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REITER’S CONDITION P2 AND THE PLANCHEREL
MEASURE FOR HYPERGROUPS

FRANK FILBIR AND RUPERT LASSER

ABSTRACT. In this paper we study the Reiter P2 condition forcommutative hypergroups and give necessary
and sufficient conditions for x supp n’, where zr is the Plancherel measure. Finally we apply general
results to characterize supp rr in the case of polynomial hypergroups.

1. Introduction

Let (P’)nro be a sequence of polynomials on the real line satisfying a recurrence
formula

x Pn (x) otn+l Pn+ (x) + " Pn (x) + Otn Pn- (x), (1.1)

where on > 0, for n 6 N, po(x) 1 and P-1 (x) 0. By the Favard theorem there
exists a probability measure zr on IR such that the polynomials Pn are orthonormal
with respect to r. In general it is rather difficult to derive from properties of p" (x)
and t’,/3,, whether some real number x is contained in supp rr or not. If
belongs to the Nevai class A/[ (b a), i.e., limn Cn

a and limn--, fl" b, and if
a > 0 then by a theorem of Blumenthal we have supp rr [b a], [b + a] LI S, where
S is bounded and countable with only possible accumulation points in {b 4- a} (see
[9], p. 23). If one assumes in addition that the polynomials (P’)nro give rise to a
convolution structure on/(N0) (i.e., they induce a polynomial hypergroup structure
on No (see [5], [8]) and ifa 1, b 0 one has supp zr [-1, 1] (see [14] and [8]).
In the latter case Banach algebra techniques are applied, where the algebra structure is
inherited from the hypergroup structure on No. In [10] amenability of hypergroups is
investigated (a concept of harmonic analysis). Among many other results connected
with amenability it is shown that the constant character 1 is contained in the support of
the Plancherel measure if, and only ifthe Reiter condition (P2) is satisfied. Translating
this result to orthogonal polynomials inducing convolution structure on (No) this
yields a characterization of 1 6 supp zr. The purpose of this paper is first to initiate
a systematic study of a shifted Reiter condition (P2) on commutative hypergroups
and second to apply these results to characterize supp :r in the case of orthogonal
polynomials that induce a hypergroup on No.
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2. Preliminaries

Througout this paper, K will denote a commutative hypergroup, see [1] (same as
convo in Jewett [3]). The following notations and basic results of harmonic analysis
on K will be applied in the sequel. The convolution of two elements x, y (5 K is
denoted by w(x, y), and the involution by J.

Let Cc(K) be the space of all continuous functions with compact support. Given
y (5 K and f (5 Cc(K) the translation Lyf of f is given by

Lyf(x) og(y, x)(f).

A Haar measure on K is a regular positive Borel measure rn on K, rn - 0 such
that fr f(x)dm(x) fr Lyf(X)dm(x) for all f (5 Cc(K) and y (5 K. By the
commutativity of K the existence of a Haar measure rn on K is ensured. A fixed Haar
measure on K is denoted throughout by m. The dual space K is defined by

" {a (5 Ct’(K): a O, o(x, y)(a)= a(x)a(y), a(x") a(x)},
where Cb(K) is the space of all bounded continuous functions on K. For f (5

LP(K,m) let f* (5 LP(K,m) be given by *(x) f(’). Similar as for locally
compact Abelian groups one can identify K with the symmetric structure space
As(L(K, m)) of the Banach* algebra L(K, m); see [3] or [1]. The topology of
convergence on. compacta on K is equal to the pology a(L(K, rn), L (K, rn))
restricted to K. Equipped with this topology K is a locally compact space. The
Fourier transform of f (5 L (K, rn) is defined by

f (ot) f(x) or(x) drn(x),

For f (5 LP (K, rn), 1 < p < cx, one can define the translation Lyf of f with y (5 K
by putting

Lyf(X) og(y, x)(f).

Based on that translation one defines the convolution f g, where g (5 L (K, rn) and
f (5 LP(K, rn), 1 < p < oo by

f g(x) =ft f(Y) Lg(x) drn(y).

