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INDEPENDENCE AND MAXIMAL SUBGROUPS
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Dedicated to O. H. Kegel on the occasion of his 60th birthday

1. Introduction

In this paper G denotes a finite group and M(G) the set of all maximal subgroups
of G.

Recall that a matroid (M, 2-) is a finite set M together with a set 2 of subsets of
M (we call X c_C_ M independent if and only if X 2) such that:

every subset of an independent set is independent, and every one-element subset
is independent (i.e. (M, 2") is a simplicial complex)

and
ifA, B 2" andlAI < nl, then there is anx B\A such that A U {x} is

independent.
Examples of matroids are:

1. Let M be the (non-trivial) vectors ofa finite vectorspace, 2" the linear indepen-
dent sets.

2. Let M be the set of edges of a graph 1-’ and 2" the set of all circuit-free subsets
of M.

3. Let M M1 t3 M2 MI be a partition of M and

2":={X

_
M: IXCMil <_ for alli <l}.

Then (M, 2") is .a matroid. This matroid is called the partition matroid of the
partition (Mi)i <_l of M.

Let := (H0 > H1 > > /-//) denote a chief-series of G (i.e., a maximal
chain of normal subgroups of G). Then M(G) is the disjoint union of the sets
K := {U @ M(G): HiU G, Hi_l_ <_ U}.

So, with 2- := {X

_
M(G): IX I")Kil _< for all/ < /}, we have a partition

matroid (M(G), 2"7). We call the independent subsets (i.e., the elements of ZT-t)
7-/-independent.
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If we have sets Z/, such that (M, Zi) is a matroid, then (M, J Zi is not necessarily
a matroid (see Example 2.2.4). However: if C is the set of all chief-series of G and
Zc := [-JcZ, then (M(G), Zc) is a matroid.

Call a set of subgroups /a’ of G a W-independent set, if I-Ivu[G U]
[G" vu U]. Let Zw denote the set of all W-independent set of subgroups of
G. There are various applications (Wielandt’s independence definition [Wi], Galois
theory, probability theory, factorisations ofgroups, orbit posets) ofthis definition (see
Section 5).

For 2" _c {Y

___
M} and X __C_ M define 2"(X) :--- {Y

_
X" Y 2"}. For a prime p

let MP(G) := {U 6 M(G)" [G U] is a powerof p}. If zr is the set of all primes,
then (p MP(G), 2"w((.Jpe MP(G))) is amatroid.

So MP(G) together with each of the sets 2"7_t(MP),2"c(MP) and 2"w(Mp) is a
matroid. For X’ 6 {, C, W} let 2"x(MP (G)) n := {["x x" X 2"x(MP (G)) }.
Although no two of the sets 2"7(MP), 2"c(Mp) and 2"w(Mp) need be equal we have
ZT(MP(G)) Zc(MP(G)) Zw(MP(G)) ScP(G), where sP (G) is the set of
all those subgroups U of p-power index in G forwhich the M6bius number/z(U, G)
is not zero (see [We2]). The partially ordered set Scp (G) was studied in [WW]. It plays
a crucial role in the homology theory of the partially ordered set of all subgroups of
p-power index in G.

In p-solvable groups we have a certain class of subgroups called p-Prefrattini-
groups (see [DH] page 422ff., [Ga], [We 1]). The results ofthis paperjustify to define
(for all groups) p-Prefrattinigroups as the minimal elements of Sp.

2. Preliminaries

2.1. About matroids.

DEFINITION 2.1.1.
subsets of M such that:

A simplicial complex (M, Z) is a finite set M and a set 2" of

1. If m 6 M, then {m} 6 2".
2. IfA62"andB CA, thenB 627.

matroid is a simplicial complex (M,2")such that whenever A, B 6 2" and
< [B I, then there is a b 6 B \ A such that A tO {b} 6 2".
subset X ofM is called an independent set if and only if it is in 2".

The last condition implies that all maximal independent sets of a matroid have the
same cardinality.

THEOREM 2.1.2. Fix a simplicial complex M, Z).
1. ForA c_ M define 2"(A) := {AleX" X Z}. Then (A,Z) "= (A, 2"(A)) isa

simplicial complex. If (M, 27) is a matroid, then so is A, 2").
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2. IfM A t3 B is a disjoint union such that X c_ M is in Z ifand only ifX CI A
and X CI B are in Z, we call (M, 2-) the direct product of(A, Z(A and (B, 2"(B)).

If (A, 2") and (B, 2-) are matroids, then so is M, 2").
3. Suppose (M, 2-) is a simplicial complex and f: M --> lf/l is a map. Assume

2" {Y c_ M: BX e 2"s.t. IXl IYI If(X)l and f(X) f(Y)}.

Then (f(M), f (2")) is a simplicial complex.
Moreover, (M, 2") is a matroid ifand only if (f(M), f (2")) is.
4. For a matroid (M, 2-) andm M let

proj(m) := {x M" {x, m} ’ 2"} t2 {m}.

For X c_ M define proj(X) "= {proj(m)" m X} and proj(2") := {proj(X)"
X e}.

Then (proj(M), proj (2-)) is a matroid. We will call this matroid the projective
matroid of (M, 2").

Proof 1. See [Ai], Proposition 6.33.
2. See [Ai], Proposition 6.44.
3. (a) Suppose (M, 2-) is a matroid and fX, fY f(Z) are such that [fXI <

IfYI. Fix X, Y 2" such that f(X) fX, f(Y) fY, If(X)l- IXI and
If(Y)] ]Y]. By assumption we find a y e Y \ X such that X t_J {y} 27. But now
f(y) fY \ fX and fX t3 {f(y)} f(X t3 {y}) 6 f(2"). Thus (f(M), f (2")) is a
matroid.

(b) Suppose (f(M), f(2-)) is a matroid. Let X, I: 6 27 and IXI < IYI. The
assumptions on 2" imply IX f(X) < f(Y) [Y] and so there is a fy f (Y) \
f(X) such that f(X) t3 {fy} f (2).

Fixy 1: such that f(y) fy. Since f(y) ’ f(X) wehave y ’X. But
f(X U {y}) f(X) t.l{fy} f(2") and so, by assumption, X t3 {y} 6 2".

Thus (M, 2") is a matroid.
4. See [Ai], Theorem 6.1. [3

EXAMPLE2.1.3. 1.Assume Kis a finite field and V Kn. LetM := V\{0} and
let 2" denote the set of all linear independent subsets of M. Then (M, 2-) is a matroid.
The projective matroid of (M, 2") corresponds to the projective space associated to
V. The matroid structure of the projective matroid determines n, and if n >_ 2 it
determines K too.

(M, Z) cannot be written as a product oftwo nontrivial matroids (well known).
2. Suppose F is a graph with set of vertices V(l") and set of edges E(l") (so

E(F) c_ {{i, j}. i, j e v(r),i j}).
Let 2"r denote the set of all X

_
E(F) such that (V(F), X) contains no circle.

Then (E(F), 2"r) is a matroid (see [Ai], Theorem 6.23 (Whitney)).
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2.2. 7-/and W-independence. Let p denote a prime and G denote a finite group.
Then p is the field with p elements, 11 is the trivial ]Ft,G-module and E is the trivial
subgroup of G.

LEMMA 2.2.1. Let G denote afinite group and U M(G) (i.e., U is a maximal
subgroup of G). Fix a chief-series 7"( (Hj)j<_l (i.e., a maximal chain of normal
subgroups in G).

Then Hi <_ U ifand only if Hi U G. So

{X M(G)" HiX G, ni+l X}-- {X . M(G)" ni+l X

_
Hi}.

Proof. As 7-( is a maximal chain of normal subgroups, we have G H0 and
E Hi. So HI < U < Ho, and there exists an unique i(U) such that Hi(u)+l <
U

_
Hi(u).

For _< (U) we have Hi+ <_ U and so Hi+ U U G.
For/ >_ i(U) we have Hi : U and so U Hi U. As Hi is normal we get

Hi U <_ G, and as U is maximal we conclude Hi U G. !-!

DEFINITION 2.2.2. Suppose R is a bounded partially ordered set (i.e. there are
0, R such 0 < r < for all r R).

AssumeP, Q c_ R such that0,1 Pand =(H0 > H1 > > Hl) isa
maximal chain in P.

Define2 "= {X

_
Q" I{x X: Hi+l < x

_
Hi}l < for all }.

Let C denote the set of all maximal chains in P and let Zc := [..Jc2.

LEMMA 2.2.3. Notation as above.
J{x Q" Hi+l < x

_
Hi} is a partition of Q and (Q, ZT-t) is a (partition)

matroid.
Q Zc is a simplicial complex.

Proof. For U Q fix i(U) such that Hi(u) U > Hi(u)+. Since H0 1,
HI 0 and Hi > Hi +1, there exists exactly one such number i(U).

So [_Ji {X Q" (X) is a partition of Q. Thus( Q, 27-t) is a partition matroid
(see [Ai], Proposition 6.2).

