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INDEPENDENCE AND MAXIMAL SUBGROUPS

MICHAEL WEIDNER!

Dedicated to O. H. Kegel on the occasion of his 60th birthday

1. Introduction

In this paper G denotes a finite group and M (G) the set of all maximal subgroups
of G.

Recall that a matroid (M, 7) is a finite set M together with a set Z of subsets of
M (we call X € M independent if and only if X € Z) such that:

every subset of an independent set is independent, and every one-element subset
is independent (i.e. (M, 7) is a simplicial complex)

and

if A, B € 7 and |A| < |B|, then there is an x € B \ A such that A U {x} is
independent.

Examples of matroids are:

1. Let M be the (non-trivial) vectors of a finite vectorspace, Z the linear indepen-
dent sets.

2. Let M be the set of edges of a graph I" and Z the set of all circuit-free subsets
of M.

3. LetM =M, UM, U -. .UM, be a partition of M and

IT:={XCM: |XNM| <lforalli <lI}.

Then (M, T) is a matroid. This matroid is called the partition matroid of the
partition (M;)i<; of M.

Let H := (Hy > H; > --- > H)) denote a chief-series of G (i.e., a maximal
chain of normal subgroups of G). Then M(G) is the disjoint union of the sets
K;:={U € M(G): HiU =G, H;,, <U}.

So, with Z, := {X € M(G): | X NK;| < 1foralli < I}, we have a partition
matroid (M(G), Z;;). We call the independent subsets (i.e., the elements of Z,)
‘H-independent.
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If we have sets Z;, such that (M, Z;) is a matroid, then (M, | J Z;) is not necessarily
a matroid (see Example 2.2.4). However: if C is the set of all chief-series of G and
Ze := Upec I, then (M(G), 1) is a matroid.

Call a set of subgroups U of G a W-independent set, if [],4[G : U]l =
[G: Nueu Ul Let Iy denote the set of all W-independent set of subgroups of
G. There are various applications (Wielandt’s independence definition [Wi], Galois
theory, probability theory, factorisations of groups, orbit posets) of this definition (see
Section 5).

ForZ Cc {Y C M}and X C M define Z(X) .= {Y € X: Y € Z}. For a prime p
let MP(G) := {U € M(G): [G : U] isapowerof p}. If m is the set of all primes,
then (Upeﬂ MP(G), IW(UPQT MP(G))) is amatroid.

So M?(G) together with each of the sets Z,(MP),Zo(MP) and I),,(MP) is a
matroid. For X € {H,C, W} let Ty(MP(G)" = {[(,ex*: X € Tx(MP(G))}.
Although no two of the sets Z,;(M?), Zo(MP?) and Z,,,(MP) need be equal we have
Ty (MP(G)" =L (MP(G))" =Ty (MP(G))" = SF(G), where S¥(G)is the set of
all those subgroups U of p-power index in G for which the Mébius number u (U, G)
is not zero (see [We2]). The partially ordered set S? (G) was studied in[WW]. It plays
a crucial role in the homology theory of the partially ordered set of all subgroups of
p-power index in G.

In p-solvable groups we have a certain class of subgroups called p-Prefrattini-
groups (see [DH] page 422ff., [Ga], [Wel]). The results of this paper justify to define
(for all groups) p-Prefrattinigroups as the minimal elements of S?.

2. Preliminaries
2.1. About matroids.

DEFINITION 2.1.1. A simplicial complex (M, T) is a finite set M and a set Z of
subsets of M such that:

1. If m € M, then {m} € Z.
2. IfAeZand B C A,thenB € T.

A matroid is a simplicial complex (M,Z) such that whenever A, B € 7 and
|A| < |B|, thenthere isab € B \ A suchthat AU {b} € 7.
A subset X of M is called an independent set if and only if it is in Z.

The last condition implies that all maximal independent sets of a matroid have the
same cardinality.

THEOREM 2.1.2.  Fix a simplicial complex (M, T).
1. For AC M define Z(A) ={ANX: X €T}. Then (A,I) := (A, I(A)) isa
simplicial complex. If (M, I) is a matroid, then so is (A, T).
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2.If M = AU B is a disjoint union suchthat X € M isinT ifandonly if X N A
and X N B are inZ, we call (M, T) the direct product of (A, T(A))and (B,Z(B)).

If (A, T) and (B, I) are matroids, then so is (M, T).

3. Suppose (M, T) is a simplicial complex and f: M — M is a map. Assume

I={YCcM:3IXeIst|X|=/|=|fX)|and f(X)=fX)}.

Then (f (M), f(@)) is a simplicial complex.
Moreover, (M, I) is a matroid if and only if (f (M), f(@)) is.
4. For a matroid (M,T) andm € M let

proj(m) :={x e M: {x,m} € Z} U {m}.

For X C M define proj(X) := {proj(m): m € X} and proj(Z) := {proj(X):
X e T}.

Then (proj(M), proj(2)) is a matroid. We will call this matroid the projective
matroid of (M, T).

Proof. 1. See [Ai], Proposition 6.33.

2. See [Ai], Proposition 6.44.

3. (a) Suppose (M, T) is amatroid and f X, fY € f(Z) are such that | fX| <
|fY|. Fix X,Y € I such that f(X) = fX, f(Y) = fY, |f(X)| = |X| and
|f(Y)] = |Y]|. By assumption we finda y € Y \ X suchthat X U {y} € Z. But now
FO) e fFY\fXand fXU(f()} = fXU)) € f@. Thus (f(M), fT))isa
matroid.

(b) Suppose (f (M), f(Z)) is a matroid. Let X,Y € 7 and |X| < |Y|. The
assumptions on Z imply |X | = f(X) < f(¥Y) = |Y| and so thereis a fy € f(Y)\
f(X) such that f(X) U{fy} € f(2).

Fix y € Y such that f(y) = fy. Since f(y) € f(X) we have y ¢ X. But
fXU{yh =fX)U{fy}e f@) and so, by assumption, X U {y} € Z.

Thus (M, ) is amatroid.

4. See [Ai], Theorem 6.1. O

EXAMPLE 2.1.3. 1. Assume K is afinitefieldandV = K". Let M := V \ {0} and
let Z denote the set of all linear independent subsets of M. Then (M, 7) is a matroid.
The projective matroid of (M, Z) corresponds to the projective space associated to
V. The matroid structure of the projective matroid determines n, and if n > 2 it
determines K too.

(M, T) cannot be written as a product of two nontrivial matroids (well known).

2. Suppose T is a graph with set of vertices V(I") and set of edges E(I") (so
ET) c{{i,j}: i, je V)i #j].

Let Zr denote the set of all X C E(I') such that (V(I'), X) contains no circle.
Then (E(T"), Zr) is a matroid (see [Ai], Theorem 6.23 (Whitney)).
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2.2. ‘H and W-independence. Let p denote a prime and G denote a finite group.
Then F), is the field with p elements, 1 is the trivial F ,G-module and E is the trivial
subgroup of G.

LEMMA 2.2.1. Let G denote a finite group and U € M(G) (i.e., U is a maximal
subgroup of G). Fix a chief-series H = (H;); (i.e., a maximal chain of normal
subgroups in G).

Then H; < U ifand onlyif H;U # G. So

{(XeM@G): HX =G, Hi+1 <X})={X € M(G): Hi+1 <X # Hi}.

Proof. As H is a maximal chain of normal subgroups, we have G = Hp and
E = H;. So H < U < Hy, and there exists an unique i(U) such that Hyyy1 <
U % Hiw).

Fori <i(U) we have Hi+1 < U and so Hi1U =U # G.

For i > i(U) we have H; £ U andso U # H;U. As H; is normal we get
H;U < G, and as U is maximal we conclude H;U = G. 0O

DEFINITION 2.2.2. Suppose R is a bounded partially ordered set (i.e. there are
0,1€ Rsuch0<r <1forallr € R).

Assume P, Q C Rsuchthat0,1 € Pand H = (Ho > Hi > --- > H)) is a
maximal chain in P.

Define Ir :={XC Q: |{x € X: Hi+1 <x # Hi}| <1foralli}.

Let C denote the set of all maximal chains in P and let Zc := U, Tn.

LEMMA 2.2.3.  Notation as above.

Ulx € Q: Hi1 < x # H} is a partition of Q and (Q, Tw) is a (partition)
matroid.

(Q, Ic) is a simplicial complex.

Proof. For U € Q fix i(U) such that H;;y £ U > Hyy).,. Since Hy =1,
H; = 0and H; > H;,, there exists exactly one such number i (U ).

So | J;{X € Q: i(X) =i}is apartition of Q. Thus (Q, Z) is a partition matroid
(see [Ai], Proposition 6.2).

In particular, (Q, Z4) is a simplicial complex for every ‘H € C. Thus (Q, Z;) :=
(Q, Upec ) is a simplical complex too. O

EXAMPLE 2.2.4. 1. Let R denote the set of all subgroups of G (partially ordered
by inclusion), Q = M (G) the set of maximal subgroups and P the set of all normal
subgroups. Then the maximal chains in P are exactly the chief-series of G.

