REITER'S CONDITION P₂ AND THE PLANCHEREL MEASURE FOR HYPERGROUPS

FRANK FILBIR AND RUPERT LASSER

ABSTRACT. In this paper we study the Reiter P_2 condition for commutative hypergroups and give necessary and sufficient conditions for $x \in \text{supp } \pi$, where π is the Plancherel measure. Finally we apply general results to characterize supp π in the case of polynomial hypergroups.

1. Introduction

Let $(p_n)_{n\in\mathbb{N}_0}$ be a sequence of polynomials on the real line satisfying a recurrence formula

$$x p_n(x) = \alpha_{n+1} p_{n+1}(x) + \beta_n p_n(x) + \alpha_n p_{n-1}(x), \qquad (1.1)$$

where $\alpha_n > 0$, for $n \in \mathbb{N}$, $p_0(x) = 1$ and $p_{-1}(x) = 0$. By the Favard theorem there exists a probability measure π on \mathbb{R} such that the polynomials p_n are orthonormal with respect to π . In general it is rather difficult to derive from properties of $p_n(x)$ and α_n , β_n whether some real number x is contained in supp π or not. If $(p_n)_{n\in\mathbb{N}_0}$ belongs to the Nevai class $\mathcal{M}(b, a)$, i.e., $\lim_{n\to\infty} \alpha_n = \frac{a}{2}$ and $\lim_{n\to\infty} \beta_n = b$, and if a > 0 then by a theorem of Blumenthal we have supp $\pi = [b-a], [b+a] \cup S$, where S is bounded and countable with only possible accumulation points in $\{b \pm a\}$ (see [9], p. 23). If one assumes in addition that the polynomials $(p_n)_{n\in\mathbb{N}_0}$ give rise to a convolution structure on $l^1(\mathbb{N}_0)$ (i.e., they induce a polynomial hypergroup structure on \mathbb{N}_0 (see [5], [8]) and if a = 1, b = 0 one has supp $\pi = [-1, 1]$ (see [14] and [8]). In the latter case Banach algebra techniques are applied, where the algebra structure is inherited from the hypergroup structure on \mathbb{N}_0 . In [10] amenability of hypergroups is investigated (a concept of harmonic analysis). Among many other results connected with amenability it is shown that the constant character 1 is contained in the support of the Plancherel measure if, and only if the Reiter condition (P_2) is satisfied. Translating this result to orthogonal polynomials inducing convolution structure on $l^1(\mathbb{N}_0)$ this yields a characterization of $1 \in \text{supp } \pi$. The purpose of this paper is first to initiate a systematic study of a shifted Reiter condition (P_2) on commutative hypergroups and second to apply these results to characterize supp π in the case of orthogonal polynomials that induce a hypergroup on \mathbb{N}_0 .

Received December 11, 1997; received in final form May 7, 1999. 1991 Mathematics Subject Classification. Primary 43A62, 42C05, 43A07.

2. Preliminaries

Througout this paper, K will denote a commutative hypergroup, see [1] (same as convo in Jewett [3]). The following notations and basic results of harmonic analysis on K will be applied in the sequel. The convolution of two elements $x, y \in K$ is denoted by $\omega(x, y)$, and the involution by \tilde{x} .

Let $C_c(K)$ be the space of all continuous functions with compact support. Given $y \in K$ and $f \in C_c(K)$ the translation $L_y f$ of f is given by

$$L_{y} f(x) = \omega(y, x)(f).$$

A Haar measure on K is a regular positive Borel measure m on K, $m \neq 0$ such that $\int_K f(x) dm(x) = \int_K L_y f(x) dm(x)$ for all $f \in C_c(K)$ and $y \in K$. By the commutativity of K the existence of a Haar measure m on K is ensured. A fixed Haar measure on K is denoted throughout by M. The dual space K is defined by

$$\widehat{K} = \left\{ \alpha \in C^b(K) \colon \alpha \neq 0, \ \omega(x, y)(\alpha) = \alpha(x) \ \alpha(y), \alpha(\widetilde{x}) = \overline{\alpha(x)} \right\},\,$$

where $C^b(K)$ is the space of all bounded continuous functions on K. For $f \in L^p(K,m)$ let $f^* \in L^p(K,m)$ be given by $f^*(x) = \overline{f(x)}$. Similar as for locally compact Abelian groups one can identify \widehat{K} with the symmetric structure space $\Delta_S(L^1(K,m))$ of the Banach* algebra $L^1(K,m)$; see [3] or [1]. The topology of convergence on compacta on \widehat{K} is equal to the topology $\sigma(L^\infty(K,m), L^1(K,m))$ restricted to \widehat{K} . Equipped with this topology \widehat{K} is a locally compact space. The Fourier transform of $f \in L^1(K,m)$ is defined by

$$\widehat{f}(\alpha) = \int_K f(x) \, \overline{\alpha(x)} \, dm(x), \qquad \alpha \in \widehat{K}.$$

