ON A CONDUCTOR DISCRIMINANT FORMULA OF MCCULLOH #### BART DE SMIT ### 1. Introduction For certain finite rings E, McCulloh has indicated a canonical construction of an order T(E) in a Galois algebra $T_{\mathbb{Q}}(E)$ over \mathbb{Q} , whose Galois group is the unit group E^* of E. In the case that $E = \mathbb{Z}/n\mathbb{Z}$ for some non-negative integer n, the Galois algebra is the nth cyclotomic field and T(E) is its ring of integers. McCulloh has used these orders to generalize Stickelberger relations [3], [4]. The construction of T(E), which is explained in Section 2, works for all self-dual or quasi-Frobenius rings E. The conductor discriminant formula for cyclotomic fields [5, Theorem 3.11] expresses the discriminant of a cyclotomic ring of integers as a product of conductors. A generalization of this formula to certain orders T(E) was used by McCulloh to prove Stickelberger type formulas for the minus-part of the class group of T(E); see the remark after Theorem 3 in [3]. In a talk in Durham in 1994 McCulloh posed the question of whether the following generalization holds for all commutative self-dual finite rings E: (1.1) $$\Delta_{T(E)/\mathbb{Z}} = \prod_{\chi \in \text{Hom}(E^*, \mathbb{C}^*)} \mathcal{N}(\mathfrak{f}_{\chi}).$$ The conductor \mathfrak{f}_{χ} is the largest *E*-ideal \mathfrak{a} for which χ factors through $(E/\mathfrak{a})^*$, and the norm $\mathcal{N}(\mathfrak{a})$ of an *E*-ideal \mathfrak{a} is its index as an additive subgroup of *E* (or, more precisely, the \mathbb{Z} -ideal generated by this index). The main result of this note is the following. THEOREM 1.2. Let E be a self-dual finite commutative ring. The conductor product $\prod_{\chi} \mathcal{N}(\mathfrak{f}_{\chi})$ with χ ranging over the homomorphisms $E^* \to \mathbb{C}^*$, is a divisor of $\Delta_{T(E)/\mathbb{Z}}$. We have $\Delta_{T(E)/\mathbb{Z}} = \prod_{\chi} \mathcal{N}(\mathfrak{f}_{\chi})$ if and only if E is a principal ideal ring. The proof is given in Section 3, together with an explicit formula for $\Delta_{T(E)/\mathbb{Z}}$. The easiest example where (1.1) fails is $E = \mathbb{F}_2[V_4]$, the group ring over the field of two elements of the abelian group of type (2, 2). In this case, the left hand side is 2^{24} , and the right hand side is 2^{22} . In Section 4 we show that one can often change the ring structure of E to that of a principal ideal ring without changing the order T(E). Received December 6, 1994. 1991 Mathematics Subject Classification. Primary 11R33; Secondary 11S45, 11T99. For non-commutative self-dual rings E, McCulloh has suggested comparing the discriminant $\Delta_{T(E)/\mathbb{Z}}$ with the conductor product $\prod_{\chi} \mathcal{N}(\mathfrak{f}_{\chi})^{\chi(1)}$. Here the product is taken over the irreducible complex characters χ of E^* . The conductor of χ is the largest two-sided E-ideal \mathfrak{a} for which the representation $E^* \to \mathrm{GL}_{\chi(1)}(\mathbb{C})$ associated to χ factors through $(E/\mathfrak{a})^*$. This notion of conductor can be found in Lamprecht [2, §3.2]. At present it is not even known if one inequality holds in this generality. # 2. Terminology - **2.1. Self-dual rings.** The dual D(A) of a finite abelian group A is defined to be the group $\operatorname{Hom}(A,\mu_\infty)$, where μ_∞ is the group of roots of unity in a fixed algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q} . Let E be a finite ring with 1 (not necessarily commutative). The dual $D(E_+)$ of the additive group E_+ of E has a right-E-module structure given by $(\varphi e)(x) = \varphi(ex)$ for all $e, x \in E$ and $\varphi \in D(E_+)$. We say that E is self-dual if $D(E_+)$ is free of rank 1 as a right-E-module. This is equivalent to saying that E is injective as a module over itself, and that E is a quasi-Frobenius ring [1, §57–58]. A finite commutative ring is self-dual if and only if it is Gorenstein. - **2.2.