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ON CERTAIN EQUIVALENT NORMS ON
TSIRELSON’S SPACE

EDWARD W. ODELL AND NICOLE TOMCZAK-JAEGERMANN

ABSTRACT. Tsirelson’s space T is known to be distortable but it is open as to whether or not T is arbitrarily
distortable. For n € N the norm || - ||, of the Tsirelson space T'(S,, 27") is equivalent to the standard norm
on T. We prove there exists K < 00 so that for all n, || - ||, does not K distort any subspace Y of T.

Introduction

An important and still open question is whether or not there exists a distortable
Banach space which is not arbitrarily distortable. The primary candidate for such
a space is Tsirelson’s space T. While it is not difficult to directly define, for every
1 < X < 2, an equivalent norm on T which is a A-distortion, T does not belong to
any general class of Banach spaces known to be arbitrarily distortable. In fact (see
below) if there does exists a distortable not arbitrarily distortable Banach space X
then X must contain a subspace which is very Tsirelson-like in appearance. Thus it
is of interest, in particular, to examine all known equivalent norms on T to see if they
can arbitrarily distort 7' (or a subspace of T'). We do so in this paper for a previously
unstudied fascinating class of renormings.

The renormings we consider here are “natural” in that they pertain to the deep
combinatorial nature of the norm of 7. Namely, for each n we denote by || - ||, the
norm of the Tsirelson space T'(S,, 2™"), which can easily be seen to be equivalent
to the original norm on 7. Our main result (Theorem 2.1) is that this family of
equivalent norms does not arbitrarily distort T or even any subspace of T. The proof
actually introduces a larger family of equivalent norms (|| - II;') j,nand (|- |;‘ )j,» Which
are shown to not arbitrarily distort any subspace of 7. Quantitative estimates for
the stabilizations of these norms are given in Theorem 2.5. It is shown that (up to
absolute constants) for all n and subspaces X C T, there is a subspace Y C X such
that ||y, ~ L if y € ¥ with ||y = 1.

Some stabilization results for more general norms on 7 of various classes are also
given in Section 3. In Section 4 we raise some problems.

Section 1 contains the relevant terminology and background material. Otherwise
our notation is standard as may be found in [LT].
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More detailed information about Tsirelson’s space and Tsirelson type spaces can
be found in [CS], [OTW], [AD], [AO] and the references therein.

1. Preliminaries

X,Y, Z, ... will denote separable infinite-dimensional real Banach spaces. If (x;)
is abasic sequence, (y;) < (x;) shall mean that (y;) is a block basis of (x;). X = [(x;)]
is the closed linear span of (x;). If X has a basis (x;), Y < X denotes ¥ = [(y;)]
where (y;) < (x;). The terminology is imprecise in that “<” refers to a fixed basis
for X but no confusion shall arise. Sy = {x € X: ||x|| = 1}.

Asspace (X, ||-||) is arbitrarily distortableif, forall A > 1, there exists an equivalent
norm | - | on X such that

sup |ll': y,ZESy] > A forallY C X. 1.1

|z
The norm | - | satisfying (1.1) is said to A-distort X. X is A-distortable if some norm
A-distorts X. X is distortable if it is A-distortable for some A > 1. If X has a basis
then “for all Y € X” in (1.1) can be replaced by “forall ¥ < X”.

Tsirelson’s space T (defined below) is known to be 2 — ¢ distortable for all e > 0
(e.g.,see [OTW]). Ifaspace X exists which is distortable but not arbitrarily distortable
then X can be assumed to have an unconditional basis [T], to be asymptotic co or £,
for some 1 < p < 0o [MT] and to contain £}’s uniformly [M]. These characteristics
in conjunction with others developed in [OTW] show that T is the prime candidate
for such a space.

For n € N, the Schreier classe S, is a pointwise compact hereditary collection
of finite subsets of N [AA]. For E, F € N, we write E < F (resp. E < F) if
max E < min F (resp. max E < min F) or if either one is empty.

So = {{n}: n e NJU {@}.

We inductively define
¢
Skr1 = {UE,,: {}<E <--<Epand E, € § for 1 5p5£].
p=1
(E)E_, is k-admissible if E; < --- < E; and (min E;)¢_,; € . Itis easy to see that

Sk[Sn]

i

4
{U E;i: (E;) is k-admissible and E; € S, for 1 <i < e]
i=1

= Sn+k-

If (y;) is a basis then (x;)§ < (;) is k-admissible (w.r.t. (y;)) if (suppx;)’_, is
k-admissible. Here, if x = ), ,a;y; and a; # Ofori € A, then suppx = A.
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coo denotes the linear space of finitely supported real sequences and (e;) is the
unit vector basis for coo. If x = ) ; x(i)e; € coo and E C N then Ex € cqp is
defined by Ex = Y ;g x(i)e;. Let F be a pointwise compact hereditary (that is,
G C F € F = G € F) family of finite subsets of N containing Sp andlet0 < A < 1.
The Tsirelson space T (F, A) is the completion of cgp under the implicit norm
¢
Xl = llxloc V sup [A |E;x|: E; <--+ < Eg and (min E,~)'1Z € T} (1.2)

i=1

Then (¢;) is a normalized unconditional basis for T (F, A). Furthermore if 7 2 S,
then T (F, 1) does not contain an isomorph of £; but is asymptotically €, (that is,
if (x;)% is 1-admissible then || Zf xill = A Zf Ilx;]). The existence of such a norm
(1.2) can be found in [AD].