For $f \in L^p(K, m)$, $1 \le p \le \infty$, one can define the translation $L_y f$ of f with $y \in K$ by putting

$$L_{y}f(x) = \omega(y, x)(f).$$

Based on that translation one defines the convolution f * g, where $g \in L^1(K, m)$ and $f \in L^p(K, m)$, $1 \le p < \infty$ by

$$f * g(x) = \int_{K} f(y) L_{\widetilde{y}}g(x) dm(y).$$

We have $f * g \in L^p(K, m)$ and due to the translation invariance of the Haar measure one has in the case of f, $g \in L^1(K, m)$,

$$\int_K L_x f(y) g(y) dm(y) = \int_K f(y) L_{\tilde{x}} g(y) dm(y).$$

Every $f \in L^1(K, m)$ defines a bounded linear operator L_f on the Hilbert space $L^2(K, m)$ by $L_f(h) = f * h$, where $h \in L^2(K, m)$. The mapping $f \to L_f$, $L^1(K, m) \to B(L^2(K, m))$ is called regular representation of K. It is an injective mapping and satisfies $\|L_f\| \le \|f\|_1$, $L_{f*g} = L_f \circ L_g$ and $(L_f)^* = L_f *$.

Now we introduce

$$S = \left\{ \alpha \in \widehat{K} \colon |\widehat{f}(\alpha)| \le \|L_f\| \text{ for every } f \in L^1(K, m) \right\}.$$

 \mathcal{S} is a nonvoid closed subset of \widehat{K} , and for each $f \in L^1(K,m)$ one has $\|L_f\| = \sup_{\alpha \in \mathcal{S}} |\widehat{f}(\alpha)|$. To obtain this one can apply the fact that \mathcal{S} is homeomorphic to the structure space $\Delta(A)$, where A is the commutative C^* -algebra $A = \operatorname{cl}\{L_f: f \in L^1(K,m)\}$, the closure taken in the Banach space $B(L^2(K,m))$. One should note that \widehat{K} in general does not bear a dual hypergroup structure, which makes harmonic analysis on K more delicate. The proof of the next result can be found in [3] or [1].

THEOREM 2.1 (Plancherel-Levitan). Let K be a commutative hypergroup. Then there exists a unique regular positive Borel measure π on \widehat{K} with

$$\int_{K} |f(x)|^{2} dm(x) = \int_{\widehat{K}} |\widehat{f}(\alpha)|^{2} d\pi(\alpha)$$

for all $f \in L^1(K, m) \cap L^2(K, m)$. The support of π is equal to S. The set $\{\widehat{f}: f \in C_c(K)\}$ is dense in $L^2(\widehat{K}, \pi)$. π is called Plancherel measure.

In the next section we will give several equivalent conditions for $\alpha \in \mathcal{S} = \operatorname{supp} \pi$.

3. Characterization of supp π

We start by recalling some further notions of harmonic analysis. For $f \in L^1(\widehat{K},\pi)$ define the inverse Fourier transform

$$\check{f}(x) = \int_{\widehat{K}} f(\alpha) \alpha(x) d\pi(\alpha)$$

for $x \in K$. A function $\varphi \in C^b(K)$ is called positive definite if for all choices of $n \in \mathbb{N}, c_1, c_2, \ldots, c_n \in \mathbb{C}$ and $x_1, x_2, \ldots, x_n \in K$,

$$\sum_{i,j=1}^n c_i \, \overline{c_j} \, \omega(x_i, \widetilde{x_j})(\varphi) \ge 0.$$

Important examples of positive definite functions are $\alpha \in \widehat{K}$ or $f * f^*$, where $f \in L^2(K, m)$. We mention that one can prove a Bochner theorem for commutative hypergroups; see [3] or [6]. We apply the following inversion result; see [6].

PROPOSITION 3.1. If $\varphi \in L^1(K, m) \cap C^b(K)$ is positive definite then $\widehat{\varphi} \in L^1(\widehat{K}, \pi)$ and $(\widehat{\varphi})^{\vee} = \varphi$.

We now introduce a concept very useful for investigating supp π . In the case of $\alpha = 1$ it has already been studied in the context of hypergroups, see [10], and in the group case closely related to the notion of amenability.