We have f g (5 LP (K, rn) and due to the translation invariance of the Haar measure
one has in the case of f, g (5 L (K, rn),

Lxf(y) g(y) din(y) ftc f(Y) Lg(y) drn(y).
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Every f LI(K, m) defines a bounded linear operator Lf on the Hilbert space
L2(K,m) by Lf(h) f.h, where h L2(K,m). The mapping f Lf,
L (K, m) B(L2(K, m)) is called regular representation of K. It is an injective
mapping and satisfies llLfll < Ilfll, Lf,g Lf o Ls and (Lf)* Lf..
Now we introduce

S {ct ’" [f(ct)[ < IIL, for every f LI(K,m)}.
S is a nonvoid closed subset of ’, and for each f LI(K, m) one has liLy
sup If(c)l. To obtain this one can apply the fact that. $ is homeomorphic to
the structure space A (A), where A is the commutative C*-algebra A cl{Lf: f
LI(K, m)}, the closure taken in the Banach space B(L2(K,m)). One should note
that K in general does not bear a dual hypergroup structure, which makes harmonic
analysis on K more delicate. The proof of the next result can be found in [3] or [1].

THEOREM 2.1 (Plancherel-Levitan). Let K be a commutative hypergroup. Then
there exists a unique regular positive Borel measure r on K with

If (x)l dm(x) f If(a)l2 dzr(c)

for all f L I(K, m) A L2(K, m). The support ofzr is equal to S.
The set {f’. f Cc(K)} is dense in L2(", zr). rr is called Plancherel measure.

In the next section we will give several equivalent conditions for u

3. Characterization of supp 7r

We start by recalling some further notions ofharmonic analysis. For f L1 (-, r)
define the inverse Fourier transform

f(x) f. f(ct) ct(x) art(or)

for x e K. A function tp Cb(K) is called positive definite if for all choices of
n N, c c2 Cn Candxl,x2,...,xn K

C O)(Xi, j)(9) >" O.
i,j=l

Important examples of positive definite functions are c K or f f*, where f
L2(K, m). We mention that one can prove a Bochner theorem for commutative
hypergroups; see [3] or [6]. We apply the following inversion result; see [6].
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PROPOSITION 3.1. If o LI(K,m) tq Cb(K) is positive definite then
LI(, zr) and ()v 9.

We now introduce a concept very useful for investigating supp zr. In the case of
ot 1 it has already been studied in the context of hypergroups, see 10], and in the
group case closely related to the notion of amenability.

Definition 3.1. Let ct 6 K. We say that the P2 condition is satisfied in ct if for
each e > 0 and every compact subset C C K there exists some g Co(K) such that
[Igll2 1 and

Lg t (y) g 2 < E for all y e C.

Now we characterize those ct K which belong to ,9 supp zr. The equivalence of
the conditions (i) and (ii) in the following theorem is already shown by M. Voit; see

], Corollary 4.1.12.

THEOREM 3.1. Let ot K. Then thefollowing conditions are equivalent:
(i) ct ,9 supp
(ii) There exists a net (j)il cc. Cc(K), IIf/l12 I such that j f.* converges to

ot uniformly on compact subsets of K.
(iii) The P2 condition is satisfied in

Proof. First we show that (i) implies (ii). Let e > 0, C

_
K be eompact. Choose

a neighborhood U c__ K of ct such that 0 < zr(U) < oo and

U

_
{fl K: [ct(x)- fl(x)l < e/2 for allx C}.

Define h Xv/rr(U) Ll(", zr). Then for all x 6 C we have

’(x)-ct(x)l 1 fv fur(U)
fl(x) dyr(fl) or(x) dzr(fl) < /2.

1/2 1/2For h Xu/rr(U) there exists some f Cc(K) such that IJ.f h/2112 < e/4;
cf. Theorem 2.1. Since IIh/2112 1 we can assume that Ilfl12 Ilfl12 1.
Furthermore we get

II(f * f*Y’- hll Ifi] 2 hll.:,. If/) hl/2(fl)l [lfi](/5) + hl/2(/)l drr(/)

_< Ill’- h/alla (llfla / IIh/alla) 21If’- h/alla < /2.

Applying Proposition 3.1, for x K we obtain

I"
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and hence If * f* (x) c (x)l < e for every x C.
In order to prove that (ii) implies (iii) we again consider a compact set C _c K.

Then the convolution of C with itself, C C := x,rsc suppo)(x, y), is also a
compact subset of K; see [3] or [1]. Let e > 0. Then by (ii) there is a function

f a__ Cc(K) with Ilfllz 1 and

If * f*(x)- a(x)l < e for all x C C.

We can assume that e 6 C and C C. Since for all x, y 6 C,

ILy(f f*)(x) or(y) c(x)l < fir If * f*(z) ct(z)l do)(y, x)(z) < e

and If * f*(x)or(y) -ot(x)ot(y)l < e we obtain

ILy(f f*)(x)- f f*(x)ot(y)l < 2e,

and hence

ir
L"f(z) [Lyf(Z) or(y) f(z)] am(z)

fK f(z) [gx(Lyf)(z) or(y) Lxf(z)] dm(z)

Ly(f f*)(x) -or(y) (f f*)(x)[ < 2e.