The classical Tsirelson’s space is T = T(S;,2~!) and we write | - || (= || - [I1)
for the norm of T'. We also consider the space T'(S,,2™"), for a fixed n € N, and we
denote its norm by || - ||,. These norms are all equivalent on cg and thus the spaces
coincide. Indeed,

lxlln < llxll < 2" Hxlln forx €T, (1.3)

We explain (1.3) and set some terminology for later use. ||x|| is calculated as
follows. If |lx|| # |lx|loo then |lx|| = % Zf Il E,.‘xll for some 1-admissible collection
(ENE. Fori < £either |[Elx|| = | E}x|lo or |[E!x|| is calculated by means of a
similar decomposition. Ultimately, for some finite A C N, one obtains

el =D 27"@x (i),

i€A

where n(i) is the number of decompositions necessary before obtaining a set E;(i)
for which (| E} ©x|| = | E} ©x I = [x(i)].

Thus the norm in T can be described as follows in terms of trees of sets. By an
admissible tree T of sets we shall mean 7 = (E}) for1 <i <i(n),0 <n <kis
a tree of finite subsets of N partially ordered by reverse inclusion with the following
properties. E7 is said to have level n. i(0) = 1, E} < EJ'-‘ if i < j, all successors
of any E? form a 1-admissible partition of E? and every set E/'*! is a successor of
some E7. Thus all sets of level n form an n-admissible collection. Ej' is a terminal
set of 7 if it has no successors.

Thus, for x € T, one has

[Ix]] = sup ZZ'"(i)IIE,-xllooz (E})ica are terminal sets of an
icA

admissible tree with level E; =n(i) ;. (1.4)
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Also, (1.4) holds if || E;x ||« is replaced by || E;x||.
The norm || - ||, is calculated in a similar fashion except that terminal sets are
allowed only to have levels kn for some k =0,1,2,...:

llx|l» = sup [ Z 27D E;x|loo: (Ei)ica are terminal sets of an admissible
icA

tree where E; has level nk(i) for some k(i) =0, 1,2, ... ] (1.5)

From these formulas we see that ||x||, < ||x||. Furthermore if 7 is an admissible
tree, terminal sets not having levels 0, n, 2n, - - - can be continued to the next such
level, an increase of at most n — 1 levels, yielding ||x|| < 2"~ !||x||,..

More exotic mixed Tsirelson spaces were introduced in [AD]. We shall not discuss
a general definition, but we shall give a formula for the normin a special case of interest
here. For j > 0andn € N we let || - ll;' be the norm of the mixed Tsirelson space
T ((Sj+kn, 27U F*m)2 ) One obtains a formula for the norm similar to that in (1.4),
except that terminal sets may only have levels j, j +n, j +2n,...:

||x||;' = ||x]loo V SUP [ZZ*”""“” [Eix|loo: (Ei)iea are terminal sets of an
i€A

admissible tree having level E; = j 4+ nk(i) for some k(i) =0, 1, 2, .. ] .(1.6)

Thus || - || = || - l|». Furthermore || - II;.l is an equivalent norm on 7.

We prove in Section 2 that the family of norms (|| - ||;.'),,, j cannot arbitrarily distort
any subspace of 7. We do this by introducing a slight variation of || - || ;‘ (which omits
the first term in (1.6)):

x[} = sup [Z 2-UHk@) || Eix|loo: (Ei)ica are terminal sets
icA

of an admissible tree having level E; = j + nk(i), k(i) > 0] W)

Thus | - [§ = || - lln, | - I} is an equivalent normon T and | - [} < | - [|}. Our next
proposition shows some simple facts about | - I;‘. Statements (a) and (b) are the reason
we work with | - l;.‘ rather than directly with || - II;‘. Moreover (d) shows that || - II;'
and | - |} are nearly the same on some subspace of any given Y < T'. First recall the
Schreier space X,, (see [AA], also [CS], for m = 1). X,, is the completion of cgy
under

i€E

|X|m = sup [\Zx(i)‘: E e S,,,} .
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X, is isometric to a subspace of C(w®™) and hence is co-saturated: if Y € X then

Y contains an isomorph of ¢yp. For Z C T, Sz is the unit sphere w.r.t. the Tsirelson
norm || - ||.

PROPOSITION 1.1. (a)Let j >0andn € N. Forx € T,
1 r
x|} = 5 sup LX—; |Eexlln: (Ee)f is j-admissible}
(b)Let j >0andk,neN. Forx €T,
1 - . _
|x|;.'+k =% sup LZI IngI;': (Ep is k-admzsszble}

(c)Lete > 0,n,k e NandO < j < n. Let Y < T. Then there exists Z < Y so
that forall 7 € Sz,

l 2l = 2ljyn, | <eifl<p <k (1.8)
(d) Forn, j e Nye > 0andY < T there exists Z < Y so that forall 7 € Sz,

121y = N1 <e

<e and |lzl7 — Izl

Proof. (a) and (b) follow easily from (1.5)-(1.7) and the fact that Sg;; = Si[S;].
(c) is proved by choosing Z so that the first few levels of the admissible tree used to
compute |z|;' i Will contribute only a negligible amount. More precisely, we first
note that

|21} = |2ljynp = l2lj e for 1 < p <k.