Definition 3.1. Let $\alpha \in \widehat{K}$. We say that the P_2 condition is satisfied in α if for each $\varepsilon > 0$ and every compact subset $C \subset K$ there exists some $g \in C_c(K)$ such that $\|g\|_2 = 1$ and

$$||L_{\gamma}g - \overline{\alpha(y)} g||_2 < \varepsilon$$
 for all $y \in C$.

Now we characterize those $\alpha \in \widehat{K}$ which belong to $S = \operatorname{supp} \pi$. The equivalence of the conditions (i) and (ii) in the following theorem is already shown by M. Voit; see [1], Corollary 4.1.12.

THEOREM 3.1. Let $\alpha \in \widehat{K}$. Then the following conditions are equivalent:

- (i) $\alpha \in \mathcal{S} = \operatorname{supp} \pi$.
- (ii) There exists a net $(f_i)_{i \in I} \subseteq C_c(K)$, $||f_i||_2 = 1$ such that $f_i * f_i^*$ converges to α uniformly on compact subsets of K.
 - (iii) The P_2 condition is satisfied in α .

Proof. First we show that (i) implies (ii). Let $\varepsilon > 0$, $C \subseteq K$ be compact. Choose a neighborhood $U \subseteq \widehat{K}$ of α such that $0 < \pi(U) < \infty$ and

$$U \subseteq \{\beta \in \widehat{K} : |\alpha(x) - \beta(x)| < \varepsilon/2 \text{ for all } x \in C\}.$$

Define $h = \chi_U/\pi(U) \in L^1(\widehat{K}, \pi)$. Then for all $x \in C$ we have

$$|\check{h}(x) - \alpha(x)| = \frac{1}{\pi(U)} \left| \int_{U} \beta(x) \, d\pi(\beta) - \int_{U} \alpha(x) \, d\pi(\beta) \right| < \varepsilon/2.$$

For $h^{1/2} = \chi_U/\pi(U)^{1/2}$ there exists some $f \in C_c(K)$ such that $\|\widehat{f} - h^{1/2}\|_2 < \varepsilon/4$; cf. Theorem 2.1. Since $\|h^{1/2}\|_2 = 1$ we can assume that $\|\widehat{f}\|_2 = \|f\|_2 = 1$. Furthermore we get

$$\begin{split} \|(f * f^*) - h\|_1 &= \| |\widehat{f}|^2 - h\|_1 \\ &\leq \int_K |\widehat{f}(\beta) - h^{1/2}(\beta)| \cdot ||\widehat{f}|(\beta) + h^{1/2}(\beta)| \ d\pi(\beta) \\ &\leq \|\widehat{f} - h^{1/2}\|_2 \left(\|\widehat{f}\|_2 + \|h^{1/2}\|_2 \right) = 2\|\widehat{f} - h^{1/2}\|_2 < \varepsilon/2. \end{split}$$

Applying Proposition 3.1, for $x \in K$ we obtain

$$|f * f^*(x) - \check{h}(x)| = \left| \left((f * f^*)^{\wedge} \right)^{\vee} (x) - \check{h}(x) \right| \leq \| (f * f^*)^{\wedge} - h \|_1 < \varepsilon/2,$$

and hence $|f * f^*(x) - \alpha(x)| < \varepsilon$ for every $x \in C$.

In order to prove that (ii) implies (iii) we again consider a compact set $C \subseteq K$. Then the convolution of C with itself, $C * C := \bigcup_{x,y \in C} \operatorname{supp} \omega(x,y)$, is also a compact subset of K; see [3] or [1]. Let $\varepsilon > 0$. Then by (ii) there is a function $f \in C_c(K)$ with $||f||_2 = 1$ and

$$|f * f^*(x) - \alpha(x)| < \varepsilon$$
 for all $x \in C * C$.

We can assume that $e \in C$ and $C = \widetilde{C}$. Since for all $x, y \in C$,

$$|L_{y}(f * f^{*})(x) - \alpha(y) \alpha(x)| \leq \int_{K} |f * f^{*}(z) - \alpha(z)| d\omega(y, x)(z) < \varepsilon$$

and $|f * f^*(x) \alpha(y) - \alpha(x) \alpha(y)| < \varepsilon$ we obtain

$$|L_y(f*f^*)(x) - f*f^*(x) \alpha(y)| < 2\varepsilon,$$

and hence

$$\left| \int_{K} \overline{L_{x}^{c}f(z)} \left[L_{y}f(z) - \alpha(y) \ f(z) \right] dm(z) \right|$$

$$= \left| \int_{K} \overline{f(z)} \left[L_{x}(L_{y}f)(z) - \alpha(y) \ L_{x}f(z) \right] dm(z) \right|$$

$$= \left| L_{y}(f * f^{*})(x) - \alpha(y) \ (f * f^{*})(x) \right| < 2\varepsilon.$$

