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A NEW LOWER BOUND FOR CORRESPONDING RESIDUE
SYSTEMS IN NORMAL, TOTALLY RAMIFIED

EXTENSIONS OF NUMBER FIELDS

STEVEN R. BENSON

Introduction

Let F be the quotient field of a Dedekind domain De having finite residue fields
De/P for all prime ideals p of De (e.g., a finite extension ofQ or Qp ). Let K, K’ and
L be finite extensions of F such that L/F is normal, KK’ L and K N K’ F. If
9A is an ideal of Q such that L + 9A Dr, + 9A, then Dr and Dr, are said to have
corresponding residue systems modPd. We are interested in finding 9Jr(K, K’), the
unique minimal ambiguous (over F) ideal of Q so that D + 9Jr(K, K’) DK, +
9Jr(K, K’). In this paper, we will usually focus on the (local) case where F is a finite
extension of Qp, L/F is totally ramified, and K/F and K’/F are normal extensions.
In this case, 9Jr(K, K’) is a power of q3, the unique maximal ideal of D,, so our task
is to find h/(K, K’), the largest integer m so that L] + q3" D,, + q3m. The method
developed by the author utilizes canonical invariants of the field towers L! K/F and
L/K’/F, which are determined by the ith elementary symmetric functions on the
sets {(o’er -7r)/zr" o" G} and {(cr’zr’- zr’)/r’" o" G’}, where r (resp. zr’)is
an arbitrary prime element of D (resp. D,,). We see that these invariants can be
computed in terms of irre (zr), but are actually independent of the choice of rr. By
comparing the invariants associated to L/K/F and L/K’/F, we show that

1V(K, K’) > pn (t + 1) tp
n-1

where min{ tl (K/F), tl (K ’/F) }, and tl (K/F) (resp. t (K’/F)) denotes the first
breakpoint in the Hilbert ramification sequence for Gal(K/F) (resp. Gal(K’/F)).
In addition, we prove that if t(K/F) < t(K’/F), then (K, K’) can be
computed completely in terms of the coefficients of irr

F (7r), where again zr is any
prime element of L3. This, together with a previous result of the author, provides
a method for determining M(K, K’) whenever min{fi(K/F), tI(K’/F)} 1. As
a final consequence, we "globalize" our results in order to sharpen previous lower
bounds for the highest powerof dividing 93t(K, K ’) when F is an algebraic number
field.

In this article, we intend to expand on the results of ], where the author’s methods
were introduced. As in then, unless otherwise specified, we will assume that F
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is a finite extension of Qp and that LF is a normal, totally ramified extension with
normal subextensions K/F and K’/F satisfying K K’ L, K f3 K’ F and
[K F] [K’ F] pn. Denote by q3r and q3r, the maximal ideals of Dr and Dr,,
respectively.

Stout showed in 3.1 and 4.1 of[6] that, under these hypotheses,

p"(tl(L/F)+l)-pn-tl(L/F) < (K, K’)

< min {Pn(tl(K/F)+l)-tl(L/K’),}pn(tI(K’/F)+ 1)-tl(L/K).
(0.1)

If, in addition, KF and K’/F are cyclic extensions, then McCulloh and Stout proved
(in Theorem 3.1 of [3] and Theorem A of [4])

M(K, K’) pn(t + 1) pn-ltl(L/F),

where, as above, min{tl(K/F),t(K’/F)}.
In Chapter V of [7], Vogt constructed a finite extension F of2 and an elementary

abelian, totally ramified extension LF of degree 16 such that the Hilbert sequence
for L/F had a unique breakpoint at 1. Therefore, the sequences for all subextensions
also had unique breakpoints at 1. However, he then exhibited subfields K, K’ and K"
of L such that K fq K’ K’ A K" F and KK’ K’K" L, but/[(K, K’) -M(K’, K"), showing that the knowledge of the ramification numbers alone does not
suffice, in general, if one is interested in computing M(K, K’).

