ON A CONDUCTOR DISCRIMINANT FORMULA OF MCCULLOH

BART DE SMIT

1. Introduction

For certain finite rings E, McCulloh has indicated a canonical construction of an order T(E) in a Galois algebra $T_{\mathbb{Q}}(E)$ over \mathbb{Q} , whose Galois group is the unit group E^* of E. In the case that $E = \mathbb{Z}/n\mathbb{Z}$ for some non-negative integer n, the Galois algebra is the nth cyclotomic field and T(E) is its ring of integers. McCulloh has used these orders to generalize Stickelberger relations [3], [4]. The construction of T(E), which is explained in Section 2, works for all self-dual or quasi-Frobenius rings E.

The conductor discriminant formula for cyclotomic fields [5, Theorem 3.11] expresses the discriminant of a cyclotomic ring of integers as a product of conductors. A generalization of this formula to certain orders T(E) was used by McCulloh to prove Stickelberger type formulas for the minus-part of the class group of T(E); see the remark after Theorem 3 in [3]. In a talk in Durham in 1994 McCulloh posed the question of whether the following generalization holds for all commutative self-dual finite rings E:

(1.1)
$$\Delta_{T(E)/\mathbb{Z}} = \prod_{\chi \in \text{Hom}(E^*, \mathbb{C}^*)} \mathcal{N}(\mathfrak{f}_{\chi}).$$

The conductor \mathfrak{f}_{χ} is the largest *E*-ideal \mathfrak{a} for which χ factors through $(E/\mathfrak{a})^*$, and the norm $\mathcal{N}(\mathfrak{a})$ of an *E*-ideal \mathfrak{a} is its index as an additive subgroup of *E* (or, more precisely, the \mathbb{Z} -ideal generated by this index). The main result of this note is the following.

THEOREM 1.2. Let E be a self-dual finite commutative ring. The conductor product $\prod_{\chi} \mathcal{N}(\mathfrak{f}_{\chi})$ with χ ranging over the homomorphisms $E^* \to \mathbb{C}^*$, is a divisor of $\Delta_{T(E)/\mathbb{Z}}$. We have $\Delta_{T(E)/\mathbb{Z}} = \prod_{\chi} \mathcal{N}(\mathfrak{f}_{\chi})$ if and only if E is a principal ideal ring.

The proof is given in Section 3, together with an explicit formula for $\Delta_{T(E)/\mathbb{Z}}$. The easiest example where (1.1) fails is $E = \mathbb{F}_2[V_4]$, the group ring over the field of two elements of the abelian group of type (2, 2). In this case, the left hand side is 2^{24} , and the right hand side is 2^{22} .

In Section 4 we show that one can often change the ring structure of E to that of a principal ideal ring without changing the order T(E).

Received December 6, 1994.

1991 Mathematics Subject Classification. Primary 11R33; Secondary 11S45, 11T99.

For non-commutative self-dual rings E, McCulloh has suggested comparing the discriminant $\Delta_{T(E)/\mathbb{Z}}$ with the conductor product $\prod_{\chi} \mathcal{N}(\mathfrak{f}_{\chi})^{\chi(1)}$. Here the product is taken over the irreducible complex characters χ of E^* . The conductor of χ is the largest two-sided E-ideal \mathfrak{a} for which the representation $E^* \to \mathrm{GL}_{\chi(1)}(\mathbb{C})$ associated to χ factors through $(E/\mathfrak{a})^*$. This notion of conductor can be found in Lamprecht [2, §3.2]. At present it is not even known if one inequality holds in this generality.

2. Terminology

- **2.1. Self-dual rings.** The dual D(A) of a finite abelian group A is defined to be the group $\operatorname{Hom}(A,\mu_\infty)$, where μ_∞ is the group of roots of unity in a fixed algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} . Let E be a finite ring with 1 (not necessarily commutative). The dual $D(E_+)$ of the additive group E_+ of E has a right-E-module structure given by $(\varphi e)(x) = \varphi(ex)$ for all $e, x \in E$ and $\varphi \in D(E_+)$. We say that E is self-dual if $D(E_+)$ is free of rank 1 as a right-E-module. This is equivalent to saying that E is injective as a module over itself, and that E is a quasi-Frobenius ring [1, §57–58]. A finite commutative ring is self-dual if and only if it is Gorenstein.
- **2.2.** Galois algebras. There is a (contravariant) equivalence of categories between finite separable algebras over $\mathbb Q$ and finite Ω -sets, where $\Omega = \operatorname{Gal}(\overline{\mathbb Q}/\mathbb Q)$. Here Ω is a profinite group, and an Ω -set is understood to be a discrete set on which Ω acts continuously. Under this equivalence, an algebra $A/\mathbb Q$ corresponds to the Ω -set of ring homomorphisms $\operatorname{Hom}(A,\overline{\mathbb Q})$, and a Ω -set X corresponds to the $\mathbb Q$ -algebra $\operatorname{Map}_{\Omega}(X,\overline{\mathbb Q})$ consisting of Ω -equivariant maps $X \to \overline{\mathbb Q}$.