In a similar way for $y \in C$ and each $x \in K$ we get

$$\left| \int_{K} \overline{\alpha(\widetilde{x})f(z)} \left[L_{y}f(z) - \alpha(y)f(z) \right] dm(z) \right|$$

$$= |\alpha(x)| \cdot |f * f^{*}(y) - \alpha(y)| < \varepsilon.$$

For $y = \tilde{x} \in C$ we therefore have

$$||L_{y}f - \alpha(y)f||_{2}^{2} = \int_{K} \overline{\left[L_{y}f(z) - \alpha(y) f(z)\right]} \left[L_{y}f(z) - \alpha(y) f(z)\right] dm(z)$$

$$\leq 3\varepsilon;$$

thus the implication is shown.

It remains to show that (iii) implies (i). Assume that the P_2 condition is satisfied in α . We will prove that

$$|\widehat{f}(\alpha)| \le \sup \{ \|f * g\|_2 : g \in L^2(K, m), \|g\|_2 = 1 \} \text{ for every } f \in C_c(K), f \ne 0.$$

Since $C_c(K)$ is dense in $L^1(K, m)$, this condition implies that $\alpha \in \mathcal{S}$.

Let $f \in C_c(K)$, $f \neq 0$. By the P_2 condition there exists a function $g \in L^2(K, m)$, $||g||_2 = 1$ such that

$$\left\| L_{\widetilde{y}}g - \overline{\alpha(y)} g \right\|_{2} < \varepsilon / \|f\|_{1}$$

for all $y \in \text{supp } f$. Since

$$f * g(x) - \widehat{f}(\alpha) g(x) = \int_{K} f(y) \left(L_{\widetilde{y}}g(x) - \overline{\alpha(y) g(x)} \right) dm(y),$$

it follows that

$$\|f * g - \widehat{f}(\alpha) g\|_{2} \le \int_{K} |f(y)| \cdot \|L_{\widetilde{y}}g - \overline{\alpha}(y) g\|_{2} dm(y) < \varepsilon.$$

Thus we have the estimate

$$|\widehat{f}(\alpha)| = |\widehat{f}(\alpha)| \cdot ||g||_2 \le \varepsilon + ||f * g||_2,$$

which obviously implies

$$|\widehat{f}(\alpha)| \le \sup \{ \|f * g\|_2 : g \in L^2(K, m), \|g\|_2 = 1 \}.$$

Remark. In the case of $\alpha=1\in\widehat{K}$ we can assume that the functions $g\in C_c(K)$ in Definition 3.1 are nonnegative. In fact one can proceed as in the proof of Lemma 4.4 of [10] to construct nonnegative f_i , $i\in I$, in condition (ii) of our Theorem 3.1, which also yields nonnegative functions for the P_2 condition in $\alpha=1$.

4. Application to orthogonal polynomials

Now we apply the general result of Section 3 to polynomial hypergroups. In order to do this it seems to be useful to recall some basic facts about polynomial hypergroups.

Consider a polynomial sequence $(P_n)_{n\in\mathbb{N}_0}$ defined by a recurrence relation of the form

$$P_1(x) P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + c_n P_{n-1}(x)$$
(4.1)

for $n \in \mathbb{N}$ and starting with

$$P_0(x) = 1,$$
 $P_1(x) = \frac{1}{a_0}(x - b_0)$ (4.2)

with $a_n \in \mathbb{R} \setminus \{0\}$ for all $n \in \mathbb{N}_0$, $c_n \in \mathbb{R} \setminus \{0\}$ for all $n \in \mathbb{N}$ and $b_n \in \mathbb{R}$ for all $n \in \mathbb{N}_0$. A well-known result, usually referred to as Favard's theorem, states that $(P_n)_{n \in \mathbb{N}_0}$ is

an orthogonal polynomial sequence with respect to a certain probability measure π on the real line; see [2].

We impose two assumptions on $(P_n)_{n\in\mathbb{N}_0}$. A minor one is

$$P_n(1) = 1 \qquad \text{for all } n \in \mathbb{N}_0 \tag{4.3}$$

and a more restrictive one is

$$g(m, n; k) \ge 0, \tag{4.4}$$

where g(m, n; k) are the linearization coefficients of the products

$$P_m(x) P_n(x) = \sum_{k=|n-m|}^{n+m} g(m, n; k) P_k(x).$$
 (4.5)

Note that $P_n(1) = 1$ implies $a_0 + b_0 = 1$ and $\sum_{k=|n-m|}^{n+m} g(m, n; k) = 1$. Furthermore we have

$$\int_{\mathbb{R}} P_n^2(x) d\pi(x) = g(n, n; 0).$$

We write $h_n = g(n, n; 0)^{-1}$. Hence $p_n(x) = \sqrt{h(n)}P_n(x)$ is the orthonormal version of $P_n(x)$. There is an abundance of orthogonal polynomial sequences $(P_n)_{n \in \mathbb{N}_0}$ satisfying (4.3) and the crucial nonnegativity condition (4.4); see [5], [6] and [8].