In particular, (Q, 2)is a simplicial complex for every 7-/ C. Thus (Q, Zc) :=
(Q, [_JTc 27) is a simplical complex too. D

EXAMPLE 2.2.4. 1. Let R denote the set of all subgroups of G (partially ordered
by inclusion), Q M (G) the set of maximal subgroups and P the set of all normal
subgroups. Then the maximal chains in P are exactly the chief-series of G.

Thus we have redefined (see Lemma 2.2.1) the complexes (M(G),ZT-t) and
(M(G), Zc) ofour introduction. Moreover, the first complex is a matroid (seeLemma
2.2.3).



INDEPENDENCE AND MAXIMAL SUBGROUPS 51

2. Let G denote a finite group and C1 c C. Then (M(G), [,.JT-t,c, ZT-t) is not
necessarily a matroid.

For example: let G (a, b, c) denote the elementary abelian group of order 8.
Let 7-/1 := (G, (a, b), (a), E) and ’t2 :’-- (G, (b, c), (b), E) (so 7"/1 and [2 are

chief-series of G).
Define 2 "= 2"n, to 2-7-t2. We claim that (M (G), 2) is not a matroid.
IndoingsoletB := {(a, b), (a, c), (ba, c)} 6 2"71 --- 2"and A "= {(ba, c), (b,ca)}
2"2

_
2". So IAI 2 < 3 BI. Since A ’ 2"7-tl the only x M(G) \ A for

which A tO {x 6 2 is (b, c). As (b, c) ’ B we see that (M(G), 2) is not a matroid.

DEFINITION 2.2.5. A set of subgroups b/of G is I/V-independent if and only if
[G" ["]t:u U] I-Iteu[G" U]. Let Zw denote the set of all W-independent sets of
subgroups of G.

For A, B < G, we define AB "= {ab: a A,B B}.

LEMMA 2.2.6. IfA, B < G and C < A. Then
(Lagrange): IABI IAIIBI/IA N nl.
(Dedekind): A f3 (C B) C(A fq B).
If B is normal in G, then AB < G.

Most parts of the next lemma can be found in [FJ], Chapter 16.3 and [W1], Kapi-
tel 1.2.

LEMMA 2.2.7. 1. For a set bl of subgroups the following are equivalent.
(a) Every subset ofbl is W-independent.
(b) L/is /V-independent.
(c) I-Iu[G :U] < [G: auU].
(d) ru: G/uU xtuG/ U ru(g:uU) xu gU is (surjective)

bijective (Chinese Remainder Theorem).
(e) For all U lg we have U(t4Oau O) G (this is a definition in [Wi]).
(f) If]) C bl and := lg \ V, then V, Zw and (vv V)(Lc. L) G.
2. If (Hi) is a series of normal subgroups and Ui for I are supplements of

Hi/Hi+l, then {Ui: 6 I} is W-independent (so2-c(M(G)) c__ 2-w(M(G)) ).
Furthermore, Hi(i <_jt Uj) Gfor all i.
3. If U Ug, then {U, Ug is not W-independent.
4. If bl is V-independent and g G for U lg, then {Ugu: U 6 /,/} is

/V-independent and there is a g G such that tuU :u Ugu.

Proof. For R’ a set of subgroups of G, define R’n := xxX.
1. If ru(gbln) ru(g’/acn), then g-lg, U for all U 6 b/. So ru is injective.

Hence [G" /g] < I-I uu[G" U] and ru is surjective if [G" /gn] I-Iuu[G u ].
This proves (b)(d) (c) and (a)=(d). Ifru is surjective, then so is rv forevery

subset V of b/. Thus (d)= (a).
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For V C b/define 12 := b/\ V and let (f)v denote the assertion V,/2 6 Zw and
V G.

If (Ov, then [Vn n/2nl IIIZI/IGI. As , 2"w, we can compute both
sides of this equation in terms of UI for U 6 b/. This gives if)v=} (b).

If (a) is tree, then

IVnZ:nl I’Fnll,Cnl/IVn n Z3nl

IGIlYnl/I GI Inl/IGI IGI/I/gnl

IGIl-lvv IVl/IGI HL6 ILI/IGI 1-Ivu IGI/IUI IGI.

So (a)=}(f)v. As (a) does not depend on V, we have (b)C(a)} (f)c}(f)v.
Of course (f)=} (e) Oust set Y {U}).
Suppose(e). Then forevery U b/andallX b/\{U}, wehaveX (H\{U})n G.

So b/\ U still satisfies (e) and we may assume (induction) b/\ {U Zw. Hence
(e)=,(f){v}(f).

2. Let I {io > i > > i}. Then Hi <_ Uij for j >_ 1. Hence Uio{ Uij" j >_
1 }n > Uio Hio G.
By induction, {Uij: j > 1} Zw and so U#: j > 0} Zw.
We have

ni(nioUio n ui, n nui) ni(Ui, n nui)

HiUi=G

3. g a__ U ugcg a_. U=}U Ue’.
4. If bl Zw, then there is a g G such that g-lU g/-lU for all U (see

above). So H and {Ug" U b/} {UgU" U /g} are conjugate.
Since no two elements of/,/are conjugate, the same argument works for UsU" U

u} Zw. D

DEFINITION 2.2.8. If G := Ao > A > A2 >_... > A >_ Al+ := E are normal
in G and 7-/is a chief-series, we say that 7-/is a chief-series through all Ai’s if Ai 7-[
for all < I.
We call A/A2 a chief-factor, if there is a chief-series (/-//)i_<k and an such that

A H and A2 Hi+1.

We say that U M(G) supplements AlIA 2 if AU G and U >_ A 2.

We say that the chief-factor CD is above (resp. below, resp. between) A /A2, if
D > A (resp. C _< A2, resp. A2 _< D _< C _< A ).
We say C/D is compatible with Ai" <_/}, if there exists an 0 _< _< + 1 such

that Ai+ <_ D <_ C <_ Ai.
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3. C-independent sets

In this section we prove:

THEOREM 3.1. Let G denote a finite group. Then (M(G),Zc) is a matroid.

If U, L M(G) and U L, then {U, L} q[ Zc ifand only ifthe intersectionover
all conjugates ofU is the intersection over all conjugates of L.

Let (proj(M(G), proj(Zc)) denote the projective matroid of (M(G), Zc).
The minimal directfactors of(proj(M(G), proj (Zc are either the matroids con-

structedfrom complete graphs or the projective matroids associated to vector spaces
(see Example 2.1.3).

Let us sketch the proof:
Theorem 3.2.8 gives some factors (see Theorem 2.1.2.2) of (M(G), Zc) as sim-

plicial complex.
Lemma 3.3.1 gives a partition of M(G) that enables use to apply Theorem 2.1.2.3

(and later on Theorem 2.1.2.4).
We use this partition and factorisation in Lemmas 3.4.1 and 3.4.3 to construct

matroids (like those in Example 2.1.3).
So by Theorem 2.1.2.3 the factors are matroids.
Now Theorem 2.1.2.2 and 4 show that (M(G), Zc) is a matroid and that we have

constructed the associated projective matroid.
The minimal direct factors of (M(G), Zc) can be deduced from Lemma 3.4.4 and

the factorisation of Theorem 3.2.8.

3.1. Core and crown.

DEFINITION 3.1.1. For U < G define

core(U) := N Ug

gEG

(so core(U) is the kernel of the permutation action of G on G/U).
Let N denote the product of all minimal normal subgroups of G/core (U). Define

crown(U) by crown(U)/core(U) N.

The structure ofcrown(U)/core (U) is rather restricted:

THEOREM 3.1.2 (Baer). Suppose U M(G) and core(U) E. Then one of the
following hold:

1. G has a unique minimal normal subgroup N.
N is abelian, U N N E and UN G.
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2. G has a unique minimal normal subgroup N.
N is non-abelian and UN G.

3. G has exactly two minimal normal subgroups A, B.
A and B are isomorphic but non-abelian. AB fq U is the diagonal subgroup
ofAB.
AB/B (resp. AB/A is the unique minimal normal subgroup of G/B (resp.
G/A).

Furthermore, ifA is a non-trivial normal subgroup ofG, then Ca A) is either trivial
or a minimal normal subgroup of G.

Hence, if A is a minimal normal subgroup of G, then ACa(A) is the product of
all minimal normal subgroups of G.

Proof. See [Baer], Section 2. []

LEMMA 3.1.3. Fix U M(G).

1. If B < A are normal in G and B <_ core(U) A, then there exists a chief-
factor /[1 such that B < [1 < core(U) , _< A.

2. IfA/B is a chief-factor, then U supplements A/B ifand only if
B _< core(U) A.

3. Suppose U supplements the chief-factor A/ B.
Then crown(U) Ca(A/B)A and A/B - Acore(U /core(U) as groups with
G-action.

If in addition A/B is abelian, then crown(U) Ca(A/B) and

crown (U)/core(U) A/B as G-modules.

Recall: AB is an elementary abelian p-group for some prime p. Now the
conjugation action of G on A/B gives A/B the structure of an (irreducible)
IpG-module (lp is the field with p elements).