Thus we need only achieve (1.8) for p = k. Let | - |j 4 be the norm of the Schreier
space X nx. Forz € T let

l2lf = 3 270Dz

LeA
be obtained from (1.7). Thus if

E={teA:k(®) <k}
then E € Sj,n and so
|zl} < 1Ezljnk + 12ljk = |2ljsnk + 120}

Also |z|j4nk =< 2/t ||z|| for z € T. Since X j+nk 18 co-saturated and T does not
contain ¢g it.follows that given ¥ < T there exists Z < Y so that if z € Sz then
|zlj+nk < €. This proves (c), and (d) is proved similarly. The norms in question differ
only in that the terminal sets of an admissible tree can differ only in a finite number
of levels. O
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We shall need a generalized notion of n admissible. For k,n € N, (E,)] is n
admissible (k) if (kE,)] is n admissible where kE = {ke: e € E}. Similarly we say
()¢ < (e;) is n admissible (k) if (supp ;) is n admissible (k). Also we say a tree
T is admissible (k) if (kE) g7 is an admissible tree.

PROPOSITION 1.2. Thereexists K| < ocosothatifn,k € N,1 > ¢ > 0and (y;) <
(e;) is normalized (in T), then there exists a finite set A € N and (o¢)¢ca C (0, 1] 50
that (ye)eea is n admissible, and setting z =Y, 4 @¢ye we have the following:

1) D peq e =2"
(il) If B € A and (y¢)eep is n — 1 admissible (k) then ), g o; < &.
(iii) 1 <zl < K;.

We call such a z an (n, &) average (k) of (y;). This was proved in [OTW] for
k = 1. The proof uses the following fact (e.g., see [CS], Prop. 11.4).

PROPOSITION 1.3.  There exists K, < 00 so that if (y;) is a normalized block basis
of (¢;) in T then for all (a;), if m; = minsupp y; then

[ aen] = [Zan] = k2| Ceen]

Proof of Proposition 1.2 By passing to a subsequence of (y;) we may assume
that m;; > km; where m; = minsupp y;. By [OTW], we can find z = ", , ¢ ye,
(@)eea SRY, D cpe =2"and Y, g e < &/2if (m¢)eep € Sp—1. Furthermore
1 < |z|| £ K;. It remains to check that (ii) holds. Suppose that B C A so that
(km;)ieg € Sp-1. Since m;4+; > km;, this shows that (m;41);ecp € S,—1 and hence
(mi)ieB\minB € Sp—1. Thus ZIGB\mmBag < &/2. Also apinp < €/2 and so (ii)
holds. O

2. Stabilizing the norms (|| - ||,)

Our goal is to prove that the norms (|| - ||;-’) and hence in particular the norms (|| - || ;)
do not arbitrarily distort any subspace of T. In light of Proposition 1.1 it suffices to
prove the following:

THEOREM 2.1. There exists K > 1 sothatforall Y < T and n € N there exist
Z <Yandd > Osuchthatforall0 < j <nandz € Sz,

d <l|zl; < Kd.

Before beginning the proof we recall that there exists K3 < cosothat || Y_ b;es; || <
K3 Y bie;ll [CS, Prop. 1.12].
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LEMMA 2.2. Let (w;) be a normalized block basis of (e;) in T. Suppose that for
some ¢ > 0 and L > 1, for all i we have

L7'c¢ < |wilf < Lc for 0<j <n.
Letw =) aw;, |w| = 1. Thenfor0 < j <n,c(LK)™' < lw|} < 2LKse.

Proof. From Proposition 1.3 there exists an admissible tree 7 whose terminal
sets are all equal to supp w; for some i, yielding

lwll = a2 Ofw; ) = Y a2 > k5.
i€A i€eA
Let 1 < j < n be fixed. We shall produce a lower estimate for le;.' by extending
T as follows. Fix i € A and consider the term |a;|27"®||w;||. Suppose this term
resulted from E = supp w; where E was terminal in 7 of level n(i). First suppose
that n(i) > j sothatn(i) = j +kn + p for some 0 < p < n and k > 0; then let
g=n—p.Ifn@ < j,letq =j—n@). If g > 1extend T g-levels below E via
the g-admissible family of sets which, by Proposition 1.1, yields

1 & _
lwily = 27 DN Ejwilla > cL7".

s=1

The new tree has terminal sets only at levels (j 4 kn)2,. When used in (1.7) it yields
lwif 2 Y lail2"PcL™ = c(LK2)™.

For the upper estimate let 7 be the admissible tree having terminal sets (which we
may assume to be singletons) of levels j, j +n, j + 2n, ... which produces |w|} in
(1.7). We say w; is badly split by some level of T if there exists E # F in 7 having
the same level with Ew; # 0, Ew; # 0 for some s # i and Fw; # 0. If no w; is
badly split by some level of 7 then if for some i, supp w; contains a terminal set in
T then there exists a 1-admissible family (E!):” in 7 of minimal level having the
property that Uf(i) E! C suppw; and F Nsuppw; = @ for all other F € T of the
same level as the E ;"s. Thus for some set A,

1103}
lwi? =Y 27"Plai| Y [Elwil}, @.1)

ieA s=1

where E! has level n(i) and j (i) < n satisfies n(i) + j(i) € {j, j +n, j +2n,...}.
Since [Jw|l = lwill = 1, X;c4 27"@]a;| < 1. Also,

£(3i)
3 D IEiwilfgy < lwilf < Le
s=1
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by our hypothesis. Hence
lw|} < 2Lec.