The invariants introduced in 1] (and mentioned briefly above) are computed as
follows: Recall that if zr is any prime element of ,], then an element cr 6 G
(= Gal(K/F)) is in the ith ramification subgroup G of G if and only if cr zr
7r 6 q3+! Let tl(K/F) min{i: Gi # Gi+I} (the first breakpoint in the
ramification sequence, which will be greater than or equal to in this case). Note
that since L/F is totally ramified and [L K] pn, we have r q3ip". For

3itpn/3itpn+l1,.. p" 1, we define e 6 to be the ith elementary symmetric
function on the set {(a zr r)/zr + 3tpn+l

cr 6 G} (Alternatively, one can think of

e, as the canonical image (in 3itpn/3itp"+l) ofthe th elementary symmetric function
of {(trzr rr)/rr }). The author showed in [1] that each e, is independent of the
choice of zr and is thus an invariant of the extension L! K! F. We similarly define

itn/itpTMthe invariant e, 6 to be the th elementary symmetric function on the

set {(a’r’ rr’)/zr’ + q36’"+" or’ G’}, where r’ is a prime element of Dr, and
t’ t (K’/F). Under the additional hypothesis that t(K/F) t (K’/ F) 1, the
author showed in Theorem 3.1 of that M(K, K’) p" + i, where is the smallest
integer satisfying e # e’ (in fact, it was shown that will always take the form p" pk
for some 0 _< k _< n 1).

In this article, we will eliminate the assumption that t (K/F) t (K’/F) 1
and use our invariants to determine (or provide bounds for) M(K, K’). Toward this
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end, in the following section, we review some background material concerning our
invariants and obtain necessary preliminary results.

1. Preliminary results

In this preliminary section, we will present several results which will be needed in both
of the succeeding sections. We shall assume throughout that F is a finite extension
of Qp and that L, K and K’ are normal, totally ramified extensions of F satisfying
K fq K’ F, KK’ L and [K F] [K’ F] [L K] pn. Recall that, if
is the maximal ideal ofD,, then N[(K, K’) is defined to be the largest rational ilateger
m so that DK + q3 DK, + q3m. As was demonstrated in [1 ], there is a connection
between/hi(K, K’) and the coefficients of irrv 0r) and irrv(r’), where zr and zr’ are
prime elements of O and D,, respectively. By (1.1) and (1.2) of [1 ], we know that

M(K, K’) max{vL(r :r’): zrL3 =q3 and zr’L3, (1.1)

and

VL (r zr’) min{v (ai a[) + i" 0 <_ <_ pn 1}, (1.2)

if we define irre(rr) ao+alx 4- 4-ap,_lX
p"-I +xp"

and irrF(zr’) a0’ + a’ix +
4- a’p,_ xpn- 14- xf.
Next, we illustrate the connection between the invariants {el < < pn and

the coefficients of irL (rr) by stating, without proof, Proposition 2.1 of 1 ].

(1.3) LEMMA. Letrc be a prime element ofL3r with irre (rr) ao + alx +... +x f
and define ap. 1. For < < pn_ and t (KIF), let 0 < j < pn_ 1 satisfy
j =-- it (mod pn). Then

)i aj
j j_pn 3itpn 4-1

pn (wherej<pn-iimplies(jpn i) 0).

(( )7rl_pn) > itwithequalityonlyif =_Furthermore, for all l, v c pn
(mod pn).

The key to (1.3), as was proved in [1 ], is that e is independent of the choice of
prime element zr. As K/F is totally ramified and rr is a prime element of L’),, we
know that irrF (zr) is an Eisenstein polynomial, and therefore, the constant term a0
satisfies vK.(a0) [K F] pn. The next two propositions use (1.3) to provide
lower bounds for the degree of divisibility of the other coefficients ofirrF(zr) by
The next proposition is a restatment of (2.6) from 1].
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(1.4) PROPOSITION. Let K/F be a normal, totally ramified extension of degree
pn with tl(K/F) < p. Suppose 7r is a prime element of L3K with irrF(zr)
-"--o aixi" If 0 < < pn and vp(l) k, then

or(a,) >_ (t 4r 1)pn

or (at) > tpn

In particular, when 1, (1.4) gives us

(1)
K (at) >- 2pn

Vr (a > pn

if < pn_ pk,

ifl > pn tpk.

if < pn pk,
if pn pk.

In this article, we will not necessarily assume that tl(K/F) < p, so we need to
prove the following generalization of (1.4).

(1.6) PROPOSITION. Suppose K/F is a normal, totally ramified extension with
[K F] pn and tl(K/F). Let 7r be a prime element of L3K with irrr (zr)

pny4=o aixi If O < < pn and Vp(1) k, then

or(at) >_ tpn -(t- 1)p k.

Proof. Let be given and suppose vp (l) k. By (2.5) of [1], we know that

vp((p/k)) 0, so v((fi)) 0, as well. Letting/-- pn pk in (1.3), we have

(pn --pk’t < vat(k)Tr1-t) "-VK(al) -t-l --p n.