4. IfA/B and C/D are chief-factors and U supplements both, then
A/B - C/D as groups.

Proof. 1. Let B := A t3 core(U), then B < B < A. Hence there exists a
normal subgroup/i such that ,//} is achief-factor and, < A. If , < core(U), then
< A N core(U) /}, a contradiction.
2. U supplements A/B B < U

_
A (Lemma 2.2.1) B < Ug A (as A and

B are normal) B < core(U) A.
3. The map a B -- a core(U) is an isomorphism (as groups with G-action) from

A/B onto A core(U)/core(U) (this map is an epimorphism and, since A/B is a
chief-factor and A core(U) core(U), it has to be an isomorphism). So A/B --A core(U)/core(U) as groups with G-action. Hence core(U) < Ca(A/B). Now
(see Theorem 3.1.2 (Baer)) crown(U) Ca(A/B)A.
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If crown(U)/core(U) is a chief-factor (and this is true if A/B is abelian), then
Theorem 3.1.2 gives A/B - crown(U)/core(U) as groups with G-action. IfA/B is
abelian, then A < C(A/B).

4. As already proved, A/B and C/D are isomorphic (as groups with G-action) to
some minimal normal subgroups of crown(U)/core(U). But all these subgroups are
isomorphic as groups (see Baer), and so A/B -- C/D (as groups). E1

3.2. Direct factors and types.

DEFINITION 3.2.1.
type, if

Suppose U, M(G). We say that U and t7 have the same

1. crown(U) crown(U) and
2. crown(U)/core(U) and crown(/.7)/ core(t)) are, either both abelian and iso-

morphic as G-modules, or both non-abelian.

So "type" is an equivalence relation. Let (R) denote the set of all types.
For T (9 let crown(T) := crown(U) for some U T (this is independent of the

chosen U) and core(T) "= [")veT core(U).
If A/B is a chief-factor and U T supplements A/B, then we say that A/B has

type T (note that the type of AB is not defined if A/B possesses no supplement in
M(G)).

LEMMA 3.2.2. Suppose N is an abelian normal subgroup and UN G. Then
U fq N is normal in G.

Suppose U N N N. Then U M (G) ifand only if N/(N N U) is a chief-factor.
Assume ,V c__ M(G) is minimal under the condition xx X fq N E. Then

xx X is a complement ofN in G and [([xx X) is a complement ofN/lfor
all G-normal subgroups ]Q ofG.

Proof. Since N is normal, we have U < N(N fq U), and as N is abelian, we
have N < N6(U fq N). Hence N6(U fq N) > UN G. So N fq U is normal in G.

If U M(G) and U N < B < N forsome normal subgroup B, theia B 2 U and
therefore BU G. Since U B U N, we have IBI IGIIU fq BI/IUI INI.
Hence B N and N/(N q U) is a chief-factor.

If N/(N f U) is a chief-factor and U < X M(G), then U f N X q N and
so IXIINI/IU fq NI- IGI-- IUIlNI/IU NI. Hence U X M(G).

Fix an enumerationX X1 X ofX. Let No := N andNi := Oj <i Xj ("1 N.
Then Ni > N/+1 by minimality of X’.

Thus Xi supplements Ni/Ni+l andLemma 2.2.7 proves N [xex X G.

If/Q < N is normal, then/ [")xex X is a complement ofN/ in G/iQ. El
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LEMMA 3.2.3. Suppose T 19 and A/B is a chief-factor.

1. If U e T and 0 e M(G) supplements AB, then 0 T.
Thus every chief-factor has at most one type.

2. There is an X cc. T such that crown(U)/core(U) is a chief-factorfor all U
X and crown(T)/core(T) crown(T)/ vx core(U) ])vx crown (U)/
core(U).

3. IfA/B is a chief-factor compatible with crown(T)/core(T), then AB hastype
T ifand only ifA/B is between crown(T)/core(T).

Proof. 1. By assumption crown(U) ACe(A/B) crown(U).
Suppose A/B is abelian; then

crown (U /core(U) - A/B -- crown(U)/core(as groups with G-action. So T.
Suppose A/B is non-abelian; then so are A core(U)/core(U) and crown (U)/

core(U). Similar for U. Hence U T in this case, too.
2. IfN is normal andX, Y < N are normal, then N/(X AY) is an epimorphic image

of N/X N/Y as groups with G-action. If N/Y is a chief-factor and X A Y # Y,
then N/(X Y) - NIX N/Y as groups with G-action.

Therefore it is enough to prove that core(T) is an intersection of those core (U)’s
with U T and crown(U)/core(U) a chief-factor.

Fix U T such that crown(U)/core (U) is not a chief-factor. We will construct
U, U2 e T such that crown (T)/core (Ui) is a chief-factor and core(U f3 core(U2)
core(U) (this will be sufficient to prove this part of our lemma).

In doing so, we may assume core(U) E.
By Theorem 3.1.2 (Baer) we find minimal non-abelian normal subgroups X, Y of

crown(U) such that XY crown(U). Let S denotea non-trivial Sylow subgroup of
X (so S is a proper subgroup ofX since, X is non-abelian). ThenN(S)crown(U)
G (Frattini argument) and Y < N(S) f3 crown (U) < crown(U). Fix U1 with
N(S) < U M(G). This U is a supplement of X. Since U is also a supplement
of X we have U T. Furthermore crown(U1)/core (U1) crown(T)/ Y is a chief-
factor. Similarly we find U2 T that supplements Y such that core(U2) X. So
U2 T and core(U) E Y fq X core(U1) tq core(U2).

3. Suppose A/B has type T. We have to show that A : core(T) (i.e., A/B is not
below core(T)) and B crown(T) (i.e. AB is not above crown(T)).

Since A/B T, there exists a U T suchthat B < core(U) A.
So B < A < AC(A/B) crown(T)and A : core(U)> core(T).
This proves this case.
Suppose core(T) < B < A < crown(T). We may assume core(T)= E.
As already shown, there is an and supplements Ui T ofthe chief-factor Mi "=

crown(Ui)/core(Ui) such that 1")Ui crown(T) E and crown(T)/core(T)
<l Mi. Let Ni denote the preimage of iSj<l Mj.
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Suppose A/B is non-abelian. Then all Ni’s are non-abelian, and so there exists
an a such that A B Na. Hence UaA G and B < Ua. Thus A/B has type T.

Suppose A/B is abelian. Then so is crown(T). Hence K "= NiEI Ui satisfies
Kcrown(T) G and K f3 crown(T) E (see Lemma 3.2.2). As crown(T) is a
direct product of minimal normal subgroups, we find a normal subgroup N such that
NA crown(T) andNf3A B. Now KNA GandKN > B. Since [G
KN] IA/BI 1, it follows that KN M(G)and crown(KN) Co(A/B)
Co(Mi) crown(T). So KN T is a supplement of A/B.

LEMMA 3.2.4. Let T tO and X T. Then X is C-independent if and only
if there exists a chief-series through crown(T) and core(T) such that X is
independent.

Proof. If X is -independent for some chief-series/2 as above, then X is C-
independent.

So suppose is a chief-series and X c_ T is 7-(-independent.
We project to crown(T)/core(T) as follows:
Define Li := crown(T) fq (H/core(T)), then

crown(T) > Li > Li+l > core (T).

If there is a U 6 X that supplements Hi then Hi < HiCo(Hi/Hi+)
crown(T) and so L H/core (T). Thus UL G. Moreover, Li +1 Hi+ core(T)
< Lif)U.

This proves that U supplements (some chief-factor between) Li/Li+ 1.

So every chief-series/2 that contains all L i’s, crown(T) and core (T) satisfies the
conclusion of our lemma (and at least one such/2 exists, as already shown).

COROLLARY 3.2.5. Suppose X T tO and ("lx EX core(x) Y. Then X Zc
if and only if there exists a chief-series 7"( through crown (T) and Y such that X is
7-l-independent.

Proof. In the proof of the last lemma replace core (T) by Y.

LEMMA 3.2.6. Suppose T tO. Let M < crown(T) denote a normal subgroup
ofG such that MU G for all U T and let N "= M f) core(T).

Then M core(T) crown(T).
Furthermore X T is in Zc ifand only ifX Zc.for some chief-series 17, through

M and N.

Proof If Mcore(T) < crown (T), then there is a U 6 T that supplements a
chief-factor between crown(T) and M core(T), hence (by Lemma 3.2.3) MU <
M core(T)U U, a contradiction.



58 MICHAEL WEIDNER

If 7"( is a chief-series through M and N and X is 7-/-independent, then X is C-
independent.

So suppose X Zc. By Lemma 3.2.4 we find a chief-series 7-/through crown(T)
and core(T) such that X is H-independent. Let Hi, crown(T) and Hi2 core(T).
The isomorphism

MN Mcore(T)/core(T) crown(T)/core(T) Hi,/Hi2

gives Li’s such that N <_ Li < M and L/core(T) Hi for il < _< i2.
If Ui supplements Hi/Hi/l and il + _< <_ i2, then Ui Li Uicore(T)Li

Ui Hi G and Ui >_ Hi+l _> L i+ 1. Therefore X is -independent for any chief-
series/2 through {Li" < _< i2}. As already shown at least one such/2 exists and
M, N . 121

DEFINITION 3.2.7. We now define (inductively) a series of normal subgroups
of G.

