
so that

n 2 2
ligl> =  max _max E aiuij = max max E aiuij
24 +d<1 \Ji=l..m j=1..m
n

al+ al+.+an<l

(c) Now let F be an n-dimensional subspace of £ and let gf : €5, — £ /F be
the quotient mapping. If P is any linear projection of Z’” onto F , set E = l_l (ker P)
and Q = I, — P, where I, denotes the identity mapping on £, . If we set

ro(gry) = Qyforeveryy € £%,,

we getamappingrg : £% /F — ker P suchthatr g is the identity on ker P, hence
ig =rgqrig,and moreover ||rg|l = || Q|| = I, — P||, so that

liell < lllo — Pl llgr iEll.

Let now m = 2n; then it follows from a result of Kashin [K1] that for some constant
¢ > 0, independent of n, there exists an n-dimensional subspace F of £2" so that,
with the previous notation,

llgr il < f
Applying (b), we get

1 n c
= — < ligll < e — P el < | loo — P i <@ Pl|)—
7 \/2n < liell £ e ligriell <l Mgrill =+l Il)ﬁ

for every projection P : ¢ — F , withi~!(ker P) = E. It follows that

AMF) > _.‘@__
V2

but by (a) applied to F, we have
evi(Br, 0,) < v2e.
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THEOREM 9. For every 0 < p < 1 there exists a constant c(p) > 0 such that for
every integer n, we have

-

(pynsTH <eve(l), €,)) < AEY) < n7

Proof. Observe that a parallelotope contains the unit ball B; of £,,0 < p < 1,
if and only if it contains C, = BY. Therefore, since vr(Cn, B7) is bounded and hence
from Corollary 2, evr(Cr, Qn) ~ A/n, it follows from Corollary 7 that

1/n
voln(cn))

vol, (BY)

\Y

A(er;) = evr(B”, Qn) =evr(C,,, Qn) (

> c(p) JAn ™7 =c(p)nri.

The upper estimate is trivial, since the distance between €7 and £} is n!/P~!, and

A </m. O

Remark. The preceding lower estimate for A(Z; ) has been obtained in [Pe], with
an extra multiplicative In(n), using a much more involved proof.
We also observe that easy calculation of evr((';), Q») yields the known asymptotic
estimates of the projection constants for all values of p > 1.

For0 < p < 400, let s; be the n2-dimensional space of all real [n x n] matrices A
equipped with the quasi-norm

n
IAll, = Q_ahie,
i=l1

where (A1, ..., A,) are the eigenvalues of (A*A)'72, and let SZ be the unit ball of s;.

THEOREM 10. For every O < p < 1, there exists a positive constant a(p) such
that

a(p)n'/P <evr(Sy, Qn2) < A(sp) <n'/P.

Proof. By Corollary 8 of [S], for some constant d(p) > 0, (vol,,z(SI';))l/ n ~

d( p)n_(%“L#) (the proof of [S] considers only the case p > 1, but it is easily seen that
it yields this estimate for 0 < p < 1). Asin Theorem 9, we have

1/n
1 On) = evi(ST, Q) [ 225D PR
evi(S}, Qnt) = eVi(SY, Q) (wl”z ) 2@t omn
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But S7 C S C /nS! and vi(ST, BY') < (vola(SP)/ vol,2(S9)'™ /i < ey

Hence, by Corollary 2,evr(S], Q,2) = c;n , from which the lower estimates follows.
For the upper estimate, observe that
Msp) < AGD (s 1) <nn? ™ =n’

where d(., .) denotes here the Banach-Mazur distance. [

Remark. If K is a centrally symmetric convex body in R”, let
K°={xeR"; <x,y >< lforevery x € K}
be its polar body. Then for some absolute constant ¢ > 0,

evi(K, Q,) <

2 oK. 9)
T = vr(K°,C,) —

Indeed,

ek, Q) _ .o (vol,,(P) vol, (C) )‘/"
vr(K°, Cn) pck ccke \ Vol (K) voln(K?)