** Galois algebras. There is a (contravariant) equivalence of categories between finite separable algebras over $\mathbb Q$ and finite Ω -sets, where $\Omega = \operatorname{Gal}(\overline{\mathbb Q}/\mathbb Q)$. Here Ω is a profinite group, and an Ω -set is understood to be a discrete set on which Ω acts continuously. Under this equivalence, an algebra $A/\mathbb Q$ corresponds to the Ω -set of ring homomorphisms $\operatorname{Hom}(A,\overline{\mathbb Q})$, and a Ω -set X corresponds to the $\mathbb Q$ -algebra $\operatorname{Map}_{\Omega}(X,\overline{\mathbb Q})$ consisting of Ω -equivariant maps $X \to \overline{\mathbb Q}$. Giving a separable algebra A the structure of a Galois algebra with Galois group G is the same as giving a right-G-action on the Ω -set X that it corresponds to, in such a way that the following two conditions are satisfied: - (i) for all $\sigma \in \Omega$, $x \in X$ and $g \in G$ we have $(\sigma x)g = \sigma(xg)$; - (ii) for all $x, y \in X$ there is a unique $g \in G$ with xg = y. The first condition says that X is a (Ω, G) -space, and the second condition says that X is a principal homogeneous G-space. **2.3.** Definition of the order T(E). Suppose E is self-dual finite ring. The group ring $\mathbb{Q}[E_+]$ of the additive group of E is a finite separable algebra over \mathbb{Q} . A \mathbb{Q} -algebra homomorphism $\mathbb{Q}[E_+] \to \overline{\mathbb{Q}}$ is just a group homomorphism form E_+ to $\overline{\mathbb{Q}}^*$, so the Ω -set associated to $\mathbb{Q}[E_+]$ is the set $D(E_+) = \operatorname{Hom}(E_+, \mu_\infty)$, with Ω -action induced from the action on $\mu_\infty \subset \overline{\mathbb{Q}}$. Since E is self-dual, $D(E_+)$ is a free right-E-module of rank 1. Let E be the subset of E-consisting of the generators E-consisting of the generators of E-consisting E-consisti now define the algebra $T_{\mathbb{Q}}(E)$ to be $\operatorname{Map}_{\Omega}(S,\overline{\mathbb{Q}})$. We have canonical surjective ring homomorphisms $$\mathbb{Q}[E_{+}] \stackrel{\sim}{\longrightarrow} \operatorname{Map}_{\Omega}(D(E_{+}), \overline{\mathbb{Q}}) \stackrel{\operatorname{res}}{\longrightarrow} \operatorname{Map}_{\Omega}(S, \overline{\mathbb{Q}}) = T_{\mathbb{Q}}(E).$$ Since S is the set of generators of a free right-E-module of rank 1, it has a right-action of the group E^* , making it into a principal homogeneous E^* -space. This action also respects the left action of Ω on S, so that $T_{\mathbb{Q}}(E)$ is a Galois algebra over \mathbb{Q} with Galois group E^* . The order T(E) is defined to be the projection in $T_{\mathbb{Q}}(E)$ of $\mathbb{Z}[E_+]$, or, equivalently, as the \mathbb{Z} -algebra generated by the image of E_+ in $T_{\mathbb{Q}}(E)$. It is an order in a product of a number of copies of $\mathbb{Q}(\zeta_n)$, where n is the characteristic of E. The \mathbb{Z} -rank of T(E) is $\#E^*$. ## 3. Proof of the theorem In this section we prove Theorem (1.2) and we give an explicit formula for the discriminant of T(E) in terms of the structure of E. Let E be a self-dual finite commutative ring. Since E is Artinian, it is a product of local rings. We first show that we can reduce to the case that E is local. Suppose that E is a product of two finite commutative rings: $E = E_1 \times E_2$. Then E_1 and E_2 are self-dual. Moreover, we have $T(E) = T(E_1) \otimes_{\mathbb{Z}} T(E_2)$, so that $\Delta_{T(E)/\mathbb{Z}} = \Delta_{T(E_1)/\mathbb{Z}}^{r_1} \Delta_{T(E_2)/\mathbb{Z}}^{r_1}$, where $r_i = \#E_i^*$. Writing C(E) for the conductor product of E, one checks easily that $C(E) = C(E_1)^{r_2}C(E_2)^{r_1}$. Also, E is a principal ideal ring if and only if both E_1 and E_2 are. Thus, the theorem follows for E if we know it for E_1 and E_2 . We may now assume that E is local. Fix a Jordan-Hölder filtration of E as an E-module: $$(*) 0 = E_k \subset E_{k-1} \subset \cdots \subset E_1 \subset E_0 = E.$$ This means that each E_i is an ideal in E and that the quotients E_i/E_{i+1} are simple E-modules. But the only simple E-module (up to isomorphism) is the residue field k(E) of E, so we have $\#E_i = q^{k-i}$, where q = #k(E). The discriminant of T(E) is given by the following lemma. Again, the cyclotomic case is well known [5, Prop. 2.1]. LEMMA 3.1. If E is a finite local commutative self-dual ring with residue field of cardinality q, then $\#E = q^k$ with $k \in \mathbb{Z}$, and $$\Delta_{T(E)/\mathbb{Z}}=q^{(kq-k-1)q^{k-1}}.