By means of coefficients g(m, n; k) (that are in one-to-one correspondence to $(P_n)_{n \in \mathbb{N}_0}$) we define a convolution ω_P on \mathbb{N}_0 :

$$\omega_P(m,n) = \sum_{k=|n-m|}^{n+m} g(m,n;k) \, \varepsilon_k,$$

where ε_k is the point measure of $k \in \mathbb{N}_0$. With the identity mapping as involution, i.e., $\tilde{n} = n$, and the discrete topology the natural numbers \mathbb{N}_0 are a commutative hypergroup, called polynomial hypergroup; see [5].

The translation now reads as follows:

$$L_n\beta(m) = \sum_{k=|n-m|}^{n+m} g(m,n;k) \beta(k).$$

The dual space $\widehat{\mathbb{N}_0}$ can be identified with

$$D_s = \left\{ x \in \mathbb{R}: (P_n(x))_{n \in \mathbb{N}_0} \text{ is a bounded sequence} \right\}$$
 (4.6)

by the mapping $x \to \alpha_x$, $D_s \to \widehat{\mathbb{N}}_0$, where $\alpha_x(n) = P_n(x)$. Direct consequences (see [5]) are:

(i)
$$D_s = \{x \in \mathbb{R}: |P_n(x)| \le 1 \text{ for all } n \in \mathbb{N}_0\}.$$

- (ii) D_s is compact.
- (iii) $D_s \subseteq [1 2a_0, 1]$.

A Haar measure m on \mathbb{N}_0 is the counting measure on \mathbb{N}_0 with weights h(n) on the points $n \in \mathbb{N}_0$. The theorem of Plancherel-Levitan has in that case the form:

THEOREM 4.1. There exists an unique probability measure π on D_s such that

$$\sum_{n \in \mathbb{N}_0} |d(n)|^2 h(n) = \int_{D_s} |\hat{d}(x)|^2 d\pi(x)$$

for every $d = (d(n))_{n \in \mathbb{N}_0} \in l^1(\mathbb{N}_0, m)$, where $\hat{d}(x) = \sum_{n \in \mathbb{N}_0} P_n(x) d(n) h(n)$.

Applying the polarization identity it is easy to see that π is in fact the orthogonalization measure for $(P_n)_{n\in\mathbb{N}_0}$, guaranteed by Favard's theorem. In particular, see [5], as a first result we have:

PROPOSITION 4.1. Let $(P_n)_{n \in \mathbb{N}_0}$ be an orthogonal polynomial sequence satisfying (4.3) and (4.4). Then

$$\operatorname{supp} \pi = \mathcal{S} \subseteq D_s = \{x \in \mathbb{R}: |P_n(x)| \le 1 \text{ for all } n \in \mathbb{N}_0\}$$
$$\subseteq [1 - 2a_0, 1].$$

We will now derive some sufficient conditions for $x \in \text{supp } \pi$. For this the next result plays a fundamental role throughout the remainder of this section.

PROPOSITION 4.2. Let $(P_n)_{n\in\mathbb{N}_0}$ define a polynomial hypergroup on \mathbb{N}_0 and $x\in D_s$. If for every $\varepsilon>0$ there exists some $\beta=(\beta(n))_{n\in\mathbb{N}_0}\in C_c(\mathbb{N}_0)$ with $\|\beta\|_2=1$ such that

$$||L_1\beta - P_1(x)\beta||_2 < \varepsilon, \tag{4.7}$$

then the P_2 condition is satisfied in $x \in D_s$. (The $|| . ||_2$ -norm is in $l^2(\mathbb{N}_0, m)$.)