Thus we have redefined (see Lemma 2.2.1) the complexes (M(G),Z5) and
(M(G), Z¢) of our introduction. Moreover, the first complex is a matroid (seeLemma
2.2.3).



INDEPENDENCE AND M AXIMAL SUBGROUPS 51

2. Let G denote a finite group and C; C C. Then (M(G), Uyec, Ir) is not
necessarily a matroid.

For example: let G = (a, b, c) denote the elementary abelian group of order 8.

Let H, := (G, {a, b), (@), E) and H, = (G, (b, c), (b), E) (so H, and H, are
chief-series of G).

Define T := 73, U I4,,. We claim that (M (G), 1) is not a matroid.

Indoingsolet B := {{a, b), (a, ¢), (ba, c)} € I3, € Tand A := {(ba, c), (b,ca)}
€Ty, €T So|A|=2< 3 =|B| Since A ¢ Ty, theonly x € M(G) \ A for
which AU {x} € Zis (b, c). As (b, c) & B we see that (M(G), Z) is not a matroid.

DEFINITION 2.2.5. A set of subgroups U of G is W-independent if and only if

[G: Nyey Ul =11yl G : Ul Let Ty denote the set of all W-independent sets of
subgroups of G.

For A, B < G, we define AB :={ab: a€ A,B € B}.

LEMMA 22.6. IfA,B<Gand C < A. Then
(Lagrange): |AB| = |A||B|/|A N B|.
(Dedekind): A N (CB) = C(AN B).

If B is normal in G, then AB <G.

Most parts of the next lemma can be found in [FJ], Chapter 16.3 and [Wi], Kapi-
tel 1.2.

LEMMA 2.2.7. 1. Fora setU of subgroups the following are equivalent:

(a) Every subset of U is WW-independent.

(b) U is W-independent.

©) [Ty lG :UI = [G: Nyeu U

D G/NMvewVU = xvauG/ U5 w(@ NvewU) = Xveu 8U is (surjective)
bijective (Chinese Remainder Theorem).

(e) For all U € U we have U(nu;e('leu U) = G (this is a definition in [Wi]).

OIfVcUand L:=U\V, thenV,L €Ty and (yep V)N L) = G.

2. If (H;) is a series of normal subgroups and U; fori € I are supplements of
H;/H; .\, then {U;: i € I}is W-independent (so Zo(M(G)) € I, (M(G)) ).

Furthermore, H,-(ﬂisje, Uj) = G for all .

3. IfU # Us, then {U, U8} is not W-independent.

4. If U is W-independent and gy € G for U € U, then {Us: U € U} is
W-independent and there isa g € G such that (\y ., U8 = \yas Us-

Proof. For X a set of subgroups of G, define An :=(\yc» X.

1. If 7, (gU~) = t4(g'Un), then g~1g’ € U for all U € U. So 7, is injective.
Hence [G: Un] <[]yl G : Ul and 1, is surjective if [G: Un] = [[yy[G : UL

This proves (b)<> (d)< () and (a)=>(d). If 7, is surjective, then so is 7y, forevery
subset V of . Thus (d)= ().
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For V C U define £ := U \ V and let (f),, denote the assertion V, £ € Z)y and
Vnﬁn =G.

If (f)y, then VAN Ln| = |VAlILAl/IG]. As L,V € I,,, we can compute both
sides of this equation in terms of |U| for U € Y. This gives (f),,= (b).

If (a) is true, then

[VnLn|

IVl Lal/IVa N Lal

IGIPnl/IGl |£Lnl/IG] IGI/1Un
IGITTyey IVI/IGI Tiec ILI/IG] Ty IGI/IUN =IGI.

So (a)=(f)y. As (a) does not depend on V, we have (b) < (a)s ()< (D).

Of course (f)= (e) (just setV = {U}).

Suppose (¢). Thenforevery U € U andall X € U\{U}, wehave X U\{U} = G.
So U \ {U} still satisfies (¢) and we may assume (induction) ¢ \ {U} € Z,y. Hence
@=>® e .

2. LetI ={ip > iy > ---> ip}. Then H;, < U, forj > 1. Hence U {U;: j =

1} =2 U H;,, =G.
By induction, {U;;: j > 1} € )y and so {U;: j > 0} € Ty.
We have

H,'I.(U,'oﬂUi, n-.. 'ﬂUtI) = HijMo(Uio r-]Ui| n-. 'nUij)
= H;;(H Uy, NU, N---NUy) = Hy(Uy N---NUy)
= Hj,U; =G

3.8 UUsg e UsU =U8.

4. If U € Ty, then there is ag € G such that g7'U = g, ~'U for all U (see
above). SoU/ and {U8: U € U} = {U8V: U € U} are conjugate.

Since no two elements of I are conjugate, the same argument works for {U%: U €
UleIly. 0O

DEFINITION 2.2.8. IfG := Ay > Al > A2 > o> A= AI+1 := F are normal
in G and H is a chief-series, we say that H is a chief-series through all A;’sif A; € H
foralli <.

We call A;/A, a chief-factor, if there is a chief-series (H;); <, and an i such that
Ay =H;and Ay = H;,,.

We say that U € M(G) supplements A /A, if AjU =Gand U > A,.

We say that the chief-factor C/ D is above (resp. below, resp. between) A;/A,, if
D> A, (resp.C < A,,resp. A, <D< C<A)y.

We say C/D is compatible with {A;: i <1}, if there exists an0 <i <!+ 1 such
that A,y < D <C <A,
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3. C-independent sets
In this section we prove:

THEOREM 3.1. Let G denote a finite group. Then (M(G),Z¢) is a matroid.

IfU,L e M(G) andU # L, then {U, L} & 1. ifand only if the intersection over
all conjugates of U is the intersection over all conjugates of L.

Let (proj(M(G),proj(Z.)) denote the projective matroid of (M(G), I;).

The minimal direct factors of (proj(M (G), proj(Zc)) are either the matroids con-
structed from complete graphs or the projective matroids associated to vector spaces
(see Example 2.1.3).

Let us sketch the proof:

Theorem 3.2.8 gives some factors (see Theorem 2.1.2.2) of (M(G), Z;) as sim-
plicial complex.

Lemma 3.3.1 gives a partition of M (G) that enables use to apply Theorem 2.1.2.3
(and later on Theorem 2.1.2.4).

We use this partition and factorisation in Lemmas 3.4.1 and 3.4.3 to construct
matroids (like those in Example 2.1.3).

So by Theorem 2.1.2.3 the factors are matroids.

Now Theorem 2.1.2.2 and 4 show that (M (G), Z.) is a matroid and that we have
constructed the associated projective matroid.

The minimal direct factors of (M (G), Z) can be deduced from Lemma 3.4.4 and
the factorisation of Theorem 3.2.8.

3.1. Core and crown.

DEFINITION 3.1.1. For U < G define

core(U) := [ | U
g€G

(so core(U) is the kernel of the permutation action of G on G/U).
Let N denote the product of all minimal normal subgroups of G /core (U ). Define
crown(U) by crown(U) /core(U) = N.

The structure of crown(U) /core (U ) is rather restricted:

THEOREM 3.1.2 (Baer). Suppose U € M(G) and core(U) = E. Then one of the
Sfollowing hold:

1. G has a unique minimal normal subgroup N .
N is abelian, UN N = Eand UN = G.
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2. G has a unique minimal normal subgroup N .
N is non-abelian and UN = G.

3. G has exactly two minimal normal subgroups A, B.
A and B are isomorphic but non-abelian. AB N U is the diagonal subgroup
of AB.
AB/B (resp. AB/A) is the unique minimal normal subgroup of G/ B (resp.
G/A).

Furthermore, if A is a non-trivial normal subgroup of G, then Cg(A) is either trivial
or a minimal normal subgroup of G.

Hence, if A is a minimal normal subgroup of G, then ACg(A) is the product of
all minimal normal subgroups of G.

Proof. See [Baer], Section2. O
LEMMA 3.1.3. Fix U € M(G).

1. If B < Aarenormal in G and B < core(U) # A, then there exists a chief-
factor A/E’ such that B < B < core(U) # A <A.

2. If A/B is a chief-factor, then U supplements A/ B if and only if
B < core(U) # A.

3. Suppose U supplements the chief-factor A/ B.
Then crown(U) = Cg(A/B)Aand A /B = Acore(U)/core(U) as groups with
G-action.
If in addition A /B is abelian, then crown(U) = Cc(A/ B) and

crown(U)/core(U) = A/B as G-modules.

Recall: A/B is an elementary abelian p-group for some prime p. Now the
conjugation action of G on A /B gives A/ B the structure of an (irreducible)
F,G-module (F, is the field with p elements).

4. If A/B and C/ D are chief-factors and U supplements both, then
A/B = C/D as groups.

Proof. 1. Let B = AN core(U), then B < B < A. Hence there exists a
normal subgroup A suchthat A/B is achief-factorand A < A. If A < core(U), then
A < ANcore(VU) = B, acontradiction.