$$ **Proof.** Since E is self-dual, E has a unique minimal non-zero ideal H, and the order of H is q. A character $\varphi \in D(E_+)$ is a generator of $D(E_+)$ as an E-module if and only if $\varphi(H) \neq 1$. To see this, note that the sub-E-module of $D(E_+)$ generated by φ is exactly the set of those $\psi \in D(E_+)$ that vanish on the largest E-ideal contained in the kernel of φ . Therefore, the characters of E_+ which are not E-module generators of $D(E_+)$ are exactly the characters of E_+/H , and it follows that the canonical map $\mathbb{Q}[E_+] \longrightarrow \mathbb{Q}[E_+/H] \times T_{\mathbb{Q}}(E)$ is an isomorphism of \mathbb{Q} -algebras. Under this isomorphism, $\mathbb{Z}[E_+]$ is mapped to a subalgebra of $\mathbb{Z}[E_+/H] \times T(E)$, whose index we denote by i. We want to compute this index. The group ring $\mathbb{Z}[E_+]$ surjects to T(E), and the kernel is the set of H-invariants $\mathbb{Z}[E_+]^H$, where we let H act on E_+ by translation. Thus, we have a commutative diagram with exact rows: Note that $\mathbb{Z}[E_+]^H$ is generated by formal H-coset sums of E. Since such a coset-sum is mapped to q times the coset element in $\mathbb{Z}[E_+/H]$, and $\mathbb{Z}[E_+/H]$ has \mathbb{Z} -rank q^{k-1} , it follows that the cokernel of the leftmost vertical map has cardinality $q^{q^{k-1}}$. By the snake lemma it follows that $i=q^{q^{k-1}}$. The discriminant of the group ring $\mathbb{Z}[A]$ of an abelian group A of order n is n^n , so one finishes the proof by noting that $$\Delta_{T(E)/\mathbb{Z}} = \frac{\Delta_{\mathbb{Z}[E_+]/\mathbb{Z}}}{i^2 \Delta_{\mathbb{Z}[E_+/H]/\mathbb{Z}}} = \frac{q^{kq^k}}{q^{2q^{k-1}}q^{(k-1)q^{k-1}}} = q^{(kq-k-1)q^{k-1}}.$$ We return to the proof of the theorem. The ring E is still local. For each i with $1 \le i \le k$ the quotient ring E/E_i is a local ring of order q^i . The units of E/E_i are exactly the elements not contained in its maximal ideal, so $(E/E_i)^*$ has order $s_i = q^i - q^{i-1}$. Putting $s_0 = 1$ this also holds for i = 0. For each character $\chi: E^* \to \mu_\infty$ let \mathfrak{f}_χ^* be the largest E-ideal E_i in our filtration (*) for which χ factors over $(E/E_i)^*$. This depends on the choice of the Jordan-Hölder filtration (*). For each i with $0 \le i \le k$ it is clear that exactly s_i characters of E^* factor over $(E/E_i)^*$. This implies that the number of characters χ of E^* with $\mathfrak{f}_\chi^* = E_i$ is $s_i - s_{i-1}$ if $i \ne 0$. It follows that $$\prod_{\chi \in D(E^*)} \mathcal{N}(\mathfrak{f}_{\chi}^*) = \prod_{i=1}^k \mathcal{N}(E_i)^{s_i - s_{i-1}}.$$ Since $\mathcal{N}(E_i) = q \mathcal{N}(E_{i-1})$ for $i \neq 0$ this is equal to $$q^{-s_0}(q^k)^{s_k}\prod_{i=1}^{k-1}q^{-s_i}=q^{-1+k(q^k-q^{k-1})-(q^{k-1}-1)}=q^{(kq-k-1)q^{k-1}}=\Delta_{T(E)/\mathbb{Z}}.$$ This means that the conductor discriminant formula holds for the conductors \mathfrak{f}^* rather than for \mathfrak{f} . The first statement of the theorem now follows from the observation that \mathfrak{f}_{χ} divides \mathfrak{f}_{χ}^* . 342 BART DE SMIT If the ideals of E are linearly ordered by inclusion then every ideal of E occurs in (*), and we have $f_{\chi}^* = f_{\chi}$. Conversely, if $f_{\chi}^* = f_{\chi}$ for all characters χ of E^* , then the ideals of E are linearly ordered. To see this, let I be an ideal of E and choose i maximal under the condition that $E_i \supset I$. We may assume that $I \neq E$ so that $i \geq 1$. For every character χ of E^* that vanishes on 1 + I, the assumption that $f_{\chi}^* = f_{\chi}$ implies that it also vanishes on $1 + E_i$. By duality of finite abelian groups it follows that $1 + E_i = 1 + I$ and therefore I = E. It remains to show that a finite local ring E is a principal ideal ring if and only if its ideals are ordered