Of course 7 may badly split some w;’s. In this case we alter 7 as follows. Starting
with the smallest level we check to see if a given level badly splits any w;’s. If it does
we split the offending sets at min supp w; and max supp w;. Thus, a given E € T
could be split into at most 3 pieces at this stage. We intersect successors of split sets
with each of the at most three new pieces maintaining a tree, but losing admissibility.
Then proceed to the next level of the new tree and repeat. We now have a tree 7" that
does not badly split any w;. If we replace each set E in this tree by 3E we obtain
an admissible tree. Thus 7" is admissible (3). Furthermore, we obtain an expression
like (2.1), except that the equality is replaced by the inequality

£3)
lwl? <Y 27" Oa;| > |Elw[] ),

i€A s=1

where the sets (E §) come from our altered tree just as (2.1) was obtained from 7.
Letting m; = minsuppw; we have || 3_aiesn, || < K3l 2 aiem || < Ksllw|l =
K3. Since 7 is an admissible (3) tree we have

> 27" a;| < Ks.
icA

Thus IwI}’ <2K3Lc. 0O

Proof of Theorem 2.1. Fix 0 < & < 1 to be specified later. By Proposition 1.1
we may assume

|19 =1y | <& for 0<j<nandyesy. 22)

Also we may assume (yg) < (eg) is a normalized (in T') basis for ¥ and that for some
(3 < ©,1],

|lyely —¢;| <& foralle,0<j<2n, 2.3)
Hence, from (2.2) and (2.3), we also have

lej —cjanl <36 if 0<j <n. 2.4)

LEMMA 2.3. LetO <i <nandletz =7 ,., ey bean (i,¢) average 3) of
(ye), @¢ > Ofor £ € A. Thus (ye)eea is i admissible and Y, 4 0t = 2. Then

cj-i — & < zlf < 2¢j-iy1 + (K3 + 12, O<i<j=<n (2.5)
Cntj—i — € < |z2l} < 2epyj-iv1 + (K3 +1)3g, O0<j<i=n (2.6)
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Proof. For the first inequality in (2.5), let k = j —i. From Proposition 1.1, (2.3)
and the fact that S¢[S;] = S; we have

s=1

l : . . .
lzlj = 57 Zat sup [Z |Esyelln: (Es)jisk adm1551ble}}
teA

| 1
= Zael}’zlﬁ > 5 Zwe(ck — &) =Cj-j — €.
teA teA
The second inequality in (2.5) is more difficult. By Proposition 1.1, there exist j
admissible sets (E;)] with

1 r
l2l} = > Zl IEszlln. @7

The sets (E;)] are the terminal sets of an admissible tree 7, all having level j, and
we may assume each E; € |J,c, supp ye. We adjust the tree 7 by splitting some
sets if necessary, as we did in the proof of Lemma 2.2, to obtain a tree 7' which is
admissible (3) and which does not badly split any y;, £ € A. It may be that for some
E € T’ we have E C supp y, for some £ and level E < i. We remove all such sets
from the tree 7" (replace each F by F \ U such sets and throw out the empty sets thus
obtained). This gives us a tree 7" which does not badly split any y, and for which
no set of level < i is contained in supp y, for any £ € A. 7" is admissible (3).

Let (E!)"_, and (E!)_, be the terminal sets of 7" and 7" respectively. Then (2.7)
yields

1 &
2} < 57 D IEqzll, 2.8)
s=1
1 r(/ ., 1 )
= 55 2 MEzln + 55 DI Eszln
s=1 seD

where D = {1 <s < r’: E/ was discarded from 7" in forming 7"}. Let
B = {£ € A: E; C supp y, for some s € D}
= {£ € A: E C supp y, for some E € T’ withlevel E <i — 1}.

Thus if B = B \ min B then (y¢)¢ep is i — 1 admissible (3). Hence ) ,.p ¢ <
OminB + Y pcp % < €+ & = 2e. Now (E;)sep is j admissible (3) and so for £ € B,

1 -
57 2 NEyelln < 172l < Ks
seD
where § = ) _a;e3; if y = ) a;e;. Thus

1
57 2 IEszln < K3 ) o < 2Kse.
seD teB
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From this and (2.8) we obtain

2l < Z IEY2]la + 2K3e. 2.9)

j = 2]
Recall thatk = j —i. For£ € A, {E!: E! C supp y,} is k + 1 admissible. Indeed

ye could first be split into a 1-admissible family only at level i or later by 7”. The tree
T” continues from this point in an admissible fashion up to level j. Thus from (2.9),

lzl] < 5 Zaz sup {Z | Fsyelln: (Fs)Yisk +1 admlssxble] +2K3¢e
LeA s=1

< = Zaz2|J’e|k+1 +2Kse
tea
< 20k+l + 2K3¢ + 2e.