2. U supplements A/B B < U # A (Lemma22.1) B <U¢ ¥ A (as A and
B are normal) < B < core(U) # A.

3. The mapa B — a core(U) is an isomorphism (as groups with G-action) from
A/B onto Acore(U)/core(U) (this map is an epimorphism and, since A/B is a
chief-factor and A core(U) # core(U), it has to be an isomorphism). So A/B =
A core(U)/core(U) as groups with G-action. Hence core(U) < Cg(A/B). Now
(see Theorem 3.1.2 (Baer)) crown(U) = C5(A/B)A.
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If crown(U) /core(U) is a chief-factor (and this is true if A/B is abelian), then
Theorem 3.1.2 gives A /B = crown(U)/core(U ) as groups with G-action. If A /B is
abelian, then A < C;(A/B).

4. As already proved, A /B and C/ D are isomorphic (as groups with G-action) to
some minimal normal subgroups of crown(U ) /core(U). But all these subgroups are
isomorphic as groups (see Baer), and so A/B = C/D (as groups). O

3.2. Direct factors and types.

DEFINITION 3.2.1.  Suppose U, U € M(G). Wesay that U and U have the same
type, if

1. crown(U) = crown(U) and ~ _
2. crown(U)/core(U) and crown(U)/core(U) are, either both abelian and iso-
morphic as G-modules, or both non-abelian.

So “type” is an equivalence relation. Let ® denote the set of all types.

For T € © letcrown(T) := crown(U ) for some U € T (this is independent of the
chosen U) and core(T) := ﬂU T core(U).

If A/B is a chief-factor and U € T supplements A /B, then we say that A/B has
type T (note that the type of A/ B is not defined if A/B possesses no supplement in
M(G)).

LEMMA 3.2.2. Suppose N is an abelian normal subgroup and UN = G. Then
UNN isnormal inG.

Suppose UNN # N. ThenU € M (G) ifand only if N /(N NU) is a chief-factor.

Assume X C M(G) is minimal under the condition ﬂXe xXON = E. Then
N xex X is a complement of N in G and NN xex X) is a complement of N/ N for
all G-normal subgroups N of G.

Proof. Since N is normal, we have U < Ng(N NU), and as N is abelian, we
have N < Ng(UN N). Hence Ng(UNN)>UN = G. So NN U is normal in G.

IfU e M(G)andUNN < B < N forsome normal subgroup B, then B £ U and
therefore BU = G. SinceU NB =U N N, we have |B|= |G||UN B|/|U| =|N|.
Hence B = N and N/(N N U) is a chief-factor.

If N/(N NU) is a chief-factor and U < X € M(G),then UN N = XN N and
so | X||N|/IlUN N|=|G|=|U|IN|/IlUN N|. HenceU = X € M(G).

Fix anenumeration X = {X;, ..., X;}of X. Let Ny := N andN; := ﬂjq. X;NN.
Then N; > N, by minimality of X
Thus X; supplements N;/N;; and Lemma 2.2.7 proves N (\y.x X = G.

If N < N is normal, then N (., X is a complement of N/N inG/N. O
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LEMMA 3.2.3. Suppose T € ® and A /B is a chief-factor.

1. IfU € Tand U € M(G) supplements A/ B, then U € T.
Thus every chief-factor has at most one type.

2. There is an X C T such that crown(U) /core (U) is a chief-factor for all U €
X and crown(T)/core(T) = crown(T)/ () cx core(U) = Pyex crownlU)/
core(U).

3. If A/ B is a chief-factor compatible with crown(T) /core(T), then A/ B hastype
T if and only if A/ B is between crown(T) /core(T).

Proof. 1. By assumption crown(U) = ACg(A/B) = crown(U).
Suppose A/B is abelian; then

crown(U)/core(U) = A/B = crown(U) /core( 0)

as groups with G-action. So U € T.

Suppose A/ B is non-abelian; then so are A core(U)/core(U) and crown (U )/
core(U). Similar for U. Hence U € T in this case, too.

2. If Nisnormal and X, Y < N are normal,then N/(X NY) is an epimorphic image
of N/X & N/Y as groups with G-action. If N/Y is a chief-factorand XNY # Y,
then N/(XNY)=N/X & N/Y as groups with G-action.

Therefore it is enough to prove that core(T) is an intersection of those core (U)’s
with U € T and crown(U)/core(U) a chief-factor.

Fix U € T such that crown(U)/core (U) is not a chief-factor. We will construct
Ui, U, € T such that crown (T) /core (U; ) is a chief-factor and core(U1) Ncore(U2) =
core(U) (this will be sufficient to prove this part of our lemma).

In doing so, we may assume core(U) = E.

By Theorem 3.1.2 (Baer) we find minimal non-abelian normal subgroups X, Y of
crown(U) such that XY = crown(U). Let i denote a non-trivial Sylow subgroup of
X (so S is a proper subgroup of X since, X isnon-abelian). Then Ng(S)crown(U) =
G (Frattini argument) and ¥ < Ng(S) Ncrown(U) < crown(U). Fix U; with
Ng(S) < Ui € M(G). This U, is a supplement of X. Since U is also a supplement
of X we have U; € T. Furthermore crown(Ui)/core(U1) = crown(T)/Y is a chief-
factor. Similarly we find U> € T that supplements Y such that core(U2) = X. So
U eTandcore(U) = E =Y NX = core(U1) N core(U2).

3. Suppose A /B hastype T. We have to show that A £ core(T) (i.e., A/ B is not
below core(T)) and B # crown(T) (i.e. A/ B is not above crown(T)).

Since A/B € T, thereexistsa U € T suchthat B < core(U) # A.

SoB < A<ACg(A/B) =crown(T) and A £ core(U) > core(T).

This proves this case.

Suppose core(T) < B < A < crown(T). We may assume core(T) = E.

As already shown, there is an / and supplements U; € T of the chief-factor M; :
crown(U;)/core(U;) such that (| U; N crown(T) = E and crown(T)/core(T)
@®i<iM;. Let N; denote the preimage of (), ., M;.

R

i#j<



INDEPENDENCE AND M AXIMAL SUBGROUPS 57

Suppose A/ B is non-abelian. Then all N;’s are non-abelian, and so there exists
ana suchthat A= B@® N,. Hence U,A = G and B < U,. Thus A/ B has type T.

Suppose A/B is abelian. Then so is crown(T). Hence K := (), U; satisfies
Kcrown(T) = G and K N crown(T) = E (see Lemma 3.2.2). As crown(T) is a
direct product of minimal normal subgroups, we find a normal subgroup N such that
NA = crown(T) and NNA = B. Now KNA = G and KN > B. Since [G :
KN] = |A/B| # 1, it follows that KN € M(G) and crown(KN) = C;(A/B) =
Cs(M;) = crown(T). So KN € Tisasupplement of A/B. O

LEMMA 3.24. LetT € ® and X C T. Then X is C-independent if and only
if there exists a chief-series L through crown(T) and core(T) such that X is L-
independent.

Proof. If X is L-independent for some chief-series £ as above, then X is C-
independent.

So suppose H is a chief-series and X C T is H-independent.

We project H to crown(T)/core(T) as follows:

Define L; := crown(T) N (H;core(T)), then

crown(T) > L; > Li+1 > core(T).

If there is a U € X that supplements H;/H; ., then H; < H;Cs(H;/H;y1) =
crown(T) and so L; = H;core(T). Thus UL; = G. Moreover, L; ,; = H;,core(T)
<L;NU.

This proves that U supplements (some chief-factor between) L;/L; .

So every chief-series £ that contains all L;’s, crown(T) and core (T) satisfies the
conclusion of our lemma (and at least one such £ exists, as already shown). 0O

COROLLARY 3.2.5. Suppose X C T € ® and (), xcore(x) =Y. Then X € I
if and only if there exists a chief-series H through crown(T) and Y such that X is
‘H-independent.

Proof. In the proof of the last lemma replace core(T) by Y. [

LEMMA 3.2.6. Suppose T € ©. Let M < crown(T) denote a normal subgroup
of G such that MU = G forall U € T andlet N := M N core(T).

Then M core(T) = crown(T).

Furthermore X C Tis inIc ifand only if X € I for some chief-series L through
M and N.

Proof. If Mcore(T) < crown(T), then there is a U € T that supplements a
chief-factor between crown(T) and M core(T), hence (by Lemma 3.2.3) MU <
M core(T)U = U, a contradiction.
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If H is a chief-series through M and N and X is H-independent, then X is C-
independent.

So suppose X € Z.. By Lemma 3.2.4 we find a chief-series H through crown(T)
and core(T) such that X is H-independent. Let H;, = crown(T) and H;, = core(T).
The isomorphism

M/ N = Mcore(T)/core(T) = crown(T)/core(T) = H; /H;,

gives Li’s suchthat N < L; < M and L;core(T) = H; fori; <i < i».

If U; supplements H;/H;+1 and i1 + 1 < i < iz, then U;L; = Ujcore(T)L; =
UiHi = G and U; > Hi+1 > Liy1. Therefore X is L-independent for any chief-
series £ through {L;: i1 < i < i2}. As already shown at least one such £ exists and
M,NeL. 0O

DEFINITION 3.2.7. We now define (inductively) a series of normal subgroups
of G.