Let M0 := G, No :-- G, To := {G} and (R)0 := (R).

If, for all j < >_ 1, we have defined Mj, Nj, Tj and (R)j, and if (R)i-1 J, then
define Mi, Ni, Ti and (R)i by the following procedure:

1. Chose a Ti (R)i-1 such that crown(T/) N Ni-1 is maximal in

{crown(X) N Ni_I’X (R)i-1}.

2. Define Mi := crown(Ti)t’) N/_I, Ni :-- Mi core(Ti) and(R)i "= (R)i-1 \{Ti}.

Remark. Fix such that 01--1 (R)l" The above definition gives an enumera-
tion (R) {Ti" 1 < < l} of (R) and a series M1 > N1 > M2 > N2 > > MI > NI
of normal subgroups, such that if 7-/is a chief-series through all Ni’s and Mi’s and
A/B is a chief-factor in 7-/, then A/B has type Ti if and only if A/B is between
Mi/?i.

This follows from the proof of the next theorem.

THEOREM 3.2.8. Let H denote a chief-series. Then there exists a chief-series ,
through all Mi and 1 (defined as above) such that ZT-t Zc,. Hence (M(G),Zc) is

the direct product of all (r, Zc)’s with T 0.

Proof. We claim that the Mi’s and N/’s satisfy the hypothesis ofthe last lemma
forT=T/.

In doing so, we make an induction on i. The case is trivial. Suppose our
claim is true for j < and false for i.

Since Mi < crown(T/) and Ni Mi core(T/), this gives us a U 6 Ti such
that Mi U =/: G. Thus U supplements some chief-factor between Mj/ Nj or Nj/Mj+1
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for some j < i. In the first case U Tj # Ti, a contradiction. The second case
cannot appear, for if A/B is a chief-factor between Nj/Mj+I with supplement U,
then Nj N crown (U > A > B > Mj+1 a contradiction to the choice of Mj+ 1.

This proves our claim.
Now, if X is 7-t-independent, then each XTi := X f3 T is -independent and the

two last lemmas show, that XTi is independent for a chief-series/i through Mi / Ni.
This is still true if we vary i above Mi and below N/. Let Yi denote the set of all
normal subgroups in L between M and Ni. Then Y := [_J Yi is linearly ordered and
every chief-series/2 through Y satisfies 27; 27-t.

Hence (M(G), Zc) is the direct product of the T’s with T (R). v1

3.3. Projective C-independence.

LEMMA 3.3.1. 1. Suppose U, L are two different elements of M(G). Then
{L, U} Zc ifand only ifcore(U) :/= core(L).

2. Suppose X M(G)andeverytwo-element subsetofX isin Zc. Fixyx M(G)
such that core(yx) core(x) and crown(y,) crown(x) for all x X. Then
Y := {Yx" x X} is in Zc ifand only ifX is.

Proof. 1. Suppose core(U) core(L) and let 7-( denote a chief-series such
that U supplements H//Hi+l and L supplements Hj/Hj+l with < j. Then Hj _<

Hi+l <_ core(U) core(L) _< L. So LHj L < G. A contradiction. Since 7-/was
arbitrary, we conclude {U, L ’ 2c.

Suppose core(U) -# core(L). We may assume core(U) ; core(L). Then
core(U)L ; L. As L is a maximal subgroup, we get core(U)L G. So U sup-
plements some chief-factor above core(U) and L some below. Hence, if core(U)
7-( C, then {U, L} Z7. c_ 27c

2. Suppose 7-( is a chief-series, X as above and X is 7-t-independent.
If x e X is a supplement of Hi/Hi+, then Hi+ < core (x) Hi+ and Yx is a

supplement of Hi/Hi+l, too. So Y is 7-t-independent.
On the other hand, the assumption about the two-element subsets of X implies that

the map x ---> Yx is bijective.
Reversing the roles of Y and X shows that X is 7-t-independent if and only if Y is.

Varying over all chief-series finishes the proof of our lemma. E]

3.4. Geometric ,and graphic factors. Lemma 3.3.1 and Theorem 2.1.2 show
that the question of when a subset of M(G) is C-independent is a question about
normal subgroups.

More explicit (we use Theorem 2.1.2, 3.2.8 and Lemma 3.3.1):
Let P(G) denote the lattice ofall normal subgroups of G and N(G) := {core(U):

U M(G)}. Define (N(G),Zc) as in Definition 2.2.2 (with R P P(G) and
Q N(G)).

Then (M(G), 2"c) is a matroid if and only if (N(G), 27c is.
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If (M(G),Zc)is a matroid, then (N(G),Zc)is the corresponding projective ma-
troid.

Furthermore, for T (R) let N(T) := {core(U)" U T}. Then the N(T)’s are the
direct factors of N(G) and so (N(G),Zc) is a matroid if and only ifeach (N(T), Zc)
is.

LEMMA 3.4.1. Suppose that T (R) and crown(T)/core(T) is abelian.
Then there is a prime p, an irreducible ]p G-module W and an n such that

crown(T)/core(T) Wn.
Let K := HomG(W, W) (so K is a field).
Then N(T), :T-c) is isomorphic to the projective matroidofKn (seeExample 2.1.3.1 ).

Proof. The existence of W and n is trivial. The map r: crown (T) ---> Wn with
kernel core(T) induces a bijection between N(T) and the maximal submodules of
W" (see Lemma 3.2.2). This submodules correspond to the kernels of the non-
trivial maps in Hom6(Wn, W) - Kn. Tracing back the linear independence of the
projective matroid of Kn to N(T) proves our lemma. I2

3.4.1. The non-abelian case. Suppose that T (R) and crown (T)/core (T) is
non-abelian. Doing our calculations in G/core(T), we may assume core(T) E.

So crown(T) x i<_joNi, where N1 Nj0 are the minimal (non-abelian) G-
normal subgroups of crown (T). Define J := {i" < < J0} and let ]P(J) denote
the set of all subsets of J ordered by inclusion. For I I?(J) let Nt "= XielNi (so
N N{i and N "= E). Since N is non-abelian, the map o" Nt I is a lattice
isomorphism from the lattice of all G-normal subgroups of crown(T) to I?(J).

Let (N(J),Z_c) denote the image of (N(T), Zc) under .: Nt ---> J \ I. So
N(J) {I C_ J. Nj\t . N(T)}.

LEMMA 3.4.2. X C_ N(J is in :Lc ifand only ifthere is a chain

0=’I0 c l1C "’C llji "= J

such that

I{x X: li-(-1 ("Ix 0 5 Ii (q x}l <_ forall <_ < IJI.

In this case X is (by definition) Ii)iej-independent.

Proof. Suppose X e 2-c, then Z := ,,-I(x ( Zc. Hence there is a chief-series
(Hi) through crown(T) such that (with Hio crown(T) and Hit E):

I{z e Z" ni+l <_ z

_
ni}l _< for all il > > i0.

For 0 _< < io, define I :’-- 9(Hi,_i).
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For x X, define .(x) Nj\x =" z. Note: Hi,_ "< Z if andonly if li (J \ x)
hence Hi-<i+) < z

_
Hi-i if and only if Ii+l f"l X Ii f"l X.

This proves one direction of our lemma, the opposite direction follows similarly.

Note that I e N(J) implies III 1, 2} (Baer). Every one-element subset of J is
in N(J) (see Lemma 3.2.3).

LEMMA 3.4.3. Notation as above. Choose 09 J. Let

E := {{i, j}" i, j J U {to}, -’.’# j, J \ ({i, j} \ {09}) N(J)}.

Then [’ (J U {to}, E) is a graph.
Moreover (N(T), Zc) - (N(J), Z_c "2_ (E, 2"r); in particular, (N(F), Zc) and

(T, Zc) are matroids.

Proof. We claim that r" N(J) ---> E; r({i}) "= {i, to}, r({i, j}) "= {i, j} for
# j J gives an isomorphism between (N(J),Z_c) and (E, 2"r .
Let r also denote the map from all subsets of N(J) to all subsets of E induced by

r. Note that r is a bijection.
1. Assume X __. E is not in 2"r. Then X contains a minimal circuit Y. Suppose

Z "= r-(Y) (so IZl IYI) is (li)ij-independent for some (li). Let J’ denote the
set of all j J with: {j, j’} f Z for all j’ J. Then Z is (lj)j -independent for
every chain (/j’) with I’ J’.J+IY’I Ij U So IZl _< JI J’l and, if no one-element
set is in Z, then IZl _< JI J’l 1 (since in this case we may add J \ lll N(J)
to Z and still get an (//’)-independent set).
We now use the fact that Y is a circuit.
First, assume that some {j} isin Z. Then ((J\ J’)U {to}, Y) is a cyclic graph and

so IYI I(J \ J’) U {to}l IJI- IJ’l + 1 # IZl, a contradiction.
If there is no (j, to) Y, then ((J \ J’),Y) is a cyclic graph and so IYI

I(J \ J’)l J J’l ZI, a contradiction, too.
Hence Z ’ 2_c and r-I(X) ’ 2"_c.
2. Now suppose X

_
E is in 2r. We have to show that Z "= r (X) 2_c.