Observing that < pn p, the proposition follows immediately.

A fact which will prove to be useful in the section which follows is that if > 1, then
tpn -(t- 1)p* -(2pn p*) (t- 2)(p n _pk) > O, sotpn --(t--1)p k > (2pn _pk).
Therefore, by (1.6), if Vp(1) k, then o

K (a) > 2p pk. Finally, since a F for
each l, we know that vK (a) is an integral multiple of p", so we may conclude:

If > 1, then vK (at) > 2 pn, for all 0 < < pn. (1.7)

2. The case min tl K/F), (K’/F)

In this section, L/F is a normal, totally ramified extension ofdegree p2 with normal
subextensions K/F and K’/F satisfying K C K’ F, KK’ L and [K F]
[K’ F] p. We will also assume that min{tl(K/F), tl(K’/F)} 1. For ease
of notation, we shall denote tl(K/F) and t’ tl(K’/F). Recall that the case

t’ was addressed in 1], so we shall assume that and t’ > 1.
The following theorem provides a method of computing M(K, K’) in terms of the

canonical invariants e, of K/F.
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(2.1) THEOREM. /f < t’, then M(K, K’) 2pn p, where pn pk
min{i" e 5 0 + 3ip+l}.

Proof. As e, is independent of the choice of prime element zr of OK, let us
assume that we have chosen zr and rr’ so that tt (r zr’) (K, K’), and let
irL (zr ,o aixi and irr (zr’) pni---o axi Let 0 < < p" and suppose that
Vp (1) k. Since 1, (1.5) gives us

o
K (a > 2pn if =/: pn pk,

vK (at) > pn if pn pk.

In particular, if/ p’ pk, thenat 2pn, so =0+
lpn+I

by (1.3).
Since t’ > 1, (1.7) gives us vK,(a) > 2p As at F, and the extensions K/F

and K’/F are totally ramified of equal degree, we have (a’t) vK, (a’t) > 2pn

Therefore, if pn pl, then VK(at a’t) > min{vK(a,), VK(a)} > 2pn, which
implies VK (at --a’t) + > 2pn However, by (1.2)and (0.1), 2pn 1 > tt (rr rr’)
min{vK (ai a[) + i" 0 < < pn 1}, and we may conclude that (K, K’) 7
oK (a, a1) -t- for such I. To summarize, we have proven that, if vp(l) k and

pn pk, then 0 + 913
lp+I

and/14[(K, K’) 7 tk (a, a) + 1. Note that,
by (0.1), I(K, K’) > 2pn pn-1, so min{v(ai ali) + i} > 2p pn-1, by
(1.2). In particular, t (ao a’o) + 0 > 2p pn-1. Therefore, since a0 a F,
oK (a0 a) > 2 p" (> (K, K I)). Hence

(K, K’) min{ vK (ap_pk ap_pk) -+- pn pk. 0 < k < n }.

Next, we shall investigate the case pn pk.
Suppose that pn p for some 0 < k < n 1. Then, by (1.3),

pn_pk l 0-}- 3
p2n --P+n+l

We have shown, then, that

_/+n+

= t(ap,_ p) < p2n + 1
pk(sincev,.((pnpk )) =0)

=:, oK(ap,_p ) < pn +
(since v(apn_p,) p"

vr(ap,_p,) p" (since ap,_p, D)

v _p-a_
(since v (a’p._p 2p)

v _p a _p + pn pt 2pn pt.

nOK (ap_p --ap,_pk) d- p pk= 2pn p.
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As 2p 1 >_ M(K, K’) min{ v’‘ (ap. _pk atpn_pk) -+- pn pk}, we know that

ll/ K K vK (ap, p, atp,, p, -+- pn pk

p"== pn pk min{i" v’‘ (ai ai)

pn pk min{i" e/ # 0 + q3 ipn+l},

and the theorem is proved. D

Notice that, in the midst of the above proof, we demonstrated another technique
for computing M(K, K’), for we showed that if zr is chosen (along with r’) to satisfy
/(K, K’) v,. (zr zr’), then

+n+lep d =lb. 0 + 043
p2 p == ap p ) p n.

However, since each e is independent of the choice of rr, the proof of (2.1) actually
pnshows that if is any prime element of 23,, and irrr () ,i--o bixi then

+n+l
Ln_p : 0 + 3p2n-pk

" v’‘(bp,_pk ) pn.