Let Mo := G, No:=G,To := {G} and ©O¢ := O.

If, for all j <i > 1, we have defined M;, N;, T;and ©;, and if ®;—; # @, then
define M;, N;, T; and ®; by the following procedure:

1. Chose a T; € ®;_; such that crown(T;) N N;-; is maximal in

{crown(X) N N;_i: X e ®i—l}'

2. Define M; := crown(T;)N N;_;, N; = M; N core(T;) and ®; := O,_ \{T;}.

Remark. Fixl suchthat ®,_; # @ = ©,. The above definition gives an enumera-
tion® = {T;: 1<i<l}of ®andaseriesM; > Ny > M, >N,>.--> M, > N,
of normal subgroups, such that if H is a chief-series through all N;’s and M;’s and
A/B is a chief-factor in H, then A/B has type T; if and only if A/B is between
M;/N;.

This follows from the proof of the next theorem.

THEOREM 3.2.8. Let H denote a chief-series. Then there exists a chief-series L
through all M; and N; (defined as above) such that Tyy = Ic. Hence (M(G),Zc) is
the direct product of alk (T, Zc)’s withT € O.

Proof. We claim that the M;’s and N;’s satisfy the hypothesis of the last lemma
forT=T,.

In doing so, we make an induction on i. The case i = 1 is trivial. Suppose our
claim is true for j < i and false fori.

Since M; < crown(T;) and N; = M; N core(T;), this gives us a U € T; such
that M;U # G. Thus U supplements some chief-factor between M;/N; or N;/M; .,
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for some j < i. In the first case U € T; # T, a contradiction. The second case
cannot appear, for if A/B is a chief-factor between N;/M;,, with supplement U,
then N; Ncrown(U) > A > B > M, a contradiction to the choice of M;_,

This proves our claim.

Now, if X is H-independent, then each X := X NT; is H-independent and the
two last lemmas show, that X, is mdependent for a chief-series £; through M;/N;.
This is still true if we vary £; above M; and below N;. Let Y; denote the set of all
normal subgroups in L; between M; and N;. Then Y := 7 is linearly ordered and
every chief-series £ through Y satisfies 7, = Zy,.

Hence (M (G), Z,) is the direct product of the T’s withT € ®. O

3.3. Projective C-independence.

LEMMA 3.3.1. 1. Suppose U, L are two different elements of M(G). Then
{L,U} € I; if and only if core(U) # core(L).

2. Suppose X C M(G)andeverytwo-element subsetof X isin I.. Fixy, € M(G)
such that core(y,) = core(x) and crown(y,) = crown(x) for all x € X. Then

={y,: x € X}isinZ;ifand only ifX is.

Proof. 1. Suppose core(U) = core(L) and let H denote a chief-series such
that U supplements H; /H;, and L supplements H;/H; with i < j. Then H; <
H;, <core(U) =core(L) <L. So LH;=L < G. A contradiction. Since H was
arbitrary, we conclude (U, L} & Z¢.

Suppose core(U) # core(L). We may assume core(U) £ core(L). Then
core(U)L £ L. As L is a maximal subgroup, we get core(U)L = G. So U sup-
plements some chief-factor above core(U) and L some below. Hence, if core(U) €
HeC,then{U, L} € T, € L.

2. Suppose H is a chief-series, X as above and X is H-independent.

If x € X is a supplement of H;/H; ., then H;, | < core(x) # H;,; and y, is a
supplement of H;/H;, ,, too. So Y is H-independent.

On the other hand, the assumption about the two-element subsetsof X implies that
the map x — y, is bijective.

Reversing the roles of Y and X shows that X is H-independent if and only if Y is.
Varying over all chief-series H finishes the proof of our lemma. 0O

3.4. Geometric and graphic factors. Lemma 3.3.1 and Theorem 2.1.2 show
that the question of when a subset of M(G) is C-independent is a question about
normal subgroups.

More explicit (we use Theorem 2.1.2, 3.2.8 and Lemma 3.3.1):

Let P(G) denote the lattice of all normal subgroups of G and N(G) := {core (U):
U € M(G)}. Define (N(G),Z;) as in Definition 2.2.2 (with R = P = P(G) and
Q0 = N(G)).

Then (M(G), Z;) is a matroid if and only if (N(G), Z¢) is.
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If (M(G),Z¢) is a matroid, then (N(G),Z¢) is the corresponding projective ma-
troid.

Furthermore, for T € ® let N(T) := {core(U): U € T}. Then the N(T)’s are the
direct factors of N(G) and so (N(G),Z) is amatroid if and only if each (N (T), Z;)
is.

LEMMA 3.4.1. Suppose that T € ® and crown(T)/core(T) is abelian.

Then there is a prime p, an irreducible F, G-module W and an n such that
crown(T)/core(T) = W".

Let K := Homg (W, W) (so K is a field).

Then (N (T), I¢) is isomorphicto the projective matroidof K" (see Example 2.1.3.1).

Proof. The existence of W and n is trivial. The map 7: crown(T) — W” with
kernel core(T) induces a bijection between N (T) and the maximal submodules of
W" (see Lemma 3.2.2). This submodules correspond to the kernels of the non-
trivial maps in Homg(W", W) = K". Tracing back the linear independence of the
projective matroid of K" to N (T) proves our lemma. 0O

3.4.1. The non-abelian case. Suppose that T € ® and crown(T)/core (T) is
non-abelian. Doing our calculations in G /core(T), we may assume core(T) = E.

So crown(T) = x;; N;, where N, ..., N, are the minimal (non-abelian) G-
normal subgroups of crown(T). Define J := {i: 1 <i < jp} and let P(J) denote
the set of all subsets of J ordered by inclusion. For I € P(J) let N; := Xx;¢/N; (so
N; = Ny and Np := E). Since N; is non-abelian, the map ¢: Ny — I is a lattice
isomorphism from the lattice of all G-normal subgroups of crown(T) to P(J).

Let (N(J),Z_¢) denote the image of (N(T),Z;) under A: N; — J\ I. So
N(J)={I<J: Njye N(D}.

LEMMA 3.4.2. X C N(J)isin I_c if and only if there is a chain
G=IychL C---Cly:=J
such that
HxeX: IimiNx=0#LNx}|<1foralll <i <|J|

In this case X is (by definition) (I;);c;-independent.

Proof. Suppose X € ¢, then Z := A~!(X) € Z¢. Hence there isa chief-series
(H;) through crown(T) such that (with H; = crown(T) and H;, = E):

Hz € Z: Hiy1 < z# Hi}| < 1forall iy >i > ip.

For0 <i <ij —ig, define I; := @(H; _;).
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For x € X, define A(x) = N\, =: z. Note: H;_; <zifandonly if I; C (J \ x)
hence H;,_i4+1) < 2 # Hj—;ifandonlyif I, i Nx =@ # I; Nx.

This proves one direction of our lemma, the opposite direction follows similarly.

]

Note that I € N(J) implies |I| € {1, 2} (Baer). Every one-elementsubset of J is
in N(J) (see Lemma 3.2.3).

LEMMA 3.4.3. Notation as above. Choose w & J. Let

E:={{i,j}:i,jeJU{a},i #j, I\ (i, j} \ {0} € N(D}.

ThenT = (J U {w}, E) is a graph.
Moreover (N(T),I;) = (N(J),Z_¢) = (E,Iy); inparticular, (N (T), Z;) and
(T, Z;) are matroids.

Proof. We claim that T: N(J) — E; t({i}) := {i,»}, T({i, j}) := {i, j} for
i # j € J gives an isomorphism between (N (J),Z_;) and (E, I ).

Let 7 also denote the map from all subsets of N(J) to all subsets of E induced by
7. Note that 7 is a bijection.

1. Assume X C E is notin Zr. Then X contains a minimal circuit Y. Suppose
Z .= 11(Y) (s0 | Z| = |Y]) is (I;);c;-independent for some (I;). Let J' denote the
setof all j € J with: {j, j'} & Z forall j' € J. Then Z is (IDje s-independent for
every chain (/) with Ij/+IJ’| = I1;UJ’". So |Z| < |J| —|J'| and, if no one-element
setisin Z, then |Z| < |J| —|J’| — 1 (since in this case we may add J \ 1/}, € N(J)
to Z and still getan (I/)-independent set).

We now use the fact that Y is a circuit.

First, assume that some {j} isin Z. Then ((J \ J)U {w}, Y) is a cyclic graph and
so|Y|=|(J\J)U{w} =|J|— || +1# |Z], a contradiction.

If there is no (j,w) € Y, then ((J \ J’),Y) is a cyclic graph and so |Y| =
{(JI\IN=1J|—=1J'| # | Z], a contradiction, too.

Hence Z ¢Z_cand 1~ 1(X) ¢ I_¢.

2. Now suppose X C FE is in Zr. We have to show that Z := 1(X) € T .
Therefore we may assume that X is maximal in Z (hence (J U {w}, X)is a spanning
tree since I' is connected). So there is some { j;, w} € X .

We now define /; and X; inductively.

Let I, := {ji} and X, = {{ji, o}}.

Suppose [}, X; is defined forall j <i < |J|.