Therefore we may assume that X is maximal in 2"r (hence (J U {to}, X) is a spanning
tree since 1-’ is connected). So there is some Jl, to} X.
We now define li and X inductively.
Let I1 "= {Jl} and X1 := {{Jl, to}}.
Suppose Ij, Xj is defined for all j < < JI.
Choose {ai+l, bi+l} X \ Xi such thatai+ Ii U {to} and bi+l J \ I.
Define li+l := Ii U {bi+l} and Xi+i "= Xi U {{ai, bi} }.
We have to show thatthis is possible. In doing so, it is enough to find ai+l Ii U{to}

and bi+ . J \ Xi such that {ai+ 1, bi+l} X.
Note (or take as additional induction hypothesis) that IIil IXil and (li U

{to}, Xi) is a connected subgraph of (J U {to}, X).
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Since Iil < JI and X is a spanning tree we find b J \ li and a path b :=
yo, yl yl := o in X (so {Yr, Yr+} X). Let r0 denote the largest r such that
{Yr, Yr+l} Xi (as {Yo, Yl} Xi, this is possible).

Then Yro+ Yl or {Yro+, Yro+2} Xi" In both cases, we have

Yro+l I

If Yro li t_J {o9}, there would be a path in Xi from Yro (to o and from o) to Yro+ 1. But
this gives a circuit inX. Hence Yro q liU{9}" Therefore wemay define ai+ :--- Yr0+l
and bi+ :--- Yro" This proves that our inductive definition of Xi and li works.

Now, it is easy to verify that Z is (Ij)-independent.
So (E, Zr) - (N(J), Z_c): (N(r), Zc) as simplicial complexes, and (E, Zr)

is a matroid (see Example 2.1.3.2). This proves our lemma.

LEMMA 3.4.4. If{jl, J2, J3} isa three-elementsubsetofJ and{jl, J2} and{j2, J3}
are in N(J), then {Jl, J3} N(J).

In addition: (N (T), Zc is a direct product ofmatroids ofcomplete graphs.

Proofi In proving {j, J3} N(J), we may assume Ji and [J[ 3.
Therefore crown (T) N1 x N2 x N3 and there is 31,2 Hom(N1, N2) such that

U,2 := {g G: r,2(ng) rl,2(n)g foralln N1} M(G) and core(U1,2)= N3
(Baer). Similarly we find 32,3 and U2,3.

Hence 31, 3 32,33L2 is an isomorphism from N to N3. Define U1,3 "= {g
G: 31,3(ng) 31,3(n)g for all n N} soU1,3 < G. Wehave U1,3 > (U1,2fqU2,3)N2.
Now U,3N >_ (U1,2fqU2,3)N N2 (U1,2N1 f’lU2,3)N2 G and similarly U1,3N3
G. Fix U,3 < X M(G). Then XN1 XN3 G and core(X) N2 N(T).
This proves 1, 3} N (J).

Consider now the graph F (J U {09}, E). It follows from the first part of our
lemma that the graph F’ := (J, E \ {a, j }: j J}) is a disjoint union of complete
graphs F "= (Ji, Ei).

Define Ii :-- (Ji 1.3 {to},E k.J {{o,j}: j Ji}). Then V(F) _Jv(ri) and
E(F) E(Fi). So X Zr if and only if all Xi := X N E(Fi) Zr,. El

We have thus proved Theorem 3.1.

4. W-independence

In this section we prove:

THEOREM 4.1. Let G denote a finite group, rt the set ofall primes, MP(G) the
set ofall maximal subgroups ofp-power index and let Mr(G) := UpErt MP(G).

Then (M (G), Zw) is a matroid.
It is the direct product over all MP(G),Zw) ’s there p runs over
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If2 p zr, then (Mp (G), Zw) (MP(G), Zc).
Furthermorefor p a prime,

ZT-t (MP(G))n Zc (MP(G)) n Zw (MP(G)) Sf(G).

Here SPc (G) is the set ofall those subgroups U ofp-power index in Gfor which the
M6bius number Ix(U, G) is not zero.

We would like to give a ’reason’ why this theorem should be true:
Assume T tO, core(T) and crown (T) Wm for an irreducible ’p G module

W.
As W-independence behaves well under conjugation (see Lemma 2.2.7), we look

at conjugation classes ofelements ofT. These conjugationclasses correspond to pairs
(a, b) N(T) x H(G/crown(T), W) (here N(T) {core(U): U T}is the set of
all maximal G-normal subgroup of crown(T)). (C-independence just looks at N(T)
and it is true that Zc(T) Zw(T) if H l(G/crown(r), W) 0; see Lemma 4.3.3).

The elements of H(G/crown(T), W) and the G-module automorphisms of
crown(T) correspond to certain automorphisms of G.

So we expect that the maximal W-independent subsets of Thave the form Xx with. running over all automorphisms of G and X running over a small, well-known set
of W-independent subsets oft (see Lemma 4.5.3). Once we have such a description
ofZw(T), we can check directly that (T, Zw) is a matroid (compare Lemma 4.5.4).

In general however, itis not true that T is a factor of (MP(G),Zw), so we have to
modify the above ideas.

Furthermore, we have to be careful about the supplements of non-abelian chief-
factor. This is one reason, why we restrict our attention to subgroups of prime power
index.

EXAMPLE 4.2. We construct some groups G such that (M (G), Zw) is nota ma-
troid.

Let S denote a simple group and bl a maximal subset of(M (S), Zw with I/1 >_ 2
(such a bl existsfor S - As).

Define G :-- S x S, A := {(g,g): g
and/g2 := {(U, S), A: U L/}.

Thenbll andbl2 are maximal in Zw(M(G)) and I/gll 21/,/I > l / 21.
Hence (M(G), Zw) is not a matroid.

4.1. A decomposition of Zw.

LEMMA 4.1.1. If bl is a W-independent subset of MP(G), then [")t:u U has
p-power index in G.
(MP(G), Zw) is the direct product (as simplicial complexes) of all

(MP, Zw) ’s with p aprime dividing [G 1.
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Proof. The first assertion follows from [G: uu U] I-Iuu[G U].
If U and V have coprime index, then [G U], [G V] and [G U][G V] divide

[G U fq V]. So IUVl IUllVI/IU VI >_ IGI.
Fix a set zr of primes and let zr’ denote the set of all primes not in zr. For

X C [_Jpur, MP (G) let Xr := {x X: 3p zr s.t. x MP (G)} and define X,
similarly.

If X is W-independent, then so are Xzr and X,r,. Now

since [G" xeX x] and [G: xx,X] are coprime. So Xr tA X, is in Zw (see
Lemma 2.2.7). rq

LEMMA 4.1.2. If U Mp (G), then G/core(U) has a unique minimal normal
subgroup.

Suppose A/B is anon-abelian chief-factor. Then {U MP(G) AU G, U >_
B} is a directfactor of(MP(G), C).

Proof. If G/core(U) has two different minimal normal subgroups A and B,
then A is non-abelian and [G U] [A[ is divisible by more than one prime. So
U q[ MP(G) (Baer).

Let U e T (9 with crown(T)/core(T) non-abelian. The projective matroid
associated to (T f3 MP(G),Zc) is a direct product of graph matroids. But the edges
(notation as in Lemma 3.4.3, 3.4.4) {i, j} with i, j J donot correspond to subgroups
in Mp (by the first part of this lemma). So the projective matroid is the directproduct
of all one-element subsets of proj(T q MP(G)). Since proj(T fq Mp (G)) is a direct
factor of (proj(MP(G)), proj(Zc)), this proves our lemma. [:!

THEOREM 4.1.3. Suppose p is a prime such that each pair {U, L}

_
MP(G) is

W-independent ifand only if it is C-independent.
Then Zw(Mp (G)) Zc(MP(G)).

Remark. Once we know that (MP (G),Zw) is amatroid we can reformulate this
theorem as follows:

If (projw(MP(G)), prOjw(Zw)) (resp. (projc(MP(G)), prOjc (Zc)) denotes
the projective matroid of (MP(G),Zw) (resp. (MP (G), Zc) ), then

projw(MP(G)) projc(MP(G)) implies Zw(Mp (G)) Z(MP(G)).

Proof. We already know that Zc(MP (G)) c_ Zw (MP(G)) (see Lemma 2.2.7).
Suppose now X Zw(MP(G)) \ Zc(MP (G)). Then there is a type T such that
X N T q[ Zc and we may assume X c_ T.
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Case 1. crown(T)/core(T) is non-abelian.
Then there isa minimal direct factor T1 of (T f’)MP(G),C) such thatX (qT1 c.

We may assume X

_
T1.

Since no two-element set is in 2c (T1) (see Lemma 4.1.2) no two-element sub-
set is in 2c(T1) by assumption. Since all one-element subsets are in 2c, we have
Zw(MP(G)) Zc(MP(G)) in this case.