This completes the proof of (2.5).
For the lower estimate in (2.6) note that

lzl} = lzlj}, = 21+n Z“‘ sup Z lEsyelln: (Es)jisn+j—i admlssxble}

s=1

> aeents = ) = eniyei — . (2.10)

leA

._2,

Furthermore the argument in proving the upper estimate of (2.5) yields that |z|? j4n <
2¢u4j—i+1 + (K3 + 1)2¢ and since z|] < [z|},, + & we obtain (2.6). O

We continue the proof of Theorem 2.1 by using Proposition 1.2 to construct a
block basis (z;)]_; of (y¢) so that each z; is an (i, &) average (3) of (y,){2,. Let

s 15tz I_/etc ;Z”c,
LEMMA 2.4, ForO0<j<n,

1 n+3
—c—

2 2n

e <|z|? <2c+3e(K3 +1).
Proof. If1 < j < n then by Lemma 2.3,

1 n
27 < =) lul?

ni3

1
; [2(Cj +ciat--teatentepr+-+ Cj+1) + (K3 + 1)3ne]
2c +3e(K3 + 1).

IA

IA
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Similarly if j = O or n,

1
lzlf < - [2(ch + Cpet + -+ + 1) + (K3 + 1)3ne].

Hence the upper estimate is established.
To obtain the lower estimate we note that (z;)] is 1 admissible hence by Proposi-
tion 1.1(b),if l < j <n

n

R 11, .,

lzl} = - Zzi ZE‘ZIQU-]
s | ni3
1

> —[co+---+cn1 —nel.
2n
Since ¢, > ¢y — 3¢,
1 1 n+3
IzI}'ZE[cl+--~+c,,—(n+3)s]=~2—c—— 56

Also |z|g = |z|; and so the lemma is proved. [

Note that, by Proposition 1.2, z satisfies ||z|| < maXj<j<x l|z;]| < Kj and ||z]| >
15y, s 1
n Zl lzill > 3.

Furthermore, for an arbitrary y € T, ||y|| = 1 implies that Iyl;' > 2" for0 <
J < n and thus we could have chosen ¢; > 27" for 0 < j < n and so in particular
¢ > 27", Thus (using Lemma 2.4) we can choose ¢ above to show that the element
z satisfies

1
§c§|z|'.‘§3c for 0<j<n.

These remarks in conjunction with Lemma 2.2 complete the proof of Theorem 2.1.
O

Theorem 2.1 can be restated as saying that there exists an absolute constant K
such that forall ¥ < T and n € N there exists Z < Y such that

d= inf inf |z|] < sup sup|z|; < Kd. (2.11)

0<j<nz€eSz 0<j<nz€eSz

It is natural to say that Z < T is n-stable at d if Z satisfies (2.11). Obvious
questions then arise. How does d depend upon Z, how does it depend upon n? Our
next result answers these questions.

THEOREM 2.5. There exists an absolute constant L so that if Z < Y is n-stable
atdthen (Kn)™! <d < Ln™L.
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Proof. The lower estimate is relatively easy. Let Z < Y be n stable at d and let
z € Sz. |iz|l is calculated by a tree ultimately yielding ||z = 1 = }_;, 27"®|z()|
as explained previously. The sets in the tree are permitted to stop at any level. If we
gather together those which stop atlevels j, j+n, j+2n, ... for j=0,1,...,n ——1
we obtain 1 < ;';é |z} Hence for some j < n, |z|;~' , and thus d > &,
by (2.11).

Lety € ZN[(en)IP with ||yl = 1and y = }"aje;. For0 < j < n — 1, choose
y; in the unit ball Br. of T* so that

YO) =yl =) 27UthOn|g | > 4.

SGA_,‘

We may assume that A; C supp y. Note that P =0 y*(y) > nd. Partition 01 A;
into sets (Ey, ... ,,_1) as follows. s € E; 1f and only if for all i # j elthers ¢ A;
or j+ki(s)n <i + ki(s)n. Then (E; y*) ! is a collection of n disjointly supported
vectors in Br. all having support contamed in [(es)]°. Since T and the modified
Tsirelson space T), are naturally isomorphic [CS] there exists an absolute constant
L’ so that

-1

Z Ejy;

j=0

L Joax. IEjyjlire < L'

Furthermore
n-1
nd
(Z Ei}’f) » = >
j=0

Indeed, for s € U}';& E; pick jo such that s € Ej, and denote by F; the set of
all0 <i < n,i # jo, such that s € A;. Then {i 4+ k;(s)n: i € F;} is a subset of
{jo +kjp(s)n + 1, jo + kjy(s)n + 2,...}. Thus

n—1 n—1
nd < Zy]‘."(y) = Z Z lag| (2"(f+kj(5)n) + 22—(i+kz(S)n))

Jj=0 s€E; ieF;

< Z Z |as | 2 (+kj(s)n) +2-U+k (S)n)) — 22 EJ)’] ).

j=0 seE;

Hence nd/2 < L'sod <2L'/n. 0O
As an immediate consequence of Theorems 2.1 and 2.5 we get the following.
COROLLARY 2.6. There exists an absolute constant C so that for every Y < T

and n € N there exists Z < Y andd > 0 so that Z < Y is n-stable at d and
Cn)'<d<Cnl.
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3. Further results
We now turn to some stabilization results for more general norms on 7. Given an
arbitrary equivalent norm |- {on ¥ < T, we describe some procedures on | - |, natural
in the context of Tsirelson space, which lead to new norms that cannot distort T by

too much.
Recall [OTW] that if (y;) is a basis for ¥ and n € N then

k
| 28) Il
1

whenever (x;)¥ is n-admissible w.r.t. (y;) ] (3.1)

k
82(31) = inf{s >0 [y m
1

A result of the type we pursue and which we shall need later was proved in [OTW],
Theorem 6.2 (in stronger form).