Giving a separable algebra A the structure of a Galois algebra with Galois group G is the same as giving a right-G-action on the Ω -set X that it corresponds to, in such a way that the following two conditions are satisfied:

- (i) for all $\sigma \in \Omega$, $x \in X$ and $g \in G$ we have $(\sigma x)g = \sigma(xg)$;
- (ii) for all $x, y \in X$ there is a unique $g \in G$ with xg = y.

The first condition says that X is a (Ω, G) -space, and the second condition says that X is a principal homogeneous G-space.

2.3. Definition of the order T(E). Suppose E is self-dual finite ring. The group ring $\mathbb{Q}[E_+]$ of the additive group of E is a finite separable algebra over \mathbb{Q} . A \mathbb{Q} -algebra homomorphism $\mathbb{Q}[E_+] \to \overline{\mathbb{Q}}$ is just a group homomorphism form E_+ to $\overline{\mathbb{Q}}^*$, so the Ω -set associated to $\mathbb{Q}[E_+]$ is the set $D(E_+) = \operatorname{Hom}(E_+, \mu_\infty)$, with Ω -action induced from the action on $\mu_\infty \subset \overline{\mathbb{Q}}$. Since E is self-dual, $D(E_+)$ is a free right-E-module of rank 1. Let E be the subset of E-consisting of the generators of E-consisting of E-consisting of the generators of E-consisting of E-consisti

now define the algebra $T_{\mathbb{Q}}(E)$ to be $\operatorname{Map}_{\Omega}(S,\overline{\mathbb{Q}})$. We have canonical surjective ring homomorphisms

$$\mathbb{Q}[E_{+}] \stackrel{\sim}{\longrightarrow} \operatorname{Map}_{\Omega}(D(E_{+}), \overline{\mathbb{Q}}) \stackrel{\operatorname{res}}{\longrightarrow} \operatorname{Map}_{\Omega}(S, \overline{\mathbb{Q}}) = T_{\mathbb{Q}}(E).$$

Since S is the set of generators of a free right-E-module of rank 1, it has a right-action of the group E^* , making it into a principal homogeneous E^* -space. This action also respects the left action of Ω on S, so that $T_{\mathbb{Q}}(E)$ is a Galois algebra over \mathbb{Q} with Galois group E^* .

The order T(E) is defined to be the projection in $T_{\mathbb{Q}}(E)$ of $\mathbb{Z}[E_+]$, or, equivalently, as the \mathbb{Z} -algebra generated by the image of E_+ in $T_{\mathbb{Q}}(E)$. It is an order in a product of a number of copies of $\mathbb{Q}(\zeta_n)$, where n is the characteristic of E. The \mathbb{Z} -rank of T(E) is $\#E^*$.

3. Proof of the theorem

In this section we prove Theorem (1.2) and we give an explicit formula for the discriminant of T(E) in terms of the structure of E.

Let E be a self-dual finite commutative ring. Since E is Artinian, it is a product of local rings. We first show that we can reduce to the case that E is local. Suppose that E is a product of two finite commutative rings: $E = E_1 \times E_2$. Then E_1 and E_2 are self-dual. Moreover, we have $T(E) = T(E_1) \otimes_{\mathbb{Z}} T(E_2)$, so that $\Delta_{T(E)/\mathbb{Z}} = \Delta_{T(E_1)/\mathbb{Z}}^{r_1} \Delta_{T(E_2)/\mathbb{Z}}^{r_1}$, where $r_i = \#E_i^*$. Writing C(E) for the conductor product of E, one checks easily that $C(E) = C(E_1)^{r_2}C(E_2)^{r_1}$. Also, E is a principal ideal ring if and only if both E_1 and E_2 are. Thus, the theorem follows for E if we know it for E_1 and E_2 .

We may now assume that E is local. Fix a Jordan-Hölder filtration of E as an E-module:

$$(*) 0 = E_k \subset E_{k-1} \subset \cdots \subset E_1 \subset E_0 = E.$$

This means that each E_i is an ideal in E and that the quotients E_i/E_{i+1} are simple E-modules. But the only simple E-module (up to isomorphism) is the residue field k(E) of E, so we have $\#E_i = q^{k-i}$, where q = #k(E). The discriminant of T(E) is given by the following lemma. Again, the cyclotomic case is well known [5, Prop. 2.1].