Case 2. crown(T)/core(T) is abelian. We may assume core(T) E and that X
is a maximal subset of 2"w (T).

Let X’ denote a maximal C-independent subset of X.
Then xeX x q crown(T) xeX, x fq crown(T) E (see Lemma 3.2.3). So

K :-- xX, x is a complement of crown(T) in G (see Lemmas 2.2.7 and 3.2.2).
By assumption we, find x X \ X’. Then K "= Kcore(x) complements

crown(T)/core(x) and so K
independent. But core(K 1) core(x), so x and K are not C-independent, a contra-
diction.

Remark.
satisfied.

We will see that for p 2 the assumptions of the last theorem are

4.2. Simple groups and Cohomology. In this section we quote those results of
[AS], [Gu] and [We2] we need in this paper and derive some corollaries.

THEOREM 4.2.1 (Guralnick). Let G denote a non-abelian simple group, p aprime
and H < G such that [G H] pa for some a 1%I. Then H M(G) and one of
thefollowing holds:

1. G An and H - An- with n pa.
2. G PSLn(q) and H is the stabilizer of a line or hyperplane. Then pa

(qn_ 1)/(q- 1).
3. G PSL2(1 l) and H - A 5.

4. G M23 and H - M22 or G M and H MIo.
5. G PSU4(2) PSp4(3) and H is a parabolic subgroup, pa 27.

Note that in item 2,for n > 2, and in 3 there are two conjugation classes ofH which
are fused in Aut(G). Also H is a p-complement except if G - An and a > 1 or
G PSU4(2).

Proof See [Gu]. [2]

Remark. The above theorem uses the classification of the finite simple groups.

COROLLARY 4.2.2. Suppose N is a non-abelian minimal normal subgroup of G.
If U < G has p-power index in G and NU G, then U Mp (G) and N fq U is a
minimal subgroup of p-power index in N.

Furthermore U N6(N N U) and no two supplements ofN are W-independent.
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Proof. For U E MP(G) and the fact that U N N is minimal among all subgroups
of p-power index in N see [We2], 4.3-4.5.

Note that N(N N U) > U and N U is not normal in N. So U N(N U),
as U is maximal.
SupposeXN= G and X E MP(G). If{X,U} Zw, then [N" NNXNU]is

a power of p, this implies N X N U (by the first part of this lemma) and so
U=X. [3

LEMMA 4.2.3. Suppose W is a faithful Ip(a)-module and [(a)[ pn. Then
dim W >_ pn-1 + 1.

Proof. If dim W w, then the characteristic polynom of a on W is (a 1)w. If
-Ipn-1 >_ W, we have 0 (a- 1) (a- 1) p-I apn- 1. So apn fixes every

element of W, a contradiction. Thus w > pn-1 + 1.

LEMMA 4.2.4. Suppose S is anon-abelian simplegroup, S < G < Aut(S) and V
is afaithful, irreducible ]p G-module. Let ps denote the maximal index ofa.subgroup
ofp-power index in S, P (x) the p-part ofthe natural number x and OS "= Out(S)

Assume IVl _< psP( OS) and ps # 1.
Then S - PSL2(7) and p 2.

Proof. Since ps # 1, we just have to check the groups in Guralnick’s classifica-
tion (see 4.2.1).

1. Case S - P SLa(q)
We have a prime r and a, b such thatq rb and pn (qa 1)/(q 1). Then

Out(S)l divides (q- 1)lAut(q)[2-- 2b(rb 1).
(a) Case p - 2 or a > 2.
Then there is a cyclic subgroup (Singer cycle) oforder pn in S (see [We2], Korollar

-15.3)andP(2b(rb_l)) < pn. SopP +1 < IVI _< psP(OS) < pnpnandpn-l+l <
2n. Hence n 1 (since pn > 5 ). If n 1, then P(2b(rb- 1)) 1 and therefore
p"- + 1 < n, acontradiction.

(b) Case p 2 a.
Then 2n rb + and Out(S)l divides b (2n 1). Furthermore there is a cyclic

subgroup oforder 2n-1 inS. So22-2+1 < IVI _< psP(b(rb- 1))= 2np(2b) < 22.
Hence 2n-2 + 1 < 2n, a contradiction for n > 6. If n 5, then rb 31, so P (b)
and 23 -+- < 6, a contradiction. If n 4, then rb 15, a contradiction. The case
n 3 gives S -- PSL2(7).

2. Case S - Ap.
Then Out(S)[ 2 (since p 6).

-I
(a) For p 2 we have a cyclic subgroup of order pn in S. So pP" +1 < Vl _<

psP(OS) pn, a contradiction.
(b) Suppose p 2. Then n > 3 and there is a cyclic subgroup of order 2n- and

so 22-2+1 < IVl _< 2+. This is not possible for n >_ 5.
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We leave the two cases S A8 and S A16 to the reader (see [ATLAS] or
[GAP]).

3. The remaining four cases can be excluded by [ATLAS] or [GAP].

LEMMA 4.2.5. Suppose N is a minimal normal p-subgroup ofG and M/N is a
minimal normal subgroup of GIN.

Suppose M/N has exactly one M/N-conjugation class of p-complements and
CM(N) N.

Then M has exactly one M-conjugation class of p-complements. For every p-
complement H ofM we have No(H)M G. For every complement U of N in G
there is a gv such that Ugv >_ No(H).

Proof. The assumptions about M/N imply that M possesses exactly one conju-
gation class of p-complements (Schur-Zassenhaus). So H exits and No(H)M G
(Frattini argument).

Supposee 5 n NfqNo(H) and h H. Then [n,h] Nfq H E,
hence Clv(H) E. So the trivial pH-module IlH is a submodule of NIH and
(Nakayama-Reciprocity) an irreducible submodule of NIM/N (this is N regarded
as an M/N-module) is a factor module of IlHN/N M/N (this is the trivial HN/N-
module induced to M/N). Since [M/N" HN/N] is apowerofp the only irreducible
factor module of IHN/N M/N is the trivial M/N-module (see [We2], Lemma 3.1).
So a submodule of NI M is the trivial module. Now Clifford theory shows that
CM(N) M, a contradiction. Therefore NN(H) E.

By Guralnick (Theorem 4.2.1) NM/N(HN/N) HN/N, so H No(H) f3 M.
Suppose U is a complement of N in G. As (U fq M)N UN fq M M and

UfqN E, wegetU -M/N. So there isagv such thatUg > H. We may
assume gv e and have to prove that U > No (H).

In doing so suppose g No(H). Since UN G we can write g nu with
u U and n N. Then [h, n] ([h, u]-l[h, nu])u- U (q N E. As above, we
conclude n e E and hence U > No(H). r-]

THEOREM 4.2.6 (Aschbacher, Scott). Suppose N is a faithful irreducible ]p G-
module such that Hi(G, N) : O.

Then G has a unique minimal normal subgroup M.
Furthermore, let S denote a minimal normal subgroup of M. Then S is a non-

abelian simple group. Fix m such that M -- Sm (Sm is a direct product ofm copies
of S). Then there exists afaithful S-module V with Hi(S, V) y Oand NIM - @Vi
(here Vi is the Sm-module on which the i-th component of Sm acts as S on V and all
other components act trivial).

Proof. See [AS], Theorem 3.
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COROLLARY 4.2.7. Suppose N is a minimal normal p-subgroup of G, U, L
Mp(G) and UL UN LN G. Assume N is a faithfuiG

Then HI(GN, N) 5 O. Let M/N denote the unique minimal normal subgroup
ofG/N. Then (M t’) U fq L)N/N is aproper subgroup ofp-power index in M/N.

Proof. Since U and L arenot conjugate(see Lemma2.2.7) wehave HI(G/N, N)
0.

So the assertions about M follow from Theorem 4.2.6. Moreover, since U NL is a
subgrotlp of p-power index, we have either M N ((U L)N) M orthe conclusion
of our lemma holds.

So suppose M < (U N L)N. Then M fq U fq L is a complement of N in M
Oust compute the order of N(M f U f3 L)). Similarly, U fq M is a complement
ofNinMandU M UL NM L M. ButNG(U fqM) > U. So,
since U was maximal and N the minimal normal subgroup of G, we conclude that
U NG(U f3 M) N(L M) L, a contradiction.

4.3. Reductions.

LEMMA 4.3.1. For L normal in G let ML := {U MP(G)" U >_ L} and
ML {U MP (G)" UL G}. So MP(G) is the disjoint union of M and
Mt (, but in general this is not a direct product of simplicial complexes). Then
(M,Zw) -- (MP(G/L), Zw).

If we have L vsu U G, for every W-independent subset H of M., then
(MP (G), Zw is the direct product of(M, Zw) and ML, Zw) (as simplicial com-
plexes).

Proof. The natural epimorphism from G onto G/L gives a simplicial isomor-
phism, (M,Zw) -- (Mp (G/L),Zw).

If 1; e Zw(M), then vv V >_ L. IfH Zw(Mt) and L Qvc-u U G, then
[")vv V vu U G. So V U H Zw (Lemma 2.2.7). E!