Choose {a;, b; 11} € X\ X;suchthatg; ;€ I; U{w}and b;; € J \ I

Define Iy :=1; U {b;41} and X; 4, := X; U {{a;, bi}}. '

We have to show thatthis is possible. In doingso, it isenoughtofinda; ., € I; U{w}
and bi+l eJ \X, such that {a,-_,,l, bi+1} € X.

Note (or take as additional induction hypothesis) that |I;| = i = |X;| and (/; U
{w}, X;) is a connected subgraph of (J U {w}, X).
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Since |I;| < |J| and X is a spanning tree we find b € J \ I; and a path b :=
Y0, Y15+ -+» Y1 .= @ in X (so {y,, yr+1} € X). Let ro denote the largest r such that
{¥rs Yrr1} & Xi (as {yg, y1} € X;, this is possible).

Then y, 1 = ¥ Of (Y41, Yre+2} € X;. In both cases, we have

Va1 € I U o).

If y,, € I; U{w}, there would be apath in X; from y, (tow and fromw)to y, ;. But
this gives a circuit in X. Hence y,, ¢ I;U{w}. Therefore we may define a;y| := y, 41
and b := y,,. This proves that our inductive definition of X; and I; works.

Now, it is easy to verify that Z is (/;)-independent.

So (E,Ir) = (N(J), I_¢y: = (N(T), I;) as simplicial complexes, and (E, Ir)
is a matroid (see Example 2.1.3.2). This proves our lemma. O

LEMMA 3.4.4. If{ji, ja, j3} isa three-element subsetof J and{j,, j} and{j,, j;}
arein N(J), then {j,, 3} € N(J).
In addition: (N(T), I.) is a direct product of matroids of complete graphs.

Proof. Inproving {j, 5} € N(J), we may assume j; = i and |J| = 3.

Therefore crown(T) = N; x N, x Nj and there is 7, € Hom(N;, N;) such that
Uy, :={g € G: 11,(n8) = 115(n)¢ foralln € N;} € M(G) and core(U, ;) = N
(Baer). Similarly we find 1, 3 and U, 3.

Hence 7,3 := 7537; , is an isomorphism from N, to N;. Define U;; := {g €
G: 113(n8) =13(n)8 foralln € Ny} solU; 3 < G. Wehave U, 3 > (U ,NU, 3) N,.
Now U1,3N1 > (U1,20U2,3)N1N2 = (U1’2N10U2’3)N2 =G and81m11arly U1,3N3 =
G. FixU;3 < X € M(G). Then XN, = XN; = G andcore(X) = N, € N(T).
This proves {1, 3} € N(J).

Consider now the graph I' = (J U {w}, E). It follows from the first part of our
lemma that the graph I’ = (J, E \ {{w, j}: j € J}) is a disjoint union of complete
graphs I'] := (J;, E;).

Define I'; := (J; U {w}, E; U {{w, j}: j € J;}). Then V(I') = |V (T;) and
EM)=ET).SoX eIrifandonlyifall X; = XNET) eI, 0O

We have thus proved Theorem 3.1.

4. W-independence
In this section we prove:

THEOREM 4.1. Let G denote a finite group, w the set of all primes, MP(G) the
set of all maximal subgroups of p-power index and let M™(G) = | J pex MP (G).

Then (M™(G), Iy) is a matroid.

It is the direct product over all (MP(G),Ty)’s there p runs over m.
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If2 # p € m, then (M? (G), Iw) = (MP(G), I¢).
Furthermore for p a prime,

InMP(G))" = Ze (MP(G))" = Tw (MP(G))" = SF(G).

Here S?(G) is the set of all those subgroups U of p-power index in G for which the
Mobius number u(U, G) is not zer.

We would like to give a ‘reason’ why this theorem should be true:

AssumeT € ©, core(T) = 1 and crown(T) = W™ for anirreducible F, G module
w.

As W-independence behaves well under conjugation (see Lemma 2.2.7), we look
at conjugation classes of elements of T. These conjugation classes correspond to pairs
(a, b) € N(T) x HY(G /crown(T), W) (here N(T) = {core U): U € T}is the set of
all maximal G-normal subgroup of crown(T)). (C-independence just looks at N (T)
and it is true that Zo(T) = Zy,,(T) if H1(G/crown(T), W) = 0; see Lemma 4.3.3).

The elements of H1(G/crown(T), W) and the G-module automorphisms of
crown(T) correspond to certain automorphisms of G.

So we expect that the maximal W-independent subsets of T have the form X* with
A running over all automorphisms of G and X running over a small, well-known set
of W-independent subsets of T (see Lemma 4.5.3). Once we have such a description
of Z,,,(T), we can check directly that (T, Z,y) is a matroid (compare Lemma 4.5.4).

In general however, itis not true that T is a factor of (M?(G),Z,y), so we have to
modify the above ideas.

Furthermore, we have to be careful about the supplements of non-abelian chief-
factor. This is one reason, why we restrict our attention to subgroups of prime power
index.

EXAMPLE 4.2. We construct some groups G such that (M (G), Zw) is not.a ma-
troid.

Let S denote a simple group and U a maximal subset of (M (S), Ty ) with U] > 2
(such a U exists for S = As).

Define G :=S5 x S, A :={(g,8): g€ S} <G, U1 :={TU,S), S, U) U U}
andUy .= {(U, S), A: U e U}.

Then Uy and Uy are maximal in Tyww(M(G)) and |Uh| = 2|U| > U]+ 1 = Ua].
Hence (M(G), Zw) is not a matroid.

4.1. A decomposition of Z,,,.

LEMMA 4.1.1. If U is a W-independent subset of MP? (G), then (\,q, U has
p-power index in G.

UMP(G), UZw) is the direct product (as simplicial complexes) of all
(MP,T,)’s with p a prime dividing |G|.
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Proof. The first assertion follows from [G: () ey Ul = [Ty [G : Ul

If U and V have coprime index, then [G : U], [G : V] and [G : U][G : V]divide
[G:UNV]So|UV|=|U|IV|I/IUNV]|=|G]|.

Fix a set m of primes and let 7’ denote the set of all primes not in w. For
X cC UPEHU”, MP(G)let X, :={x € X: 3p e w s.t. x € MP(G)} and define X,
similarly.

If X is W-independent, then so are X, and X,.. Now

(N-)(n+)-e

since [G: (,cx, x] and [G: [ x_,x] are coprime. So Xx U X is in Ty (see
Lemma 2.2.7). 0O

LEMMA 4.1.2. IfU € M?(G), then G/core(U) has a unique minimal normal
subgroup.

Suppose A/ B is a non-abelian chief-factor. Then {U € M?(G): AU =G, U >
B} is a direct factor of (M?(G), I¢).

Proof. If G/core(U) has two different minimal normal subgroups A and B,
then A is non-abelian and [G : U] = |A] is divisible by more than one prime. So
U & M?(G) (Baer).

Let U € T € O with crown(T)/core(T) non-abelian. The projective matroid
associated to (T N M?(G),Z¢) is a direct product of graph matroids. But the edges
(notation as in Lemma 3.4.3,3.4.4) {i, j} withi, j € J donot correspond to subgroups
in MP (by the first part of this lemma). So the projective matroid is the direct product
of all one-element subsets of proj(T N M?(G)). Since proj(T N M? (G)) is a direct
factor of (proj(M?(G)), proj(Zc)), this proves our lemma. [

THEOREM 4.1.3.  Suppose p is a prime such that each pair {U,L} € MP(G) is
W-independent if and only if it is C-independent.
Then Ty (M? (G)) = Zc(MP(G)).

Remark. Once we know that (MP (G),Z,,) is amatroid we can reformulate this
theorem as follows:

If (proj,, (M?(G)), proj,,(Zy)) (resp. (projc(M?(G)), proj (Ic)) ) denotes
the projective matroid of (M?(G),Zy) (resp. (M? (G), Z¢) ), then

proj,, (M?(G)) = proj.(M*(G)) implies I, (M” (G)) =ZLc(MP(G)).

Proof. We already know that Zo(M? (G)) < Iy, (MP(G)) (see Lemma 2.2.7).
Suppose now X € Z,,,(MP(G)) \ Zo(MP?(G)). Then there is a type T such that
XNT¢7Ieand we may assume X C T.
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Case 1. crown(T)/core(T) is non-abelian.

Then there is a minimal directfactor T; of (TNMP?(G),Z¢) suchthat X NT; ¢ Z¢.
We may assume X C T;.

Since no two-element set is in Z- (T;) (see Lemma 4.1.2) no two-element sub-
set is in Z-(T) by assumption. Since all one-element subsets are in Z., we have
Iw(MP(G)) = Io(MP(G)) in this case.

Case 2. crown(T)/core(T) is abelian. We may assume core(T) = E and that X
is a maximal subset of Z,,, (T).

Let X’ denote a maximal C-independent subset of X.

Then (N, cx x Ncrown(T) = (), .y x Ncrown(T) = E (see Lemma 3.2.3). So
K :=(),cx X is a complement of crown(T) in G (see Lemmas 2.2.7 and 3.2.2).