PROPOSITION 3.1.  There exists D < 00 so that if (y;) is a normalized block basis
of (e;) forY < T and | - | is an equivalent normon Y with §;((y;), |- |) = -% then | - |
does not D distort Y.

Remark 3.2. It was shown in [OTW] that for a block basis (y;) of (e¢;) and any
equivalent norm | - | on Y = [(y;)],

8.((i)s |+ 1) 27" forall n.
If | - | is an equivalent normon Y = [(y;)] < T, for j > O and x € Y, we set
1 ¢ .
Ixl; = 57 Sup Z |Eix|: (E;)] is j admissible ¢ ,

(Ifx =Y aiyi, Ex =) ;g aiyi.) Thus |z]o = |z| and | - |; is an equivalent norm on
Y forall j. Forn € N we let

1 n—1
21 = =" |zl;.
n =

PROPOSITION 3.3. There exists D < oo so that if n € Nand | - | is an equivalent
normonY < T having basis (y;) < (e;) and satisfying

k L&
in > 3 Z 1% |n—1
1 1

for all 1 admissible (xi)'f < (y;) then | - |® cannot D distort Y.
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Proof. Let (x;)* be 1 admissible w.r.t. (y¢). Then for j > 1,

k 1 &
in > ‘2‘Z|xi|j—1
i=1 j i=1

since S;[Sj-1] = S;. Thus using the hypothesis,

(n) k

k
Zx; = l in +l Zx;
i=1 nj=1 i=1 j n i=1
1 ln k
= 5 ;ZZ'-’C!'J +" "Zixtln—

Thus 8;((1), | - |™) = 1. The proposition follows from Proposition 3.1. O
Remark 3.4. The hypothesis of Proposition 3.3 is satisfied if §,(| - |) = 27".

If | - | is an equivalent norm on Y = [(y;)] < T, we define an equivalent norm on
Y by

x|t = sup{z 27"O|E;x|:  (E;)iea are the terminal sets
icA

of an admissible tree with level E; = n(i) ]

Clearly | - | < | -|rrandif | - | < || - [ then |- | < || - ||. Note that || - || = | - llxr if
i) = (e).

The constant K appearing in several arguments below is the constant from Propo-
sition 1.3.

PROPOSITION 3.5. There exists K (= 2K, M) so that if | - | is any equivalent norm
onY =[(y))] < T then| - |1, does not K distort Y.

Proof. By multiplying | - | by a scalar and passing to Z < Y we may assume
that || - || = | - | on Z and Z has a basis (z;){° with ||z;|| = 1 and |z;| > % for all i.
Furthermore, by [AO], we may assume that for all j if (z;);cg is j-admissible w.r.t.
(e;) then (z;41)ick is j-admissible w.r.t. (y;).
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Let z = Zf a;z; with ||z|]] = 1. Then || Zf a;zi—1|| = M~ for some absolute
constant M [CS]. By Proposition 1.3 there exists an admissible tree w.r.t. (¢;) having
terminal sets of the form supp z;—; and level n(i) for all i in some set A so that

D27 Plgy) = K7 Y @izl = (KoM

i€A
It follows that

Izl = Y 27" Plai] |z:] > KM,
ieA

completing the proof. [

Remark.3.6. It follows from Proposition 3.5 that if | - | is an equivalent norm on
Y = [(y;))] < T satisfying |y|1, < y|y|forall y € Y, then | - | does not K y distort Y.

PROPOSITION 3.7. For all y > O there exists D(y) < oo with the following
property. Let Y = [(y;)] < T. If| - | is an equivalent normon Y and n € N is such
that 8,((y:), | ) =27"and |y|; = yly|forally € Y and j < n, then | - | does not
D(y) distort Y.

Proof. By Theorem 2.1 we may choose (z;) < (¥;), Z = [(z;)], so that for some
d>0,

d <|zll. < Kdforallz € S5.

Furthermore, by passing to a block basis of Z and scaling | - | as necessary, we may
assume that ||z, = |z|forallz € Z and 1 = ||z;|| = ||zill» = |zi] = %Ilz,- I, for all ;.
Finally, again by [AO] we may assume that if (z;);cg is j-admissible w.r.t. (¢;) then
(Zi+1)ickE i j-admissible w.r.t. (y;).

Letz =) a;z; with ||z|| = 1.

As in the proof of Proposition 3.5 there exists an admissible tree w.r.t (y;) having
terminal sets of the form supp z; and level n(i), i € A, yielding

> 27 Da| |zl = (kM)
ieA

Choose 0 < j(i) < nsothatn(i) + j(@) € {0, n, 2n,...}. Since 6,((y;),]-]) =27"
we obtain

%

|z]

22" aillailio 2 v )27 Plail

i€A i€A

v

4 OIP
7 22" Vlail Izl >

i€A

Y
2KoM°
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Thus
Y
>zl > — .
lzlln = Iz} = 2K2KM"y”"
Hence Kd > |z|] > mﬁlm-d. The theorem is proved with D(y) = 2y 'K,K*M.