THEOREM 4.3.2. One ofthe following holds.

1. G is an elementary abelian p-group and (MP(G), w) (Mp (G), c is a
matroid without a non-trivial decomposition.

2. dpP(G) "= veMp() U > E and (MP(G), Zw) -- (MP(G/tP), T.w).
3. G has a minimal normal non-abelian subgroup N, and (Mp (G), 27W -(MP(G/N), :w) x (Mv, :c).
4. G is not an elementary abelian p-group, dpp(G) E and every minimal

normal subgroup is abelian.
Let M denote a normal subgroup of G, minimal under the condition that

M is not an elementary abelian p-group. Let N denote a maximal G-normal
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subgroup ofM. Then:

(a) M/N is not a p-group.
(b) N has acomplement in G. Everychief-factor belowN is acomplemented

p-chief-factor on which M/N actsfaithfully.

Proof 1. Trivial.
2. The natural epimorphism from G to G/P induces a bijection between MP(G)

and Mp(G/P). This map is the desired isomorphism.
3. See Corollary 4.2.2 and Lemma 4.3.1.
4. Suppose P E and G is not an elementary abelian p-group. Let M, N be as

in the theorem.
If M/N (and so M) is a p-group, then (M) < P (G) E and thus M is

elementary abelian, a contradiction. Therefore M is not a p-group.
Since P E every minimal normal subgroup of G is supplemented by some

U E Mp (G).
N is an elementary abelian p-group (by construction of M).
As dPP(G) E there isan X MP(G) such thatxsX xClN E. Ifwe chose X

minimal, then N - (9xsX crown(x )/core(x as IpG-modules (compare with Lemma
3.2.3). Moreover N is complemented (Lemma 3.2.2). Hence G is the semidirect
product of G/M with the semisimple module N.

Suppose V is a minimal G-normal subgroup of N. Let K denote a complement of
V in G. Then K and V normalize K N Ca(V) and therefore K NCa(V) is normal in
G. Furthermore, Ca(V)/K NCa(V) is a p-group. IfM < Ca(V), then M K is a
proper G-normal subgroup ofM which is not a p-group. Thus M

LEMMA 4.3.3. Let M, N as in Theorem 4.3.2.4 and N/I a chief-factor.
Suppose no two complements ofN/N satisfy UL G.
Let X denote theproduct ofall minimalnormal subgroups ofN thatare isomorphic

to N/N as G-modules (so X 7 E).
Then (MP(G), 2-w) is the directproduct of(Mx Zw) and (Mx 2w). Further-

more, (Mx, 2w) (Mx, 2"c) is a matroid.

Proof. In view ofLemmas 4.3.1 and 2.2.7 it is enough to show that/,/E 2w(Mx)
implies that there is a chief-series through X such that L/is 7-t-independent.

In doing so, fix an enumeration/,/= U1 U}. Define H1 "= X and Hi+l :=
Hi fl Ui. Let i0 denote the largest such that Uj complements Hj/Hj+I for all j < i.
If i0 + we are done. So suppose i0 < 1.

Then Hio < Uio ---: U. Let K1 := Ni<io Ui and K := Klcore(U). Then
KU > KIU G and K Mx.

Note that G/I is the semidirect product of G/N and N/I. Since N/I --crown(U)/core(U), we have G// G/core(U). Now the preimagesof K/core(K)
and U/core(K) give a contradiction to our assumptions. (Compare" Theorem 4.1.3.)
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(*) Let M and N denote normal subgroups of G such that:
1. M/N is a chief-factor which is not a p-group.
2. N - E is the direct product of complemented minimal normal p-subgroups.
3. If A/B is a chief-factor below N, then CM(A/B) N.
4. Every chief-factor NIX has two complements L, U such that LU G.

COROLLARY 4.3.4. Suppose (MP(G/ X), 47) is a matroidfor every non-trivial
normal subgroup X, but (,) is not satisfiedforany pair (M, N) ofnormal subgroups
of G.

Then (Mp (G), Zw) is a matroid.

If in addition Zw(MP(G/X)) Zc(Mp (G/X)) for all non-trivial normal sub-
groups X, then Zw(Mp (G)) Zc(MP(G)).

Proof. Theorem 4.3.2, Lemma 4.3.1, 4.3.3.

4.4. Projective W-Independence.

LEMMA 4.4.1. Assume (.).
Fix a chief-factor NB. Then N/B is afaithful, irreducible G/Ca(N/B) module

with HI(G/Ca(N/B), N/B) O.
Furthermore, let S denote a minimal normal subgroup of M/N. Then S is a

non-abelian simple group and M/N -- Sm for some m. There exists a faithful S-
module V such that A/BIM/lV - Vi (here Vi is the Sin-module on which the i-th
component ofSm actsas S acts on V and all other componentsact trivial). In addition
Hi(S, V) 1.

Proof. By assumption, there are two complements U, L of N/B such that UL
--G.

Since CM(N/B) N, no chief-factor above M is isomorphic to NB.
Therefore {U, L} is notC-independent, butcore(U) core (L) (see Lemmas 3.2.4

and 3.3.1). This implies that U and L are two non-conjugate (see Lemma 2.2.7)
complements of Ncore(U)/core(U) in G/core(U).

Thus H(G/Ca(N/B), N/B) 5 0, since Ncore(U)- Ca(N/B).
Now Theorem 4.2.6 completes the proof of our lemma.

Let M, S, m, V be as in the last lemma. Then VIm IN I, since N IM )i <in Vi
and

INI IGI/IUI (IGI/IUI)IGI/(INIILI) IGI/(INIIU c LI) -[G: (U AL)N].

So G/N is a group that has a subgroup (namely (U L)N/N) of index equal to
the cardinality of a faithful IpG/N-module (namely N) such that Hi(G/N, N) 1.

This gives strong restrictions on S, V and p.
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LEMMA 4.4.2. Let M, N, S, m, V, U, L and p be as above.
Let Ps denote the maximal index ofa subgroup ofp-power index in S, m the order

ofthe symmetric group S (m) on m letters and O S IOut(S)l. Let P (x) denote the
p-part ofx.

Then [VIm IN[ [G: (N(U fq L))] < (psP(OS))mp(m!) and Ps.
In particular, IV < psP(0 S) since P (m !) < pm.

Proof IVIm INI [G: (N(U A L))] was shownjust above.
If X < G and Y is normal in G, then [G X] [G XY][Y" X Y].
Applying this to G, (U A L)N and M gives

INI [G" (U fqL)N] [G" M(U f3 L)][M: M f)(N(U L))].

Obviously, [M" M fq (N(U f) L))] [M/N: (M U fqL)N/N] < pr.
Consider the map from G/M to S(m) (i.e., the permutation of G/M on the direct

summands of M/N). The kernel K of this map is the core of N6/v(SN/N)/(M/N)
and is contained in an m-fold direct sum of Out(S). The image is contained in S(m).
So

[G" M(U qL)] [G" K(U f)L)][K" K fq(M(U f)L))] < P(m!)P(OS)m.
Putting these bounds together gives our bound on IN

Corollary 4.2.7 shows ps 5 1. [2]

COROLLARY 4.4.3. Assume(.).
1. M/N P SL2(7)m and p 2.
2. M has exactly one conjugation class of p-complements. Let H denote any

p-complement and K := N(H). Then KN M (G).
3. For U Mt there is a g such that Uu > K.
4. For X c_ Mt let f := {U" U X}. Then X is C-independent (resp.

I/V-independent) ifand only if no two different conjugate subgroups are in X and
is C-independent (resp. /V-independent).

Proof. 1. Lemma 4.2.4.
2. Lemma 4.2.5 and Corollary 4.2.2.
3. If U 6 Mv, we find g by Lemma 4.2.5.
If U 6 Mt \ Mv, then M q U/N is a p-complement of M/N and so there is a

g with U N(U fq M) N(HgN) Kg N.
4. Theorem 3.1 and Lemma 2.2.7.

So far we have proved Theorem 4.1 for odd primes; if G is a minimal counterex-
ample to 4.1, then:

(**) In addition to G, M, N as in (.), define m, K, p as in Corollary 4.4.3.

Note that this implies p 2 and M/N -- PSL2(7)m.
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4.5. The case S PSL2(7)

LEMMA 4.5.1. Assume (**). Suppose N is a minimal normal subgroup ofG and
U, L are two non-conjugate complements ofN. Then UL G and IUI IKNI.