Proof. We show that (4.7) implies the following property: Given $\varepsilon > 0$, $n \in \mathbb{N}$ there exists $\beta \in C_c(\mathbb{N}_0)$ with $\|\beta\|_2 = 1$ such that

$$||L_k\beta - P_k(x)\beta||_2 < \varepsilon \quad \text{for each } k = 0, 1, \dots, n.$$
 (4.8)

We use induction and assume that (4.8) holds for some $n \in \mathbb{N}$. Then

$$||L_{1}(L_{n}\beta) - P_{1}(x) P_{n}(x) \beta||_{2} \leq ||L_{1}(L_{n}\beta) - P_{n}(x) L_{1}\beta||_{2} + |P_{n}(x)| ||L_{1}\beta - P_{1}(x)\beta||_{2} \leq 2\varepsilon.$$

Now we apply the recurrence relation

$$P_1(x)P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + c_n P_{n-1}(x)$$

and obtain the estimate

$$||L_{n+1}\beta - P_{n+1}(x)\beta||_{2} = \left\| \frac{1}{a_{n}} L_{1}(L_{n}\beta) - \frac{b_{n}}{a_{n}} L_{n}\beta - \frac{c_{n}}{a_{n}} L_{n-1}\beta - \left[\frac{1}{a_{n}} P_{1}(x) P_{n}(x)\beta - \frac{b_{n}}{a_{n}} P_{n}(x)\beta - \frac{c_{n}}{a_{n}} P_{n-1}(x)\beta \right] \right\|_{2}$$

$$\leq \frac{1}{a_{n}} (2\varepsilon + b_{n}\varepsilon + c_{n}\varepsilon) = \frac{2 + b_{n} + c_{n}}{a_{n}} \varepsilon.$$

After an appropriate modification of the ε 's it is obvious that (4.8) is valid for n+1. \square

In view of our general result we get for polynomial hypergroups the following theorem.

THEOREM 4.2. Let $(P_n)_{n\in\mathbb{N}_0}$ define a polynomial hypergroup on \mathbb{N}_0 , and let $x\in D_s$. Then $x\in \operatorname{supp} \pi$, if and only if for every $\varepsilon>0$ there exists $\beta\in C_c(\mathbb{N}_0)$ with $\|\beta_2\|=1$ and

$$\|L_1\beta-P_1(x)\beta\|_2<\varepsilon.$$

Next we give a sufficient condition for $x \in \text{supp } \pi$. Let $\beta_n \in l^2(\mathbb{N}_0, h)$ be given by

$$\beta_n(k) = \frac{P_k(x) \chi_{\{0,\dots,n\}}(k)}{\left(\sum_{j=0}^n P_j^2(x) h(j)\right)^{1/2}}.$$
(4.9)

It is straightforward to see that $\|\beta_n\|_2 = 1$ and

$$L_{1}\beta_{n}(k) - P_{1}(x)\beta_{n}(k)$$

$$= \underbrace{g(1, k, k+1)}_{a_{k}}\beta_{n}(k+1) + \underbrace{g(1, k, k)}_{b_{k}}\beta_{n}(k) + \underbrace{g(1, k, k-1)}_{c_{k}}\beta_{n}(k-1) - P_{1}(x)\beta_{n}(k)$$

$$= 0$$

for all k = 0, 1, ..., n - 1.

For the sake of brevity let $\lambda_n(x) = \left(\sum_{k=0}^n P_k^2(x) h(k)\right)^{-1}$. Then we have

$$||L_1 \beta_n - P_1(x) \beta_n||_2^2$$

$$= \lambda_n(x) (|b_n P_n(x) + c_n P_{n-1}(x) - P_1(x) P_n(x)|^2 h(n) + |c_{n+1} P_n(x)|^2 h(n+1))$$

$$= \lambda_n(x) (|a_n P_{n+1}(x)|^2 h(n) + |c_{n+1} P_n(x)|^2 h(n+1))$$

$$= \lambda_n(x) a_n c_{n+1} (P_{n+1}^2(x) h(n+1) + P_n^2(x) h(n)).$$

For the latter equality we used the fact that $c_{n+1} h(n+1) = a_n h(n)$. Therefore from Theorem 4.2 we obtain:

PROPOSITION 4.3. Let $(P_n)_{n\in\mathbb{N}_0}$ define a polynomial hypergroup on \mathbb{N}_0 , and let $x\in D_s$. If

$$\liminf_{n \to \infty} \frac{P_n^2(x)h(n) + P_{n+1}^2(x)h(n+1)}{\sum_{k=0}^n P_k^2(x)h(k)} = 0$$

then $x \in \operatorname{supp} \pi$.