. vol,(P)vol,(P°) \ /"
Pt (vol,,(K) vol,,(Ko))

\%

4n I/n
(n! vol,(K) vol, (K0)> ’
and by Santald’s inequality we get
1/n
evr(K, On) - 4" - _2_
vr(K°, Cy) ~ \nlv? 1

On the other hand, by the inverse Santald’s inequality (see [BM] or [Pi2])

evi(K, On) _ (vol,,(C) vol,(C°) )‘/ "
ViK?, Gn) — oobo \ Vol (K)voln(K?) ) =€

If we suppose that K or K° is a zonoid, using [R] or [GMR] we have

n

vol,(K) vol, (K°) > %,

so that

evi(K, Q,) <1
vi(Ke,C,) —
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PROPOSITION 11.  Let Z be azonoid inR". Thenvi(Z, B}) = Vi(Qn, Cp) = 2.

Proof. Letus observe first that

1/n
vi(Qn, Gi) = ( n! ) > JTE

max({|det(6;;, 1 <i,j <n)l; 6;] <1}

Indeed, any cross-polytope C C Oy has the form conv(x }%_,6ijej, 1 < i < n),
for some choice of the #n x n matrix ©® = (6;;) and clearly
vol,(Qy)

vol,(C) = 2—|det((~))| = ——"|det(®)].
n! n!

PO . n 2 1/2 n/2
By Hadamard’s inequality, | det(®)| < TT}_, (Z';'=1 0, ) < n"*, hence

' 1/n
(@nCo = (1) =Y
n"/? e

Since a zonoid can be approximated by zonotopes in the Hausdorff metric, we may
reduce to the latter case and suppose that Z = Z;'; 1[=2zj,z;]for some z; € R", 1 <
j<mandn <m.

Let A € M, be the matrix with the coordinates of zj, 1 < j < m in the
canonical basis of R” as columns. Ifxi, .. ., x, are points in Z, then they have the form
xi = 3, 6ijzj, with 6;; € [—1, 1], so letting C = conv(£x1, ..., £xs) C Z, and
denoting by L = [x1, ..., x»] € M, the corresponding matrix, and by ® € M, »
the matrix with entries 6;; inthe i-throw and j-thcolumnfor 1 <i<m, 1 <j<n,
we have L = A®. By the Cauchy-Binet formula,

det(L) = ) det(Ans)det(® ).
Ic{l,...m}, [I|=n

.....

n vol,(Z)
2’| det(L)] < voln(Z) max | de(®rm)] < ) Zra e 55 -
Therefore
1/n
volo(2)\" [ volu(Z) Ja
(voln(C)) - (,2,—".| det(L)—|) > vr(Qn, Cn) > pak O

n

Remarks. (1) Theestimate vr(Q,, C,) > i’%/— is sharpin the case when n = 2%,

k=1,2,...(use Walsh matrix). For an upper estimate of vr(K, C,), valid for every
convex symmetric body K, observe that the quantity

max det(xi,..., x:)
Xlyeers x€K



106 Y. GORDON, M. MEYER AND A. PAJOR

decreases under Steiner symmetrization of K (see [M] for instance ). It follows that

vr\'"  [an
K,C,) <vi(B},C,) = = ~ =
vr( ) <vr(B},C,) (2n ) P

This estimate was proved in [K2], up to a multiplicative constant.

(2) Proposition 11 allows us to give an easy geometric proof of the followingresult,
which is also a consequence of the fact, originally due to Bourgain and Milman [BM],
that the finite-dimensional subspaces { F} of an infinite-dimensional normed space
of cotype 2, have uniformly bounded volume ratios vr(F, eg‘"‘(”) (see also [Pi2],
[Tjl, and [GK] for the general quasi-normed case). This applies in particular for
£, which has cotype 2: In this case, we see that every zonoid Z in R” satisfies
vr(Z°, B}) < e,/% . Indeed, by Corollary 2, the remarks preceding Proposition 11
and Proposition 11 itself, we have successively

2n 1 2n  7/2 T e T
Zo, B}) < —_ K < [ —=Z -
vr( 2) = Ve e evr(Zo,Q,) — \ 7 'vr(Z,C,) _\/ 2°n "~ 4“2

It was proved by K. Ball [B2], using more involved arguments, that if Z is a zonoid
in R”, one always has

2
vr(Z°, By) < vr(C,, B}) ~ ,/—nf )

It may be observed that finding the exact maximum of evr (K, Q) overallthe centrally
symmetric convex bodies K inIR" is still an open problem forr > 3 (see [Ba], where
it is solved for n = 2).
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