Proof. By (**) there are gu, gL G such that UgU q Lg’. > K. As UL G if
and only if UguLg G, we may assume gv gL e.
Now (U f3 L)N > KN and therefore (U q L)N KN (as KN M(G) by

Corollary 4.4.3 and I(U fq L)NI IU f LIINI < IUIINI IGI).
But IU Zl --I(U L)NI/INI --IKNI/INI Igl so U L K.
Let U, L denote two non-conjugate complements of N such that UL G (such

a pair exists by (.)). Then 0g/z G and we may assume LT, >_ K (see (**)).
As above we have f3 L K.
Now lULl--IUIILI/IKI- I(YlILI/IKI- 10LI IGI (because [G’U]

INI-- [G" 0]). Thus UL G.
SinceKNf3L (UfqL)Nf)L (UNL)(NAL)= UfqLand{KN, L}, {U, L}

Zw, we conclude KNI U

COROLLARY 4.5.2. Assume (**).
1. If U MM, then UI KN].
2. IfH Zw(MM), then [G [ugu U] [G KN]lul.
3. Suppose INI [G KN]r. IfLt is a maximal in Zc (MM), then 141 r +

and uu U K
4. IfV Zw(Mlvt), then I1 <_ r + 1.

Proof. 1. IfU 6 Mv,then U complementsN/(Ncore(U))andso IUI -IKNI
(see Lemma 4.5.1). If U MM \ Mlv, then Uuv U N > KN M(G) and so

IUI--IKNI.
2. IfH Zw(MM), then G" u
3. Note that N is a direct product of some chief-factors below N and all these

chief-factors have order [G KN] (see above). Since KN is a supplement of the
chief-factor M/N, we conclude, Ibtl r + 1.
We may suppose gv e. Thus["]vc:u U > K. Equality follows from" [G K]

[G" KN]INI [G KN]r+! [G" uc-u U].
4. Again we may assume vv V > K.
So[G" KN] Ivl =[G: [vv V] <_ [G" K] =[G" KN]r+l. Hence IVI _< r+l.

LEMMA 4.5.3. Assume (**).
Then X MM is a maximal W-independent subset of MM if and only if X

X’ tO {y} for some maximal X’ Zc(MN) and some y MM with y

_
xx, x gfor

all g G.
If X X’ t_J {y} 6 Zw(MM) is such a decomposition, then there exists y’ such

that Y := X’ t3 {y’} is C-independent and xXx Nyy Y.
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Proof. Let X denote a maximal set in 2w(MM). If X is C-independent set
X’ "= X q Mv and {y} "= X \ X’. This proves that case.

So suppose X is not C-independent and X’ is a maximal C-independent subset of
X N Ms. We may suppose U > K for all U X (for K see (**) and Corollary
4.4.3).

If QxeX core(x) N N E, then some U MM supplements some chief-factor
below xX core(x) q N E, contradicting the maximality of X (see Lemma2.2.7,
4.3.1).

Hence we may assume xex core(x) fq N E. If [")x’ core(x) fq N -7/: E, then
there is a U X that supplements some chief-factor below xX core(x) fq N :/: E
contradicting the maximality of X’. So Y’ "= X’ t3 {KN} is maximal in 2"c (Mu).
Now (Corollary 4.5.2) X \ X’ {y} for some y and (with y’ KN): lxx x
K [xX, x q y’.

Note that y does not contain a conjugate of ("kx, x’ by Lemma 2.2.7.

Suppose now X’ is a maximal C-independent subset of Ms and y Mu is such
that yg

_
xeX, x for all g G.

If y > N, then {y} t_J X’ 2"c c_C_ 2w. So suppose yN G.
Define K := xX, x (this is a complement of N in G) and K2 := Klcore(y).

Now K2 is not conjugate to y by assumption and so K1 y K2y G (see Lemma
4.5.1). Hence X’ t_J {y is W-independent. The maximality follows from the first part
of our lemma.

Therefore, for every W-independent subset of MM we have M [")vc:u U G
(see Lemma 2.2.7). Now Lemma4.3.1 shows that (MP(G), Zw) is the directproduct
of MM, :/v and MM :w [’-I

LEMMA 4.5.4. (MM, Zw) is a matroid; (MP(G),Zw) is the direct product of
(MM Zw) and (MM Zw).

Proof Let,4, 13 Zw(Mu) and IAI < Il.
We have to find a B /3 \ [ such that ,4 t_J B is W-independent.
Let Cts "= Qncore(B) and CA "= [aAcore(A). If CA fq C E an

induction argument provides such a B.
If CtfqCt < CA, thenevery B 6 Bwithcore(B)NCt < CA satisfies,4t3{B}

27w and B B \ A.
So we may suppose E CA. This implies that t is a maximal C-independent

subset of Ms.
Suppose that for all B 6/3 there is a g 6 G such that Bgn, > AA.A A. Then we

find a g G such that ne Be, NBI3 BgB >_ f’)A4 A, which is a contradiction
to It31 > 1,41 (as [G" n]- [G.KN]ItZl).

So some B /3 does not contain any conjugate of NA.,4 A and so this B is not in
A. Now A t3 {B 2w (Lemma 4.5.3).
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We can now prove Theorem 4.1: Lemma 4.1.1, Corollary.4.3.4, 4.4.3 and Lemma
4.5.4 proves the first part.
Now Lemma 4.5.3 (and Corollary 4.3.4) proves Zw(X)n Zrc(X) for every

factor X ofZw(MP(G)) and so Zw(MP(G)) Zc(MP(G))
It was shown in [We2] Satz 4.8 that 2" (MP(G)) Scp. Since/z does not depend

on 7-/and by definition of C we have, Zc(MP(G)) SPc 3

EXAMPLE 4.5.5. We construct agroup G with Zc(M2(G)) Zfw(M2(G)).
Let G1 :-- PSL2(7) - SL3(2) and p 2.
If V is an irreducible ]2G module, then H (G l, V) 0 if and only if dim V 3

and -up to isomorphism- exactly two such modules V1, V2 exist. We have IH (G, )1
2.

Let G denote the semidirect product of G1 with V1 @ I4. Then G satisfies the
assumptions ofLemma 4.5.3 (with G M). Two subgroups are not W-independent
if and only if they are conjugate. Soprojw(ME(G)) is the set ofthe five conjugation
classes in ME (G). Let K0 denote the conjugation class of supplements of G V1 (9 V2
and K/j for i, j 1, 2} the two conjugation classes of complements of in G.

So projw(M2(G)) {Ko, K/j" i, j 6 {1, 2}}.
X is maximal in projw (Zw(M2(G)) if and only if

f jX{{K0, KJl,K2},{Ki,K.2,,Kj }" i,j,j {1,2} and/ j}.

5. Applications of W-independence

1. Recall the probability theoretic independence definition: If (X, B,m) is a
probability space (i.e., X is a set, B is the set of measurable subsets of X and m is a
measure such that m (X) 1), we call a subset Y of B independent, if for all finite
subsets Z of Y, we have I-Izz m(z) m([")zz z).

The probability space we are interested in is the group G with the Haar measure
i.e. m(U) IUI/IGI for all subsets U of G. As [G U] IGI/IUI, Lemma 2.2.7
shows that W-independence coincides with probability independence restricted to
the set of subgroups.

2. A (finite) set/2 of field extensions of K is linear disjoint (by definition) if for
every/g _/: the ring (R)LecL is a field.

If G is represented as a separable Galois group, then a set of subgroups is W-
independent if and only if the corresponding fixed fields are linearly disjoint (see [FJ]
Lemma 16.11).

3. A set .T" of subgroups of G is a factorisation of G if and only if AB BA for
all A, B 6 .T" and G I-I a.- A.

Recall that two subgroups A, B commute (i.e., AB BA) if and only if AB is a
subgroup of G.
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THEOREM 5.1. (a) For lg Zw and U lg define (J "= uxc-u X. Then

{(1" U lg} is afactorisation.
(b) Let jc denote a factorisation. For F .T" let "= I-IFu= U. Then

-:= {P: F ’} w.

Proof. (a) If U1, U2 , then (with U1,2 A u, ,UzU U )" 12 (U1,2 [")

U1)(UI,20 U2) Ul,20 ((Ul,20 U1)U2) Ul,20 2U2 U1,2 -21 and

1-Ivu 0 Ul,2 I-Iv,,v2veu 0. Let V’=/g\ {U1, U2} tO{U1 fq U2}. Then V Zw
and IV[ < [/g[. Induction gives" G 1-Ivv ’ UI,Z I-Iv,,v2vu 0 I-Ivu 0
--a.

(b) If F 6 U, then/ < G. If F # U 6 .T’, then F < 0 and thus/ #0,uy 0
> FF=G.

4. Suppose X is a set with a partial order<x such thatG acts in an order-preserving
fashion on X. The orbit poset XG is the set of all orbits with the partial order defined
by {xg: g G} <x {Yg" g G} if and 0nly if there isa g 6 G such that
x <_xyg.

Suppose there are a, b 6 X such that {x 6 X" x _< a, x < b} possesses a unique
maximal element a/ b. This does not imply that there is a unique maximal element
a A b {x X" x <_ aG,x < b}. However, if C(a)C(b) G, then
(a A b)G is the unique maximal element in {x X" x < a,x <_ b} (as
{ag, x bg" gi G} {ag. g G} x {bg" g G} by Lemma 2.2.7).

The chain complex C(X) is the set of all linearly ordered subsets of X. This is
a partially ordered set (inclusion). Now C(X) C(X) if and only if we have
[G: ["]yr C(y)] 1--Iyer[G/CG(y)],forevery Y C(X).
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