By (2.1), we have M(K, K’) 2pn -p’, where pn_ p min{i: e # 0+q3ip"+l},
so we know that

&((K, K’) 2p pi == pn pk min{i > 0: v’‘ (bi) pn}

pn pk min{i > 0: vF (bi) 1}

pn p min{i > 0: b p2},

where p is the maximal ideal of DF
Hence, we have proven the following:

(2.2) COROLLARY. Suppose < t’ and that re is a prime element ofD’‘ with
pn xi pkirrF (re) -i=oai If p is the maximal ideal of 9F, then M(K K’) 2pn

where p" pk min{i > 0: ai p2}.

We conclude this section by noting that we can consolidate (2.1) above and (3.1)
of 1] by making a slight change in the definition of e/when t’ > 1. Lete{ be defined
as follows"

e’ if t’ =1

0 + ip,+l ift’ >

In Theorem (3.1) of [1], we showed that, if t’ 1, then a4(K, K’) 2,o" pi,
where p" pt is the smallest integer such that , # .’,. This result, along with (2.2),
gives us a method ofdeterminingM(K, K’) whenevermin{tl (K/F), tl (K’/F)} 1.
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(2.3) THEOREM. If L/F is a normal, totally ramified extension of degree p2n
with normal subextensions K/F and K’/F satisfying K f’l K’ F, KK L,
[K F] [K’ F] p and tl(K/F) 1, then

h,’(K, K’) 2pn- p, where pn pk min i: e - t}.

3. The general case

In this section, we will continue to assume that F is a finite extension of(p and that
L/F is a normal, totally ramified extension ofdegree p2n with normal subextensions
K/FandK’/F satisfyingKNK’ F, KK’= Land[K F] =[K’ F] pn. We
will also continue to use the notation min tl K/F), (K’/F) with the additional
observation that, without loss of generality, we may assume that tl (K/F). We
will also use the abbreviation t’ tl (K’/F) and let denote the maximal ideal of
D,. In (3.3), we will sharpen the previously computed (see (0.1)) lower bounds for
h4[(K, K’). First we show that, under our hypotheses, pn cannot divide (K, K’),
generalizing a result found in the proof ofTheorem (3.1) of [3].

(3.1) PROPOSITION. Let L/F be a normal, totally ramified extension of degree
pEn with normal subextensions K/F and K’/F satisfying KK’ L, K f) K’ F
and [K F] [K’" F] pn. Then pn does not divide/k(K, K’).

Proof Define M M(K, K’) and let zr and zr’ be prime elements of L and
O,, so that v,. (zr zr’) M. Since L/K is totally ramified, we have v, (zr) pn.
Assume, by way ofcontradiction, that pnIM. Thenzr M/pn E Lr and t(zrM/p") M.
Since L/F is totally ramified, the residue fields Q/q3 and OF/P are equal, so there is

a , E O satisfying zr zr’ ?,zrt/p" (modC,]3U+l). Therefore, zr’ zr + zr’ zr _--

zr ,zru/p" (modq3U+l). Defining p zr wr u/p" we see that p is an element
of 23, satisfying (p zr’) > M + > pn (:rr’), SO we must have t (p) pn.
Thus, p is a prime element of Q satisfying (p zr’) > M, contradicting (1.1).
Hence, p" cannot divide M. E!

With (3.1) in mind, if zr and zr’ have been chosen so that v,. (n: -zr’) h4(K, K’),
then v,. (zr zr’) cannot be a multiple of pn. However, (1.2) gives us v,. (zr zr’)
min{v, (ai a) + i: 0 < < pn }, where a (resp. a) is the coefficient of x
in irL(zr) (resp. irre(zr’)). As vr (a a[) + (mod pn), (3.1) shows that the
minimum cannot occur when 0, and we have the following corollary"

(3.2) COROLLARY. Along with the hypotheses of (3.1), suppose that zr and
are chosen so that IVI(K, K’) v,. (zr zr’). If irrF (re) ao + a x +... -[- X

p" and

irrv (zr’) a + a x +... + x P", then v (re re’) < v, (ao a).
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As a final note on (3.1) and (3.2), we insert a note of caution. Notice that if zr and
zr’ are chosen to be arbitrary prime elements ofDr and DK,, then wecannot guarantee
that v,. (zr zr’) is not a multiple of pn. However, as was shown in (3.1) of [1], if
tl(K/F) tl(K’/F) and zr and zr’ are chosen sothat v,. (zr -zr’) is nota multiple
of pn, then v,. (zr zr’) M(K, K’). Whether this result generalizes to other cases
is not known to the author.
We now come to the main result of this section. We show that if L, K, K’ and F

are as above andt min{tl (K/F), tl (K’/ F) }, then &[(K, K’) >_ pn (t + 1) pn-lt,
sharpening the lower bound given in (0.1). To see that this is, indeed, a sharpening
of the previous lower bound, recall that (L/F) < min{tl (K/F), (K’/F) t, so
that

pn(t+l)-pn-lt > pn(tl(L/F)+l)-pn-ltl(L/F (-- thelowerbound of (0.1)).