By assumption we, find x € X \ X’. Then K; := Kcore(x) complements
crown(T)/core(x) and so K; € T and xK; > x( ),y x = G, since X is W-
independent. But core(K ;) = core(x), so x and K, are not C-independent, a contra-
diction. 0O

Remark. We will see that for p # 2 the assumptions of the last theorem are
satisfied.

4.2. Simple groups and Cohomology. In this section we quote those results of
[AS], [Gu] and [We2] we need in this paper and derive some corollaries.

THEOREM 4.2.1 (Guralnick). Let G denote a non-abelian simple group, p a prime
and H < G such that |G : H] = p° for some a € N. Then H € M(G) and one of
the following holds:

1. G=Anand H = Ap—1 withn = p°.

2. G = PSL.(q) and H is the stabilizer of a line or hyperplane. Then p® =
(" —1D/(g-D.

3. G =PSLy(11) and H = As.

4, G=Myand H =M orG =M1 and H = Myy.

S. G = PSU4(2) = PSp4(3) and H is a parabolic subgroup, p* = 27.

Note that in item 2, for n > 2, and in 3 there are two conjugation classes of H which
are fused in Aut(G). Also H is a p-complement except if G = A, and a > 1 or
G = PSU4Q).

Proof. See [Gu]. 0O
Remark. The above theorem uses the classification of the finite simple groups.

COROLLARY 4.2.2. Suppose N is a non-abelian minimal normal subgroup of G.
IfU < G has p-power indexinG and NU = G,thenU € MP(G) and NN U isa
minimal subgroup of p-power index in N.

Furthermore U = Ng(N NU) and no two supplements of N are W-independent.
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Proof. ForU € MP(G) and the fact that U N N is minimal among all subgroups
of p-power index in N see [We2], 4.3—4.5.

Note that Ng(NNU) > U and N N U is notnormal in N. So U = Ng(N NU),
as U is maximal.

Suppose XN = Gand X € M?(G). If {X,U} € Zyy, then [N: NN X NU]is
a power of p, this implies N N X = N N U (by the first part of this lemma) and so
U=X. O

LEMMA 4.2.3.  Suppose W is a faithful Fp(a)-module and |(a)| = p". Then
dimW > p" 1 41,

Proof. If dim W = w, then the characteristic polynom of a on W is (a — 1)*. If
p"l>w, wehave 0 = (@ — 1)* = (a — 1)? =a?"" — 1. So aP"” fixes every
element of W, a contradiction. Thusw > p*~1+1. O

LEMMA 4.2.4. Suppose S is anon-abelian simplegroup, S < G < Aut(S)andV
is a faithful, irreducible F, G-module. Let ps denote the maximal index of a subgroup
of p-power index in S, P(x) the p-part of the natural number x and OS := |Out(S)|.

Assume |V | < psP(OS) and ps # 1.

Then S = PSLy(7) and p = 2.

Proof. Since pg # 1, we just have to check the groups in Guralnick’s classifica-
tion (see 4.2.1).

1. Case S = PSL,(q)

We have a prime r and a, b such thatq = r® and p* = (¢* — 1)/(qg — 1). Then
| Out(S)| divides (¢ — 1)| Aut(F,)I2 = 2b(r® — 1).

(a)Case p #2o0ra > 2.

Then there is a cyclic subgroup (Singer cycle) of order p in S (see [We2], Korollar
5.3)and P(2b(r* —1)) < p". So p?" '+ < |V| < ps P(OS) < p*p"and p*~1 +1 <
2n. Hence n = 1 (since p* > 5). If n = 1, then P(2b(r? — 1)) = 1 and therefore
p*~1 4+ 1 < n, acontradiction.

(b)Case p=2=a.

Then 2" = r? + 1 and |Out(S)| divides b (2" — 1). Furthermore there is a cyclic
subgroup of order 2"~ 1in §. S022" "+ < |V| < ps P(b(rb —1)) = 2"P(2b) < 22,
Hence 2"~2 41 < 2n, acontradiction forn > 6. If n = 5,thenr? = 31,50 P(b) = 1
and 23 4+ 1 < 6, a contradiction. If n = 4, then r® = 15, a contradiction. The case
n=3gives S = PSL,(7).

2. Case § = Apn.

Then | Out(S)| = 2 (since p” # 6).

(a) For p # 2 we have a cyclic subgroup of order p” in S. So pl”"’|+1 <|V| <
psP(0OS) = p", acontradiction.

(b) Suppose p = 2. Then n > 3 and there is a cyclic subgroup of order 2*~! and
$0 22"+ < |V| < 27+, This is not possible forn > 5.
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We leave the two cases § = Ag and § = Ajg to the reader (see [ATLAS] or
[GAP)).
3. The remaining four cases can be excluded by [ATLAS] or [GAP]. O

LEMMA 4.2.5. Suppose N is a minimal normal p-subgroup of G and M /N is a
minimal normal subgroup of G/N.

Suppose M /N has exactly one M/ N -conjugation class of p-complements and
Cu(N) = N.

Then M has exactly one M-conjugation class of p-complements. For every p-
complement H of M we have Ng(H)M = G. For every complement U of N in G
there is a gy such that U8V > Ng(H).

Proof. The assumptions about M /N imply that M possesses exactly one conju-
gation class of p-complements (Schur-Zassenhaus). So H exits and Ng(H)M = G
(Frattini argument).

Suppose ¢ # n € NN Ng(H)and h € H. Then [n,h)] € NN H = E,
hence Cny(H) # E. So the trivial F, H-module 1y is a submodule of N|x and
(Nakayama-Reciprocity) an irreducible submodule of N|y/n (this is N regarded
as an M/N-module) is a factor module of Mgy n /N (this is the trivial HN/N-
module induced to M /N). Since [M/N : HN / N]is apowerof p the only irreducible
factor module of TIgn,n +™/V is the trivial M/ N-module (see [We2], Lemma 3.1).
So a submodule of N|u is the trivial module. Now Clifford theory shows that
Cm(N) = M, a contradiction. Therefore Ny(H) = E.

By Guralnick (Theorem 4.2.1) Ny,n(HN/N) = HN/N,so H = Ng(H) N M.

Suppose U is a complement of N in G. As UNM)N =UNNM = M and
UNN = E,wegetU = M/N. Sothere is a gy such that U® > H. We may
assume gy = e and have to prove that U > Ng(H).

In doing so suppose g € Ng(H). Since UN = G we can write g = nu with
ueUandn € N. Then [h, n] = ([h, u]'l[h,nu])“_l € UNN = E. As above, we
concluden =e € Eand hence U > Ng(H). O

THEOREM 4.2.6 (Aschbacher, Scott). Suppose N is a faithful irreducible F,G-
module such that H1(G, N) # 0.

Then G has a unique minimal normal subgroup M.

Furthermore, let S denote a minimal normal subgroup of M. Then S is a non-
abelian simple group. Fix m such that M = S™ (S™ is a direct product of m copies
of S). Then there exists afaithful S-module V with H1(S, V) # 0and N|y = ®V;
(here V; is the S™-module on which the i-th component of S™ acts as S on V and all
other components act trivial).

Proof. See [AS], Theorem 3. 0O
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COROLLARY 4.2.7. Suppose N is a minimal normal p-subgroup of G, U,L €
MP(G)and UL = UN = LN = G. Assume N is a faithful G /N -module.

Then H'(G/N,N) # 0. Let M/N denote the unique minimal normal subgroup
of G/N. Then (M NUN L)N/N is aproper subgroup of p-power index in M/N.

Proof. Since U and L arenot conjugate (see Lemma2.2.7) wehave H1(G/N, N)
#0.

So the assertions about M follow from Theorem 4.2.6. Moreover, since U NL is a
subgroup of p-power index, we have either M N ((U N L) N) = M or the conclusion
of our lemma holds.

So suppose M < (UN L)N. Then M NU N L is a complement of N in M
(just compute the order of N(M N U N L)). Similarly, U N M is a complement
of NinMandUNM =UNLNM=LNM. But Ng(UNM) > U. So,
since U was maximal and N the minimal normal subgroup of G, we conclude that
U= Ng(UNM) =Ng(LNM) =L, acontradiction. O

4.3. Reductions.

LEMMA 4.3.1. For L normal in G let ML := {U € M?(G): U > L} and
M; := {U € MP(G): UL = G}. So MP(G) is the disjoint union of ML and
M; (, but in general this is not a direct product of simplicial complexes). Then
(ML’ IW) = (MP(G/L)s IW)

If we have L (o, U = G, for every W-independent subset U of M, then
(MP(G), Tyy) is the direct product of (ML, T,y)) and (M;, T\y) (as simplicial com-
plexes).

Proof. The natural epimorphism from G onto G/L gives a simplicial isomor-
phism, (ML, T\y) = (MP(G/L),Tyy).

IV eIyML), then(y., V=L fU e TyyM)and LN,y U = G, then
MNvey VNue U = G. SoVUU € Ty (Lemma 2.2.7). O

THEOREM 4.3.2.  One of the following holds.