LEMMA 3.1. If E is a finite local commutative self-dual ring with residue field of cardinality q, then $\#E = q^k$ with $k \in \mathbb{Z}$, and

$$\Delta_{T(E)/\mathbb{Z}}=q^{(kq-k-1)q^{k-1}}.$$

Proof. Since E is self-dual, E has a unique minimal non-zero ideal H, and the order of H is q. A character $\varphi \in D(E_+)$ is a generator of $D(E_+)$ as an E-module if and only if $\varphi(H) \neq 1$. To see this, note that the sub-E-module of $D(E_+)$ generated by

 φ is exactly the set of those $\psi \in D(E_+)$ that vanish on the largest E-ideal contained in the kernel of φ . Therefore, the characters of E_+ which are not E-module generators of $D(E_+)$ are exactly the characters of E_+/H , and it follows that the canonical map $\mathbb{Q}[E_+] \longrightarrow \mathbb{Q}[E_+/H] \times T_{\mathbb{Q}}(E)$ is an isomorphism of \mathbb{Q} -algebras.

Under this isomorphism, $\mathbb{Z}[E_+]$ is mapped to a subalgebra of $\mathbb{Z}[E_+/H] \times T(E)$, whose index we denote by i. We want to compute this index. The group ring $\mathbb{Z}[E_+]$ surjects to T(E), and the kernel is the set of H-invariants $\mathbb{Z}[E_+]^H$, where we let H act on E_+ by translation. Thus, we have a commutative diagram with exact rows:

Note that $\mathbb{Z}[E_+]^H$ is generated by formal H-coset sums of E. Since such a coset-sum is mapped to q times the coset element in $\mathbb{Z}[E_+/H]$, and $\mathbb{Z}[E_+/H]$ has \mathbb{Z} -rank q^{k-1} , it follows that the cokernel of the leftmost vertical map has cardinality $q^{q^{k-1}}$. By the snake lemma it follows that $i=q^{q^{k-1}}$.

The discriminant of the group ring $\mathbb{Z}[A]$ of an abelian group A of order n is n^n , so one finishes the proof by noting that

$$\Delta_{T(E)/\mathbb{Z}} = \frac{\Delta_{\mathbb{Z}[E_+]/\mathbb{Z}}}{i^2 \Delta_{\mathbb{Z}[E_+/H]/\mathbb{Z}}} = \frac{q^{kq^k}}{q^{2q^{k-1}}q^{(k-1)q^{k-1}}} = q^{(kq-k-1)q^{k-1}}.$$

We return to the proof of the theorem. The ring E is still local. For each i with $1 \le i \le k$ the quotient ring E/E_i is a local ring of order q^i . The units of E/E_i are exactly the elements not contained in its maximal ideal, so $(E/E_i)^*$ has order $s_i = q^i - q^{i-1}$. Putting $s_0 = 1$ this also holds for i = 0. For each character $\chi: E^* \to \mu_\infty$ let \mathfrak{f}_χ^* be the largest E-ideal E_i in our filtration (*) for which χ factors over $(E/E_i)^*$. This depends on the choice of the Jordan-Hölder filtration (*). For each i with $0 \le i \le k$ it is clear that exactly s_i characters of E^* factor over $(E/E_i)^*$. This implies that the number of characters χ of E^* with $\mathfrak{f}_\chi^* = E_i$ is $s_i - s_{i-1}$ if $i \ne 0$. It follows that

$$\prod_{\chi \in D(E^*)} \mathcal{N}(\mathfrak{f}_{\chi}^*) = \prod_{i=1}^k \mathcal{N}(E_i)^{s_i - s_{i-1}}.$$

Since $\mathcal{N}(E_i) = q \mathcal{N}(E_{i-1})$ for $i \neq 0$ this is equal to

$$q^{-s_0}(q^k)^{s_k}\prod_{i=1}^{k-1}q^{-s_i}=q^{-1+k(q^k-q^{k-1})-(q^{k-1}-1)}=q^{(kq-k-1)q^{k-1}}=\Delta_{T(E)/\mathbb{Z}}.$$

This means that the conductor discriminant formula holds for the conductors \mathfrak{f}^* rather than for \mathfrak{f} . The first statement of the theorem now follows from the observation that \mathfrak{f}_{χ} divides \mathfrak{f}_{χ}^* .

342 BART DE SMIT

If the ideals of E are linearly ordered by inclusion then every ideal of E occurs in (*), and we have $f_{\chi}^* = f_{\chi}$. Conversely, if $f_{\chi}^* = f_{\chi}$ for all characters χ of E^* , then the ideals of E are linearly ordered. To see this, let I be an ideal of E and choose i maximal under the condition that $E_i \supset I$. We may assume that $I \neq E$ so that $i \geq 1$. For every character χ of E^* that vanishes on 1 + I, the assumption that $f_{\chi}^* = f_{\chi}$ implies that it also vanishes on $1 + E_i$. By duality of finite abelian groups it follows that $1 + E_i = 1 + I$ and therefore I = E.