To give an example where this criterion works, consider orthogonal polynomials which are defined by the following recourrence coefficients in (4.1) and (4.2):

$$a_0 = 1, b_0 = 0$$

and

$$a_n = \begin{cases} \frac{\alpha - 1}{\beta^{\frac{\alpha}{1}}} & \text{for } n \text{ odd,} \\ \frac{\beta^{\frac{\alpha}{1}}}{\beta} & \text{for } n \text{ even.} \end{cases}$$

We call the corresponding orthogonal polynomials Karlin-McGregor polynomials, since they were first considered in [4]. Applying the recursion formula of [5] one can determine the linearization coefficients g(n, m; k) explicitly. Here we only state that the nonnegativity of all g(n, m; k) is fulfilled if $\alpha \ge 2$ and $\beta \ge 2$. The weights h(n) are h(0) = 1 and for $n \ge 1$,

$$h(n) = \begin{cases} \alpha(\alpha - 1)^{(n-1)/2} (\beta - 1)^{(n-1)/2} & \text{for } n \text{ odd,} \\ \beta(\alpha - 1)^{n/2} (\beta - 1)^{n/2 - 1} & \text{for } n \text{ even.} \end{cases}$$

Furthermore applying methods of [8] (in particular property (T)) one can easily deduce that $D_s = [-1, 1]$. Now we consider some points $x \in [-1, 1]$ for which Proposition 4.3 works. Let x = 0. It is easily seen that $P_n(0) = \left(\frac{-1}{\alpha - 1}\right)^{n/2}$ for n even and obviously $P_n(0) = 0$ for n odd. Hence

$$\sum_{n=0}^{\infty} P_n^2(0)h(n) = 1 + \frac{\beta}{\beta - 1} \sum_{k=1}^{\infty} \left(\frac{\beta - 1}{\alpha - 1}\right)^k.$$

For $\alpha > \beta \geq 2$ we have

$$\sum_{n=0}^{\infty} P_n^2(0)h(n) = \frac{\alpha}{\alpha - \beta}$$

and hence $0 \in \text{supp } \pi$. Moreover, by Theorem 4.1 we get $\pi(\{0\}) = \frac{\alpha - \beta}{\alpha}$ provided $\alpha > \beta$. In order to determine $P_n(x)$ in general we observe that

$$x^{2} P_{2n}(x) = r P_{2n+2}(x) + s P_{2n}(x) + t P_{2n-2}(x)$$

and
$$P_0(x) = 1$$
, $P_2(x) = \frac{\alpha}{\alpha - \beta} x^2 - \frac{1}{\alpha - 1}$, where $r = \frac{(\alpha - 1)(\beta - 1)}{\alpha \beta}$, $s = \frac{(\alpha - 1) + (\beta - 1)}{\alpha \beta}$, $t = \frac{1}{\alpha \beta}$.

Now we can apply the method of difference equations with constant coefficients to first calculate $P_{2n}(x)$ and then $P_{2n+1}(x)$ for fixed $x \in]-1$, 1[. It is well known that

$$P_{2n}(x) = c\lambda_1^n + d\lambda_2^n$$
, where $\lambda_{1,2} = \frac{(x^2 - s) \pm \sqrt{(x^2 - s)^2 - 4rt}}{2r}$,

provided $(x^2 - s)^2 \neq 4rt$. If $(x^2 - s)^2 = 4rt$ we have

$$P_{2n}(x) = \lambda^n (1 + nd)$$
, where $\lambda = \frac{x^2 - s}{2r}$.

To be brief we only discuss the case where $x^2 = s \pm 2\sqrt{rt} = \frac{1}{\alpha\beta} \left(\sqrt{\alpha-1} \pm \sqrt{\beta-1}\right)^2$. In that case we get $\lambda = \frac{1}{\sqrt{(\alpha-1)(\beta-1)}}$. Without calculating the constant d explicitly we see that $P_{2n}^2(x)h(2n) \sim n^2$. Inserting $P_{2n}(x)$ into the recurrence system we also obtain $P_{2n+1}^2(x)h(2n+1) \sim n^2$. Therefore Proposition 4.3 implies that $\pm \frac{1}{\sqrt{\alpha\beta}} \left(\sqrt{\alpha-1} + \sqrt{\beta-1}\right)$ and $\pm \frac{1}{\sqrt{\alpha\beta}} \left(\sqrt{\alpha-1} - \sqrt{\beta-1}\right)$ are elements of supp π . As already sketched above we have $x \in \text{supp } \pi$ for those x such that $(x^2-s)^2 < 4rt$.

As already sketched above we have $x \in \operatorname{supp} \pi$ for those x such that $(x^2 - s)^2 < 4rt$. Hence we see that $[-\frac{1}{\sqrt{\alpha\beta}}(\sqrt{\alpha-1} + \sqrt{\beta-1}), -|\frac{1}{\sqrt{\alpha\beta}}(\sqrt{\alpha-1} - \sqrt{\beta-1})|]$ and $[\frac{1}{\sqrt{\alpha\beta}}(\sqrt{\alpha-1} - \sqrt{\beta-1}), \frac{1}{\sqrt{\alpha\beta}}(\sqrt{\alpha-1} + \sqrt{\beta-1})]$ are subsets of $\operatorname{supp} \pi$. If, in addition, $\alpha > \beta$ then $0 \in \operatorname{supp} \pi$.