(3.3) THEOREM. Let LF be a normal, totally ramified extension of degree p2n
with normal subextensions KF and K’/ F satisfying K K’ L, K f3 K’ F and
[K F] [K’" F] pn. Ift tl(K/F) < tl(K’/F),then pn(t q- 1) pn-lt <_
/1/((K, K’), with equality only if is not divisible by p.

Proof. Choose zr and zr’ so that/14[(K, K’) v,. (zr zr’), and suppose irrF (zr)
pn t) pnY4=0 aixi and irr

F (zr ,i=oa[x By an intermediate step in the proof of (1.6), if
O < < pn, then

vK(a,) > pn(tl(K/F) + 1) pvp(l)tl(K/F)

and

v,(a) > pn(tl(K’/F) + 1) pvp(l)tl(K’/F) -l.

Since a, e F, we have v (a I) v, (a’,). Hence,

v (a, -a’,) + > min{vr (a,), vr (al)} + > (t + 1)pn po,(l)t + tp- tpo"(l).

Moreover, since 0 < Vp (1) < n 1, we have shown that

pn -1 nvK(a, a,) +l > (t + l) -tpn for all0<l< p

Now, recall that, by (1.1) and (1.2), we have I(K, K’) min{vK(a, a;) +
l" 0 < < pn }. However, (3.2) shows that this minimum cannot occur for

0. Therefore,

h/I(K,K’) v(ar zr’) min{vK (a,-a) +/: 7 O} >_ pnq d- 1) --pn-lt.

In view of (3.1), we see that this lower bound can only be attained if is not divisible
by p, and the proof is complete.
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4. The case t’ < p

With (3.3) in hand, we now make the additional assumption that t (K/F) t (K’/F)
< p, thus obtaining some partial results concerning the connection between our
invariants and/(K, K’).

(4.1) PROPOSITION. Let L/F be anormal, totally ramified extension ofdegree p2n
having normal subextensions K/F and.K’/F satisfying [K F] [K’ F] pn,
K (q K’ F, KK’ L and tl(K/F) tl(K’/F) < p, and choose 7r and

pn t) pnso that v,. (zr r’) M(K, K’). /firr(rr) i=o aix and irr (rr i=o alX
thenfor 0 < k < n 1,

8pn_ F/ 12r ap- ff,_ ap, tpk tpn.

Proof. Let 0 < k < n be given. By hypothesis (and (3.1)), we know
v,. (r-r’) N[(K, K’) > pn, so ( -r’) p"+l which implies (mode)

and therefore (mode).Inlightofthis, we will define /’)tpL1. Since < p, we know Vp(pn--tpk):k, SO ((pn--tpkp ]]
0. Therefore,

(1.3) gives us

ap.-tp apn-tp tn-tpn++1

tn+ap_tp a_tff (1 + )

As a’ t, and , we have a’ t+l
p"-tp p-t and therefore,

tp +1

ap,_t-ap_tpe"+l

(a _tp ap_tp > tP.
By (1.4), v, (ap,_t tp and v (ap_tp) tp so we have proven that

< tp

== vr (ap, _tpk apn_tpk tPn.

We conclude this section with two corollaries of (4.1). The firstprovides a method
for computing an upper bound for M(K, K’) whenever t’ < p. The second
provides a necessary and sufficient condition for M(K, K’) to take the value of the
lower bound given in (3.3).
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(4.2) COROLLARY.
< pn(t d- 1) tp. With the hypothesesof(4.1), ifep,_p :/: e’_pk then M(K, K’)

Proof.
that

If rr and rr’ are chosen so that A{(K, K’) t[ (rr zr’), then (4.1) shows

pk F" n
pn_pk }K (ap-tff ap,-tp) + P tPl 2Pn tPI

Therefore. if e, _, # e _p, then

pn (t+ )-tpk
vK (apn _tp --ap, _tp)+pn -tp > min{ vK (ai -a )+i} /(K, K’),

and our inequality is established, rq

(4.3) COROLLARY. With the hypotheses of (4.1),

e e! pn -1._,._, ,._,_, : (K K’) (t + 1)- tpn

Proof. By (4.2) if ep._p._, - e’ then IV(K K’) < pn(t + 1) tpn-pn_pn-I
By (3.2), however, M(K, K’) _> p(t + 1) tpn-l, and therefore, we must have
.(K, K’) pn (t q- 1) tpn-1 E]