linearly by inclusion. To see "only if" note that every ideal is of the form $x^i E$ for $i \ge 0$ if the maximal ideal of E is generated by x. To prove "if" suppose that $x, y \in E$. If the ideals are ordered linearly, then $xE \subset yE$ or $yE \subset xE$, so the ideal (x, y) is equal to (x) or to (y). But then any non-empty set of generators of an E-ideal can be thinned out to a set of 1 element; i.e., E is a principal ideal ring. This completes the proof of (1.2). \square # 4. Changing the ring structure If one is only interested in the structure of the order T(E), then one can sometimes change the ring structure of E to that of a principal ideal ring, without changing the isomorphism class of T(E). In our example $E = \mathbb{F}_2[V_4]$, where the conductor discriminant formula fails to hold, one may say that we just picked the wrong ring structure on E_+ , because the group ring $E' = \mathbb{F}_2[C_4]$ of the cyclic group of order 4, is a principal ideal ring for which T(E) and T(E') are isomorphic. A more general construction is given in the next proposition. PROPOSITION 4.1. Suppose that E is a finite self-dual commutative ring and E_+ is homogeneous, i.e., free over $\mathbb{Z}/n\mathbb{Z}$ where n= char E. Then there exists a finite commutative principal ideal ring E', an isomorphism of abelian groups $E_+\cong E'_+$, and an isomorphism of \mathbb{Z} -algebras $T(E)\cong T(E')$ such that the diagram $$\begin{array}{ccc} E_{+} & \xrightarrow{\sim} & E'_{+} \\ \downarrow & & \downarrow \\ T(E) & \xrightarrow{\sim} & T(E'). \end{array}$$ is commutative. *Proof.* By writing E as a product of local rings, we may assume that E is local. Let p and $q = p^f$ be the characteristic and cardinality of its residue field. The characteristic n of E is also a power of p. We let r be the rank of E_+ over $\mathbb{Z}/n\mathbb{Z}$. The p-torsion subgroup of E has size p^r and since it is an E-ideal, p^r is a power of q. This implies that r is divisible by f, and we put e = r/f. Now take a finite field extension K of the field \mathbb{Q}_p of p-adic numbers, for which the residue degree is f, and the ramification index is e. Denote the ring of integers of K by \mathcal{O}_K , and let E' be the ring $\mathcal{O}_K/n\mathcal{O}_K$. The ring E' is clearly a principal ideal ring, which also implies that it is self-dual. Both E_+ and E'_+ are free over $\mathbb{Z}/n\mathbb{Z}$ of rank r, and the minimal non-zero ideals H and H' of E and E' are both elementary abelian subgroups of order q. It is not hard to see that there exists an isomorphism of abelian groups $E_+ \xrightarrow{\sim} E'_+$ that maps H to H'. This isomorphism induces an isomorphism $\mathbb{Z}[E_+] \xrightarrow{\sim} \mathbb{Z}[E'_+]$ of \mathbb{Z} -algebras. We claim that this induces an isomorphism of quotients $T(E) \xrightarrow{\sim} T(E')$. To see this, we recall from the proof of Lemma 3.1 that the kernel of the map $\mathbb{Z}[E_+] \to T(E)$ is generated by formal sums of H-cosets of E. These sums clearly map to H'-coset sums in E'. \square One can do the same construction for products of homogeneous rings. For non-homogeneous local rings the statement in the proposition may fail to hold. To see this, consider the ring $\mathbb{Z}[X]/(2X, X^2 + 4)$, which is the only self-dual commutative ring E with additive group of type (8,2) for which the \mathbb{Z} -rank of T(E) is 8. #### REFERENCES - C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962. - 2. E. Lamprecht, Struktur und Relationen allgemeiner Gaussscher Summen in endlichen Ringen, I, J. Reine Angew. Math. 197 (1957), 1-26. - 3. L. R. McCulloh, "Stickelberger relations in class groups and Galois module structure" in *Journées Arithmétiques* 1980, Cambridge University Press, Cambridge 1982, pp. 194–201. - 4. ______, Galois module structure of abelian extensions, J. Reine Angew. Math. 375/376 (1987), 259-306. - L. C. Washington, Introduction to cyclotomic fields, Graduate Texts in Math. 83, Springer-Verlag, New York, 1982. ERASMUS UNIVERSITEIT ROTTERDAM, THE NETHERLANDS