Choosing $\beta_n(k)$ once more as in (4.9) we can derive a further result.

PROPOSITION 4.4. Let $(P_n)_{n\in\mathbb{N}_0}$ define a polynomial hypergroup on \mathbb{N}_0 and let $x\in D_s$. Assume that $\liminf_{n\to\infty}a_n=0$ or $\liminf_{n\to\infty}c_n=0$. If

$$\left\{ \frac{P_{n+1}^{2}(x)h(n+1)}{\sum_{k=0}^{n} P_{k}^{2}(x)h(k)} : n \in \mathbb{N}_{0} \right\}$$

is bounded, then $x \in \operatorname{supp} \pi$.

We close this paper with an example which shows that the condition

$$\lim_{n \to \infty} \frac{P_n^2(x)h(n)}{\sum_{k=0}^n P_k^2(x)h(k)} = 0$$

is not necessary for having $x \in \text{supp } \pi$. For that we consider the little q-Legendre polynomials $(P_n)_{n \in \mathbb{N}_0}$; see [1], p. 187. To have $P_n(1) = 1$ we have to make a slight modification by putting 1 - x for x. For fixed $q \in]0$, 1[the little q-Legendre polynomial $P_n(x) = P_n(q; x)$ are given by

$$P_1(x)P_n(x) = a_n P_{n+1}(x) + b_n P_n(x) + c_n P_{n-1}(x), \quad n \ge 2$$

$$P_0(x) = 1, \quad P_1(x) = (q+1)x - q$$

where

$$a_n = q^n \frac{(1+q)(1-q^{n+1})}{(1-q^{2n+1})(1+q^{n+1})}$$

$$b_n = \frac{(1-q^n)(1-q^{n+1})}{(1+q^n)(1+q^{n+1})}$$

$$c_n = q^n \frac{(1+q)(1-q^n)}{(1-q^{2n+1})(1+q^n)}.$$

It is known (see [1]) that the $(P_n)_{n\in\mathbb{N}_0}$ define a polynomial hypergroup on \mathbb{N}_0 and $\sup \pi = \{1\} \cup \{1-q^{2k}: k \in \mathbb{N}_0\}$. Furthermore $\frac{h(n)}{h(n-1)} \to \frac{1}{q}$. Hence we see that

$$\frac{h(n)}{\sum_{k=0}^{n} h(k)} \longrightarrow 1 - q,$$

but $1 \in \operatorname{supp} \pi$.

The contributions of Section 4 are strongly connected with results of R. Szwarc; cf. [11], [12], [13].

REFERENCES

- [1] W. R. Bloom and H Heyer, *Harmonic analysis of probability measures on hypergroups*, deGruyter, Berlin, 1995.
- [2] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
- [3] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math. 18 (1975), 1-101.
- [4] S. Karlin and J. McGregor, Random walks, Illinois J. Math. 3 (1959) 66-81.
- [5] R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. 3 (1983),185-209.
- [6] ______, Bochner theorems for hypergroups and their application to orthogonal polynomial expansions, J. Approx. Theory 37 (1983), 311–325.
- [7] R. Lasser and J. Obermaier, "On Fejér means with respect to orthogonal polynomials: A hypergroup theoretic approach" in *Progress in Approximation Theory*, Academic Press, Boston, 1991, pp. 551– 565.

- [8] R. Lasser, Orthogonal polynomials and hypergroups II the symmetric case, Trans. Amer. Math. Soc. 341 (1994), 749–770.
- [9] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. vol. 213, 1979.
- [10] M. Skantharajah, Amenable hypergroups, Illinois J. Math. 36 (1992), 15-46.
- [11] R. Szwarc, A lower bound for orthogonal polynomials with an application to polynomials hypergroups, J. Approx. Theory 81 (1995), 145–150.
- [12] _____, Uniform subexponential growth of orthogonal polynomials, J. Approx. Theory 81 (1995), 296–302.
- [13] ______, A counterexample to subexponential growth of orthogonal polynomials, Constr. Approx. 11 (1995), 381–389.
- [14] M. Voit, Factorization of probability measures on symmetric hypergroups, J. Austral. Math. Soc. Ser. A 50 (1991), 417–467.

Frank Filbir, Institute for Biomathematics and Biometry, GSF – National Research Center for Environment and Health, Ingolstädter Landstr. 1, D–85764 Neuherberg, Germany

filbir@gsf.de

Rupert Lasser, Institute for Biomathematics and Biometry, GSF – National Research Center, for Environment and Health, Ingolstädter Landstr. 1, D–85764 Neuherberg, Germany

lasser@gsf.de