It remains to show that a finite local ring E is a principal ideal ring if and only if its ideals are ordered linearly by inclusion. To see "only if" note that every ideal is of the form $x^i E$ for $i \ge 0$ if the maximal ideal of E is generated by x. To prove "if" suppose that $x, y \in E$. If the ideals are ordered linearly, then $xE \subset yE$ or $yE \subset xE$, so the ideal (x, y) is equal to (x) or to (y). But then any non-empty set of generators of an E-ideal can be thinned out to a set of 1 element; i.e., E is a principal ideal ring. This completes the proof of (1.2). \square

4. Changing the ring structure

If one is only interested in the structure of the order T(E), then one can sometimes change the ring structure of E to that of a principal ideal ring, without changing the isomorphism class of T(E). In our example $E = \mathbb{F}_2[V_4]$, where the conductor discriminant formula fails to hold, one may say that we just picked the wrong ring structure on E_+ , because the group ring $E' = \mathbb{F}_2[C_4]$ of the cyclic group of order 4, is a principal ideal ring for which T(E) and T(E') are isomorphic. A more general construction is given in the next proposition.

PROPOSITION 4.1. Suppose that E is a finite self-dual commutative ring and E_+ is homogeneous, i.e., free over $\mathbb{Z}/n\mathbb{Z}$ where n= char E. Then there exists a finite commutative principal ideal ring E', an isomorphism of abelian groups $E_+\cong E'_+$, and an isomorphism of \mathbb{Z} -algebras $T(E)\cong T(E')$ such that the diagram

$$\begin{array}{ccc}
E_{+} & \xrightarrow{\sim} & E'_{+} \\
\downarrow & & \downarrow \\
T(E) & \xrightarrow{\sim} & T(E').
\end{array}$$

is commutative.

Proof. By writing E as a product of local rings, we may assume that E is local. Let p and $q = p^f$ be the characteristic and cardinality of its residue field. The characteristic n of E is also a power of p. We let r be the rank of E_+ over $\mathbb{Z}/n\mathbb{Z}$. The p-torsion subgroup of E has size p^r and since it is an E-ideal, p^r is a power of q. This implies that r is divisible by f, and we put e = r/f.

Now take a finite field extension K of the field \mathbb{Q}_p of p-adic numbers, for which the residue degree is f, and the ramification index is e. Denote the ring of integers

of K by \mathcal{O}_K , and let E' be the ring $\mathcal{O}_K/n\mathcal{O}_K$. The ring E' is clearly a principal ideal ring, which also implies that it is self-dual. Both E_+ and E'_+ are free over $\mathbb{Z}/n\mathbb{Z}$ of rank r, and the minimal non-zero ideals H and H' of E and E' are both elementary abelian subgroups of order q.

It is not hard to see that there exists an isomorphism of abelian groups $E_+ \xrightarrow{\sim} E'_+$ that maps H to H'. This isomorphism induces an isomorphism $\mathbb{Z}[E_+] \xrightarrow{\sim} \mathbb{Z}[E'_+]$ of \mathbb{Z} -algebras. We claim that this induces an isomorphism of quotients $T(E) \xrightarrow{\sim} T(E')$. To see this, we recall from the proof of Lemma 3.1 that the kernel of the map $\mathbb{Z}[E_+] \to T(E)$ is generated by formal sums of H-cosets of E. These sums clearly map to H'-coset sums in E'. \square

One can do the same construction for products of homogeneous rings. For non-homogeneous local rings the statement in the proposition may fail to hold. To see this, consider the ring $\mathbb{Z}[X]/(2X, X^2 + 4)$, which is the only self-dual commutative ring E with additive group of type (8,2) for which the \mathbb{Z} -rank of T(E) is 8.

REFERENCES

- C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- 2. E. Lamprecht, Struktur und Relationen allgemeiner Gaussscher Summen in endlichen Ringen, I, J. Reine Angew. Math. 197 (1957), 1-26.
- 3. L. R. McCulloh, "Stickelberger relations in class groups and Galois module structure" in *Journées Arithmétiques* 1980, Cambridge University Press, Cambridge 1982, pp. 194–201.
- 4. ______, Galois module structure of abelian extensions, J. Reine Angew. Math. 375/376 (1987), 259-306.
- L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math. 83, Springer-Verlag, New York, 1982.

ERASMUS UNIVERSITEIT
ROTTERDAM, THE NETHERLANDS