O
Our next result combines the proofs of Proposition 3.7 and the main theorem.

PROPOSITION 3.8. Fory > Othere exists D(y) < o0 so that the following holds.
Letn € Nandlet | - | be an equivalent normonY = [(y;)] < T with §,(] - |) =27".

Suppose that forally € Y, |yl, > ylyl and |y| = y|yl|jfor1 < j < n. Then| - |
does not D(y) distort Y.

Proof. As in the proof of Proposition 3.7 we may assume that || - ||, > |- | on Z,
Z has a normalized (in T') basis (z;) < (y;) with |z;| > %IIZ:‘”n for all i. In addition,
from Theorem 2.1 we may assume

d=< Izl}' <Kd forO0<j<nandzeSz.

Finally, we again assume that if (z;)g is j-admissible w.r.t. (¢;) then (z;41)g is j-
admissible w.r.t. (y;).

Note that the hypothesis 8,(] - |) = 27" implies | - | = | - |, and more generally
|17 = |- lnaj- |- In = v| - | implies that (on ¥) | |; < y™'| |t

Furthermore we may assume that, for a suitably small & > 0, | |z¢|; — ¢;| < & for
all £ € Nand 0 < j < n for some (c;)j € R*.

Fix 1 <i < nandletz =) apze be an (i, &) average (3) of (z,). Note that
|2li = & D jea elzel > 4 hence

: d
@ lzl z ylzli = 7.

The argument of Lemma 2.3 remains valid for estimates on |z|;. The proof of the
upper estimate of (2.6) yields

|zlj4n = 2¢ntj-i+1 +2e(K3 + 1),
hence

IA

l2lj < v (2enaj-ier +26(Ks + D).

If we set w = ,l, > w; where (w;)} < (z¢)%° and each w; is an (i, €) average (3) of
(z;) then, as in Lemma 2.4 (taking & suitably small),

(i) 3c <|wl; <3y~'c(@<j<n)wherec=131c.
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Also

from (i) and so

(iii) |wl| = ylwh = §¥%.

From (ii) and (iii) we have 4y2 < 3y~!candsoc > ‘1—1"2—3. Thus, from (ii)
(v) wlj > % for0 < j <n.

We are ready to apply the proof of Proposition 3.7. Let (w;) < (z¢) be such that
each w; is constructed as was w above. Let w = Y a;w; with ||w|| = 1. Choose an
admissible tree having terminal sets supp w; for i € A yielding Y 27" |q;| ||w;]| =
(KoM)™L, Tt follows that if 0 < j (i) < n satisfies n(i) + j (i) € {0,n, 2n, ...} then

o dy
Kd > |lwis > lw] = Y 27"Ola| {wi]j) = WK

The theorem is proved with D(y) = %—I%ZM. O

In comparison with (1.3), it is of interest to consider the mixed Tsirelson space (see
[AD]) T ((Sk, cx27%)x), where cx 1 1. We then ask whether it also coincides with T,
or, at least, whether its norm, | - | say, is an equivalent norm on a subspace of 7. The
following result gives the positive answer to the latter question. It also indicates that
the answer to the former question probably depends upon the asymptotic behavior of
(cx)- Finally, it should be compared with Example 5.12 from [OTW] which implies
that if ¢, < 8 < 1 then no subspace of T ((Sk, cx27*)x) is isomorphic to a subspace
of T.

PROPOSITION 3.9. There exists a block subspace X < T such that c||x|| < |x| <
x|l for x € X, where ¢ > 0 is an absolute constant, independent of the choice of

Cle.

Outline of the proof. Clearly, |x| < ||x|| for all x € T. Choose n(i) 1 oo such
that [T5° cuy > 5 and Y3° 27" < 1/4K,. Letm(1) = n(1) and inductively choose
m(i)  oosothatm(@i + 1) > 2(m(@i) +n(@)) foralli =1,2,....

Choose (x;) < T tobe ablock basis of (e;) such that each x; is an (m (i), 1) average
(1) of (e;). In particular, x; = 3", @je;, where o} > O for j € F;, Fi € Sp() and
YjeF, af = 2", Ttis easy to check that 1 < ||x;|| < 2.
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Letx = Zf a;x; with ||x|| = 1. By Proposition 1.3, there exists an admissible
tree 7 having terminal sets of the form supp x; and level p(i), yielding

> 27Pgy| x| = 1/K;

ieS

for some § C {1,...,£}). Set G = {i € §: p(i) < n(i)}. Note thatif B = S\ G
then ", 2770 < ¥ 2770 < 1/4K,, and so

> 277Dla;| x| < 2/4K; = 1/2K,.
ieB
Thus
> 277 O\g| x|l > 1/2Ka.
ieG
Prune the tree 7 so as to only admit terminal sets of the form supp x; fori € G.
Extend each of these sets m (i) levels in an admissible fashion, ending at the singletons

which form supp x;, ultimately obtaining an admissible tree 7’. Since ||x;| < 2, it
follows that

> 2770g| Y "2 Dal > 1/4K,,
ieG JjeF;

which can be rewritten as

>N 2P0 Dig ol > 1/4K,.

ieG jeF;

For i € G, all elements in the support of x; are terminal sets of 7" having level
j @) = p(@) + m(@i). Note that fori’ € G, i’ > i, the definition of G and the growth
condition on m (i) imply that

J@) = j@ = p(") + m(i’) = p(i) — m(@i) = m(@i’) — n@@) —m(@) = n@).