1. G is an elementary abelian p-group and (M?(G), Iyy) = (MP(G),I;)is a
matroid without a non-trivial decomposition.

2. ®2(G) :==yemrc)U > E and (MP(G), Iyy) = (MP(G/PP), Iy).

3. G has a minimal normal non-abelian subgroup N, and (MP (G),Iy) =
(MP(G/N), Tyy) x (My, Z¢).

4. G is not an elementary abelian p-group, ®P(G) = E and every minimal
normal subgroup is abelian.

Let M denote a normal subgroup of G, minimal under the condition that

M is not an elementary abelian p-group. Let N denote a maximal G-normal
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subgroup of M. Then:
(@) M/N is not a p-group.

(b) N has acomplement in G. Everychief-factor below N is acomplemented
p-chief-factor on which M /N acts faithfully.

Proof. 1. Trivial.

2. The natural epimorphism from G to G/ ®? induces abijection between M?(G)
and MP(G/®?). This map is the desired isomorphism.

3. See Corollary 4.2.2 and Lemma 4.3.1.

4. Suppose ®? = E and G is not an elementary abelian p-group. Let M, N be as
in the theorem.

If M/N (and so M) is a p-group, then ®(M) < ®”(G) = E and thus M is
elementary abelian, a contradiction. Therefore M is not a p-group.

Since &7 = E every minimal normal subgroup of G is supplemented by some
U € M?(G).

N is an elementary abelian p-group (by construction of M).

As ®P(G) = E thereisan X C M?(G) such thatﬂxexxﬂN = E. Ifwe chose X
minimal, then N = @ xex crown(x ) /core(x ) as F,G-modules (compare with Lemma
3.2.3). Moreover N is complemented (Lemma 3.2.2). Hence G is the semidirect
product of G/M with the semisimple module N.

Suppose V is aminimal G-normal subgroup of N. Let K denote acomplement of
V in G. Then K and V normalize K N Cg (V) and therefore K N Cg (V) is normal in
G. Furthermore, C¢(V)/K NCg (V) is a p-group. If M < Cg(V),then M NK isa
proper G-normal subgroup of M which is nota p-group. Thus M £ Cg(V). 0O

LEMMA 4.3.3. Let M, N as in Theorem 4.3.2.4 and N /N a chief-factor.

Suppose no two complements of N /N satisfy UL = G.

Let X denote the product of all minimalnormal subgroups of N that are isomorphic
to N/N as G-modules (so X # E).

Then (MP(G), Tw) is the direct product of (MX , Iw) and (Mx,Iw). Further-
more, (Mx,Iw) = (Mx, I¢) is a matroid.

Proof. Inview of Lemmas4.3.1 and 2.2.7 itis enough toshow that U € T,,,(My)
implies that there is a chief-series H through X such thatl{ is ‘H-independent.

In doing so, fix an enumeration U = {Uy, . .., U;}. Define H; := X and H;, :=
H; NU;. Let iy denote the largest i such that U; complements H;/H;,  forall j < i.
If iy = I + 1 we are done. So suppose iy <.

Then H;y < U;, = U. Let K| := (,_, U; and K := K core(U). Then
KU > K1U =Gand K € Mx.

Note that G/N is the semidirect product of G/N and N/N. Since N/N =
crown(U)/core(U), we have G/N = G/core(U). Now the preimages of K /core(K)
and U /core(K) give a contradiction to our assumptions. (Compare: Theorem 4.1.3.)

a
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(x) Let M and N denote normal subgroups of G such that:

1. M/N is a chief-factor whichis nota p-group.

2. N # E is the direct product of complemented minimal normal p-subgroups.
3. If A/Bis a chief-factor below N, then Cy,(A/B) = N.

4. Every chief-factor N/ X has two complements L, U such that LU =G.

COROLLARY 4.3.4. Suppose (MP(G/X), Ic) is a matroid for every non-trivial
normal subgroup X, but (%) is not satisfied for any pair (M, N) of normal subgroups
of G.

Then (M?(G), Iw) is a matroid.

If in addition Tw(MP?(G /X)) = Ic(M? (G/ X)) for all non-trivial normal sub-
groups X, then Tyww(M? (G)) = Zc(MP(G)).

Proof. Theorem4.3.2, Lemma4.3.1,4.3.3. O

4.4. Projective )V-Independence.

LEMMA 4.4.1. Assume (x).

Fix a chief-factor N/ B. Then N /B is a faithful, irreducible G /C5(N/ B) module
with H(G/Cs(N/B), N/B) #0.

Furthermore, let S denote a minimal normal subgroup of M/N. Then S is a
non-abelian simple group and M/N = S™ for some m. There exists a faithful S -
module V such that A/B|yyy = @V, (here V, is the S™-module on which the i-th
component of S™ actsas S acts on V and all other components act trivial). In addition
HI(S,V) # 1.

Proof. By assumption, there are two complements U, L of N/B such that UL
=G.

Since Cy(N/B) = N, no chief-factor above M is isomorphic to N/ B.

Therefore {U, L} is notC-independent, butcore(U) = core (L) (see Lemmas 3.2.4
and 3.3.1). This implies that U and L are two non-conjugate (see Lemma 2.2.7)
complements of Ncore(U)/core(U) in G/core(U).

Thus H'(G/Cs(N/B), N/B) #0, since Ncore(U) = C(N/B).

Now Theorem 4.2.6 completes the proof of ourlemma. O

Let M, S,m, V be as in the last lemma. Then |V|™ = |N|, since N|y = Di<m Vi
and

IN|=GI/IUl = (GI/IUDIGI/(IN|IL]) = |GI/(IN[lUNL|) =[G: (UNL)N].

So G/ N is a group that has a subgroup (namely (U N L)N/ N) of index equal to
the cardinality of a faithful F,G /N -module (namely N) such that H I(G/N,N) #1.
This gives strong restrictions on S, V and p.
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LEMMA 44.2. Let M,N, S,m,V,U,L and p be as above.

Let ps denote the maximal index of a subgroup of p-power indexin S, m! the order
of the symmetric group S(m) onm letters and O S = |Out(S)|. Let P(x) denote the
p-part of x.

Then [VI" = |N| = [G: (NU NL))] < (psP(0S))"P(m!) and 1 # p.

In particular, |V| < pgP(OS) since P(m!) < p™.

Proof. |V|™ = |N|=[G: (NU N L))] was shown just above.
If X < GandYisnormalin G,then [G: X] =[G : XY][Y: XNY].
Applying this to G, (U N L)N and M gives

IN|=[G: UNL)N]=[G: MU NL)I[IM: M N(NUU N L))].

Obviously, [M: MN(N(UNL))]=[M/N: (MNU NL)N/N] < p%.

Consider the map from G/ M to S(m) (i.e., the permutation of G/ M on the direct
summands of M /N). Thekernel K of this map is the core of N5 (SN /N)/(M/N)
and is contained in an m-fold direct sum of Out(S). The image is contained in S(m).
So

[G: MUNL)]=[G: KUNL)IK: KN(MUNL))] <PmHPOS".

Putting these bounds together gives our bound on | N|.
Corollary 4.2.7 shows ps # 1. O

COROLLARY 4.4.3. Assume (%).

1. M/N = PSLy(7)" and p =2.

2. M has exactly one conjugation class of p-complements. Let H denote any
p-complement and K = Ng(H). Then KN € M (G).

3. For U € My there is a gu such thatU% > K.

4. For X C My let X := {U®: U € X}. Then X is C-independent (resp.
We-independent) if and only if no two different conjugate subgroups are in X and X
is C-independent (resp. VV-independent).

Proof. 1. Lemma4.2.4.

2. Lemma 4.2.5 and Corollary 4.2.2.

3. IfU € My, we find gy by Lemma 4.2.5.

IfU € Myy\ My, then M NU/N is a p-complement of M/ N and so there is a
gy WithU = Ng(U N M) = Ng(H& N) = K& N.

4. Theorem 3.1 and Lemma 2.2.7. 0O

So far we have proved Theorem 4.1 for odd primes; if G is a minimal counterex-
ample to 4.1, then:

(x+) In addition to G, M, N as in (x), define m, K, p as in Corollary 4.4.3.

Note that this implies p =2 and M/N = PSL,(T)™.
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4.5. Thecase S = PSLy(7).

LEMMA 4.5.1. Assume (xx). Suppose N is a minimal normal subgroup of G and
U, L are two non-conjugate complements of N. Then UL = G and |U| = |K N|.

Proof. By (%) there are gy, g; € G suchthatUs' N L8t > K. AsUL = G if
and only if U8vL8t = G, we may assume gy = g7 = e.

Now (U NL)N > KN and therefore (U N L)N = KN (as KN € M(G) by
Corollary 443 and |((UN L)N| = |U NL||N| < |U||N| = |G)).

But|lUNL|=|(UNL)N|/|IN|=|KN|/IN|=|K|soUNL=K.

Let U, L denote two non-conjugate complements of N such that UL = G (such
a pair exists by (x)). Then UgiL8 = G and we may assume U,L > K (see (x%)).
As above we have UN L = K.

Now |UL| = |U||L|/IK| = |U||L|/|K| = |UL| = |G| (because [G : U] =
IN| =[G : U]). Thus UL =G.