5. Global consequences

The notion of corresponding residue systems was introduced by Butts and Mann in
[2] under the hypothesis that F was a number field. We will suppose here that F
is the quotient field of a Dedekind domain having characteristic 0 and finite residue
fields for every prime ideal in Dr (a number field, for example) and that L is a finite
extension of F. Recall that if 9.1 is an ideal of L, then D, and kg, (or K and K!)
have corresponding residue systems mod 9.1 if D, + 9.1 kgr, + 9.1, and 9Jr(K, K!)
is defined to be the unique minimal ambiguous ideal of D, so that DK and O,, have
corresponding residue systems mod 9Jr(K, K’).

Of course, in order to compute 9Jr(K, K!), we need only find its factorization
as a product of prime ideals in Q. To this end, for each prime ideal q3 of L,. we
computemax {m 6 Z" ffJ]:(K, K!) c_ 3m}. AS 9Jr(K, K’) is ambiguous, if q3mdivides
9Yt(K, K’), then so does --m, where is any conjugate of gl,_._so the highest power
of 3 dividing 9(K, K!) is the same as the highest power of q3 dividing ffJt(K, K!).
Hence, we turn our attention to computing

M(#: K.K’) max In6 Z: 9Jr(K. K!) _C (#)m}
max Im + (,#)m ,Or, @ I
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where q3# is theproduct ofthe distinct conjugates ofq3 inQ. Ifwe lete e(q3 L/F)
the (relative) ramification index of q3 over F, then McCulloh and Stout showed in
Theorems 1.7 and 1.8 of [3] that M(q3#: K, K’) > 0 if and only if q3 is totally
ramified in K/F and K’/F. In this case,

{ e e /M(" K, K’) > min
[K’F]’ [K" F]

with equality unless [K F] [K’ F] pr forsome r where p is the characteristic
of the,residue field 23,./q3. Hence, we will assume that [K F] [K’ F] pr for
some positive integer r. Under these hypotheses, Stout further showed, in Theorems
3.1 and 4.1 of [6] that

M(q3#: K, K’) > pr(tl(3 :L/F) + 1) pr-ltl(gj3 L/F),

where tl (q3 LF) is the first breakpoint in the Hilbert ramification sequence of
the subgroups of Gal(L/F) with respect to q3. We are now ready to prove the
following theorem, a global version of (3.3), sharpening the above lower bound
for M(#: K, K’):

(5.1) THEOREM. Let F be the quotient field of a Dedekind domain having char-
acteristic 0 and assume that the residue field kgF/ta isfinite forfor each prime ideal
p of L3F.1 Let L be an extension of F of degree p2n which is totally ramified at the
prime q3 of L3, (a divisor of the rational prime p). Suppose K and K’ are normal
extensions ofF satisfying K 3 K’ F and L KK’ andlet tl(q3x: K/F)(resp.
tl (q3K, K’/F) denote thefirst breakpoint in the ramification sequence ofsubgroups
ofGal(K/F) (resp. Gal(K’/F)) with respect to q3K (resp. q3,). Then

M(3: K, K’) >_ pn (t + 1) pn-lt,
where min{ tl (q3, K/ F), tl (3, K’IF) }.

Proof. As q3 is totally ramified in L/F (and therefore in K/F and K’/F, as
well), then q3# and we may assume that L is complete with respect to
since Gal(L/F) and the lattice of intermediate fields (and therefore the sequence of
ramification groups) are unchanged if L and F are replaced by their completions
and/ (with respect to q3). Furthermore, since a field is dense in its completion,
M(q3#: K, K’) is unchanged if K and K’ are replaced by their completions/ and

/’. Thatis, M(q3#: K,K’)= M (I, I’).
Since the characteristic of F is 0 and D/p is finite (where p q3 D ), Dr is a

free Z/, module of finite rank (see [5], p. 36), and therefore, we may regard F as a
finite extension of Qp. But this is the case addressed in the earlier sections, so we
may use (3.3), and the theorem is proved.

In fact, we need not assume that every residue field of F is finite, only that LF/la is finite when
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