Let G = {iy, ..., is} written in the increasing order. The admissible tree 7’ has
terminal sets of level j (i;) which together equal the support of x;, , of level j (i2) which
together equal the support of x;,, and so on. Also, j(ix41) — j(ix) = n(ix) > n(k).

By considering all the sets of 7’ of level j (i;) we obtain

r(l)
x| = cjy [ 27lail Y ot +20W Y BRI |
jEF,’, r=1

where (E;") are the remaining sets in 7" of level j(i;) which are disjoint from the
support of x;,.
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We iterate this estimate next continuing the sets (E;") to level j(iz) and so on.
Ultimately we obtain

11 = ¢jn (2’ Wlai, | Y o) +¢jtmrian (2’ @lay| Yo

jeFil jeFiZ

+ Cia-jan | 27Planl Y i+ ]]-
j€F,

Since j (ig+1) — j@x) = n(k), this yields

s

)
. . 1
—j(ir) . r — p—
lx] > k|=ll Cn(k) ( E 2-J la;, | E a}) > 2(1/4K2) = 1/8K;,

r=1 JEF;

completing the proof. [

Until now we considered the Tsirelson space T = T (S, 2-1), its subspaces and
renormings. Analogous results also hold for Tsirelson spaces Ty = T(S), 8), where
0 < 6 < 1. It should be noted, however, that absolute constants will change to
functions depending on @ (typically of the form cf~! where c is an absolute constant).
In particular, let us recall that the space Ty admits a @~ — ¢ distorted norm for every
& > 0 (the proof is exactly the same as for T'). In this context a distortion property of
the renorming T' (S, 6") of T, might be also of interest.

PROPOSITION 3.10. Letn € Nand 0 < 6 < 1. Let X = T(S,,0"). Every
Y < X contains Z < Y such that Z is 6~! — ¢ distortable for every ¢ > 0.

Outline of the proof. First note that the modulus §,, defined in (3.1) has the fol-
lowing property: Forall Y < X and k € N, 8,,(¥) < 0"®~D+! 1Indeed,letY < X
and let (y;) be a normalized basisin Y. Let0 <& < landy = ) ;. , oy be an
(nk, ) average (1), satisfying conditions (i) and (ii) of Proposition 1.2. (Observe
that these two conditions have a purely combinatorial character, and their validity
does not depend on the underlying Banach space.) In particular, ), , o = 2nk,
Then ||y > 8 (Y)2"%. Iterating the definition of the norm k — 1 times we ob-
tain

[4
Iyl < 0" D> IEyI+ > e,
Jj=1

ieB

where i € B if supp y; is split by some set in the tree of sets obtained by iterating the
norm definition. Thus B € Sp(-1) and E| < --- < Ej is n(k — 1)-admissible, and
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fors < £andi € Aonehas E; Nsuppy; =@ or E; 2 supp y;. Thus

Iyl 6" DY o +6 < 0"* D2 te.
icA
Comparing this with the lower estimate for |y|| yields the required bound for
Snk(Y).

The supermultiplicativity property 8, (Y) > (8;(Y))™ ([OTW], Prop. 4.11) and
the previous estimate immediately imply that forall Y < X, 8;(Y) < 6.

This in turn implies that for every ¥ < X there exists Z < Y such that for
every € > O there is k € N satisfying the following: For all W < Z there exist
wy < ---wy in W such that || 5 w;ll = 1 and 3°¢_, lw; || = 67! —&. If not, then
stabilizing suitable quantities for k = 1,2, ... by passing to appropriate subspaces,
and using a diagonal argument and the definition of S;, we would get a subspace Y’
with §,(Y’) > 6.

Now, given ¢ > 0, define | - | on Z by

k

lel = sup ; IEizll,
where Ez is the projection with respect to the basis of Z. Clearly, ||z|| < |z| < k||z]|
forz € Z. Let W < Z. By the previous claim, there exists w € W with |[w]| = 1 and
|w| > 6~! — £. On the other hand, a standard argument involving long £7 averages
implies that there exists x € W with ||x|| = 1 and |x| < 1 + ¢ (e.g., see [OTW],
Prop.2.7). O

4. Problems
Of course the main problem is the following.

PROBLEM 4.1. Is T arbitrarily distortable? Is any subspace of T arbitrarily
distortable?

Our work in Section 3 suggests the following problems.

PROBLEM 4.2.  Prove that the class of equivalent norms on T for which §,(|-|) =
27" for some n > 1 do not arbitrarily distort T orany Y < T.

PROBLEM 4.3. Prove that for y > 0 there exists K(y) < 00 so that if | - | is an
equivalent norm on T satisfying 6,(| - |) = y27" for all n then | - | does not K (y)
distortany Y < T.

PROBLEM 4.4. Prove there exists K < 00 so that if | - | is an equivalent norm on
T and Y < T then for some n, | - | does not K distort Y.
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