Since KNNL = (UNL)NNL = UNL)(NNL)= UNLand{KN, L},{U, L} €
Iw,weconclude |[KN| =|U|. 0O

COROLLARY 4.5.2. Assume (x%).

1. IfU € My, then |U| = |KN].

2. IfU € Tw(Mu), then [G : Ny Ul = [G : KNTYL.

3. Suppose |[N| =[G : KNY". IfU is a maximal in Ic (Mm), then U| =r + 1
and Ny U8Y =K.

4. IfV €e Tw(Mum), then |V| <r + 1.

Proof. 1.IfU € Mp,then U complements N /(NNcore(U))andso |U| = |KN|
(see Lemma 4.5.1). If U € My \ My, then U8 = USYN > KN € M(G) and so
Ul =|KN|.

2. U € Iw(Mu), then[G: Nyq, Ul =[1yylG : Ul =[G : KNIM,

3. Note that N is a direct product of some chief-factors below N and all these
chief-factors have order [G : K N] (see above). Since KN is a supplement of the
chief-factor M /N, we conclude, [U| =r + 1.

We may suppose gy = e. Thus[) veu U = K. Equality follows from: [G : K] =
[G:KN]IN|=[G: KNI =[G: Ny Ul

4. Again we may assume [}, o, V > K.

So[G : KNI =[G: Ny, VI<[G: K1=[G: KNI"*'. Hence |V| <r+1.

O

LEMMA 4.5.3. Assume (x%).

Then X € My is a maximal W-independent subset of My if and only if X =
X' U {y} for some maximal X' € Tc(Mn) and somey € My withy # (. cx x8 for
allg € G.

If X = X' U {y} € Iw(Mu) is such a decomposition, then there exists y' such
that Y := X' U (y'} is C-independent and [\, .x x = [,y y-



INDEPENDENCE AND M AXIMAL SUBGROUPS 73

Proof. Let X denote a maximal set in Zyy(My). If X is C-independent set
X' := XN My and {y} := X \ X'. This proves that case.

So suppose X is not C-independent and X’ is a maximal C-independent subset of
X N My. We may suppose U > K for all U € X (for K see (xx) and Corollary
4.4.3).

If (M,ex core(x) N N # E, then some U € M), supplements some chief-factor
below (), x core(x) NN # E, contradicting the maximality of X (see Lemma2.2.7,
4.3.1)

Hence we may assume [, .y core(x) NN = E. If (), o core(x) NN # E, then
there is a U € X that supplements some chief-factor below (1), .y core(x) N N # E
contradicting the maximality of X’. So Y’ := X’ U {K N} is maximal in Z; (M ).
Now (Corollary 4.5.2) X \ X' = {y} for some y and (with y/ = KN): (,exX =
K= mxeX’x n yl‘

Note that y does not contain a conjugate of (), .y, x’ by Lemma 2.2.7.

Suppose now X’ is a maximal C-independent subset of My andy € M,, is such
that y& # (,cx X forall g € G.

Ify > N,then {y} U X' € Z; € 1,y. So suppose yN =G.

Define K; := [,y * (this is a complement of N in G) and K, := K;core(y).
Now K, is not conjugate to y by assumption and so K;y = K,y = G (see Lemma
4.5.1). Hence X’ U {y} is W-independent. The maximality follows from the first part
of our lemma.

Therefore, for every W-independent subset I/ of My, we have M (", o, U =G
(see Lemma 2.2.7). Now Lemma4.3.1 shows that (M?(G), Zy) is the direct product
of (MM, T\\) and (My,Tyy). O

LEMMA 4.5.4. (My, Iyy) is a matroid, (MP(G),Iy) is the direct product of
(MM, T,y)) and (My;, ).

Proof. Let A, B € T,,(M)) and |A| < |B|.

We have to find a B € B\ A such that AU { B} is W-independent.

Let Cg := (gepcore(B) and C 4 = [ cqc0re(A). f C4NCy # E an
induction argument provides such a B.

IfCgNC 4 < C 4, thenevery B € Bwith core(B)NC 4 < C 4 satisfies AU {B} €
Iw and B € B\ A.

So we may suppose E = C 4. This implies that 4 is a maximal C-independent
subset of M.

Suppose that for all B € B there is a gz € G such that B&» > (1,4 A. Then we
find a g € G such that (g3 B8 = (g B® = [\aca A, Which is a contradiction
to |B| > | Al (as [G: Mgz Bl =[G : KN]B).

So some B € B does not contain any conjugate of () ,. 4 A and so this B is not in
A. Now AU {B} € T, (Lemma4.5.3). 0O
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We can now prove Theorem 4.1: Lemma 4.1.1, Corollary 4.3.4, 4.4.3 and Lemma
4.5.4 proves the first part.

Now Lemma 4.5.3 (and Corollary 4.3.4) proves Zy,(X)" = Z (X )" for every
factor X of Z,,,(MP(G)) and so Zyy,(MP(G))" = Io (MP(G))".

It was shown in [We2] Satz 4.8 that Z,, (M?(G))" = S}. Since u does not depend
on H and by definition of C we have, I,(MP(G))" = S?. O

EXAMPLE 4.5.5.  We construct agroup G with Zc(M?(G)) # Tw(M?(G)).

Let Gi := PSL2(7) = SL3(2) and p =2.

If V is an irreducible F2G1 module, then H l(Gl, V) # Oifand onlyif dimV = 3
and -up to isomorphism- exactly two such modules V1, V- exist. We have |H Gy, V)|
=2.

Let G denote the semidirect product of G| with Vi @ V5. Then G satisfies the
assumptions of Lemma 4.5.3 (with G = M). Two subgroups are not JV-independent
if and only if they are conjugate. So projW(Mz(G)) is the set of the five conjugation
classes in M 2(G). Let Ko denote the conjugation class of supplements of G/ V1 & V>
and K/ for i, j € {1, 2} the two conjugation classes of complements of V; in G.

So projyy (M%(G)) = {Ko, K;: i, j € {1,2}}.

X is maximal in projy, (Zw (M?(G)) if and only if

X € {{Ko, K{,K§ ), {K!, K2, K{'}: i,j,j € {1,2}and i # j).

5. Applications of 1V-independence

1. Recall the probability theoretic independence definition: If (X, B,m) is a
probability space (i.e., X is a set, B is the set of measurable subsets of X and m is a
measure such that m(X) = 1), we call a subset Y of B independent, if for all finite
subsets Z of Y, we have [ [,z m(z) = m(( ez 2)-

The probability space we are interested in is the group G with the Haar measure
ie. m(U) = |U|/| G| for all subsets U of G. As [G : U] = |G|/|U|, Lemma 2.2.7
shows that WW-independence coincides with probability independence restricted to
the set of subgroups.

2. A (finite) set £ of field extensions of K is linear disjoint (by definition) if for
every U C L the ring ®recL is a field.

If G is represented as a separable Galois group, then a set of subgroups is W-
independent if and only if the corresponding fixed fields are linearly disjoint (see [FJ]
Lemma 16.11).

3. A set F of subgroups of G is a factorisation of G if and only if AB = BA for
all A, B € Fand G =[] er A.

Recall that two subgroups A, B commute (i.e., AB = BA)if and only if ABis a
subgroup of G.
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THEOREM 5.1. (a) For U € Tw and U € U define U := Ny yq  X- Then
{ :={U: U €U} is afactorisation. _

(b) Let F denote a factorisation. For F € F let F := [|pyer U. Then
F:=(F: F e F} € Ty.

Proof. (@) If Uy, Uz € U, then (with U12 := Ny, y,uvay U): U0, = (U12N
U)(UioNUz) = Ui N ((U[ 2NUNDU2) = Uiz N U, U, = U2 = U,U; and
nUqu Ulan, UZ;éUqu LetV:=U\ {U, L2} U{Ui1 N Uz}. ThenV € Iy
and [V| < |U|. Induction gives: G = [T, o, V = Ur2 [y, ppves U = [yas U
=G.

®)IfF e F then F< G.IfF # U € F,then F < U andthus F Ny yer U
>FF=G. O

4. Suppose X isaset witha partial order <y such thatG actsinan order-preserving
fashion on X. The orbit poset X€ is the set of all orbits with the partial order defined
by {x%: g € G} <x¢ {y%: g € G} if and only if there isa g € G such that
x <yx ).

Suppose there are a, b € X such that {x € X: x < a,x < b} possesses a unique
maximal elementa A b. This does not imply that there is a unique maximal element
a® AbS € {xC € XG: xG < a%,x% < b%)}. However, if Cg(a)Cgs(b) = G, then
(a A b)C is the unique maximal element in {x¢ € XG: xG < a%,xG < bG} (as
{as x b82: g; € G} ={a8: g € G} x {b8: g € G} by Lemma 2.2.7).

The chain complex C(X) is the set of all linearly ordered subsets of X. This is
a partially ordered set (inclusion). Now C(X)S = C(X©) if and only if we have
[G: ﬂer Ce(p] = ]_[er[G/CG(y)],for every Y € C(X).
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