In a similar way for y C and each x K we get

ot(’}’f’’z) [Lyf(z) ot(y) f(z)] am(z)

Ic(x)l If * f*(Y)- ot(y)l < e.

For y " C we therefore have

[ILyf c(y)f[l [Lyf(Z) or(y) f(z)] [Lyf(Z) or(y) f(z)] drn(z)

_< 3e;

thus the implication is shown.
It remains to show that (iii) implies (i). Assume that the P2 condition is satisfied

in ct. We will prove that

If(ct)l _< sup {llf * gl12" g e L2(K, m), Ilgl12 1} for every f Cc(K), f O.

Since Co(K) is dense in L (K, m), this condition implies that ct S.
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Let f e Cc(K), f O. By the P2 condition there exists a function g e L2(K, m),
IIg 112 1 such that

II/_.’g c(y)gl12 < s/llfll

for all y 6 supp f. Since

f g(x) f(ot) g(x) f(y) Lg(x) -or(y) g(x) din(y),

it follows that

IIf * g fc) gl[2 <- fr If(y)l" llLg -if(Y) gl12 dm(y) < s.

Thus we have the estimate

If(c)l If(ce)l. Ilgl12 < e + IIf * gl12,

which obviously implies

If"()l _< sup {llf * gl12: g z2(g, m), Ilgl12 1}.

Remark. In the case of ct 1 K we can assume that the functions g Cc(K)
in Definition 3.1 are nonnegative. In fact one can proceed as in the proof of Lemma
4.4 of [10] to construct nonnegative fi, I, in condition (ii) of our Theorem 3.1,
which also yields nonnegative functions for the P2 condition in a 1.

4. Application to orthogonal polynomials

Now we apply the general result of Section 3 to polynomial hypergroups. In
order to do this it seems to be useful to recall some basic facts about polynomial
hypergroups.

Consider a polynomial sequence (Pn)nr0 defined by a recurrence relation of the
form

P(x) Pn(x) an Pn+l(X) "l" bn Pn(x) + cn Pn-(x) (4.1)

for n N and starting with

Po(x) 1, P1 (x) __1 (x bo) (4.2)
ao

with an . \{0} for all n N0, Cn - I[\{0} for all n 6 N and bn . for all n N0.
A well-known result, usually referred to as Favard’s theorem, states that (Pn)nro is
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an orthogonal polynomial sequence with respect to a certain probability measure
on the real line; see [2].
We impose two assumptions on (Pn)nr%. A minor one is

Pn (1) 1 for all n No (4.3)

and a more restrictive one is

g(m, n; k) > O, (4.4)

where g(m, n; k) are the linearization coefficients of the products

n+m
em (x) Pn (x) Z g(m, n; k) ek (x). (4.5)

k=ln-ml

,K-,n+mNote that Pn(1) 1 impliesao+b0 1 and z..,k--In-ml g(m,n; k) = 1. Furthermore
we have

P2n (X art(x) g(n, 0).n;

We write hn g(n,n; 0)-. Hence p,(x) /h(n)Pn(x) is the orthonormal
version of Pn (x). There is an abundance oforthogonal polynomial sequences (P,),r0
satisfying (4.3) and the crucial nonnegativity condition (4.4); see [5], [6] and [8].

By means of coefficients g(m, n; k) (that are in one-to-one correspondence to

(P,),ro) we define a convolution we on No
n+m

cop(m, n) Z g(m, n; k) e,,
k=ln-ml

where ek is the point measure of k 6 No. With the identity mapping as involution,
i.e., h n, and the discrete topology the natural numbers N0 are a commutative
hypergroup, called polynomial hypergroup; see [5].

The translation now reads as follows"

n+m
Ln[3(m) g(m, n; k) ,(k).

k=ln-ml

The dual space No can be identified with

Ds {x . : (Pn(x))nr% is a bounded sequence} (4.6)

by the mapping x --+ Otx, Ds No, where Otx(n) Pn(x). Direct consequences
(see [5]) are:

(i) Ds {x e : IPn(X)l 1 for all n No}.
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(ii) Ds is compact.
(iii) Ds c_ [1 2a0, 1].

A Haar measure m on No is the counting measure on N0 with weights h(n) on the
points n No. The theorem of Plancherel-Levitan has in that case the form:

THEOREM 4.1. There exists an unique probability measure r on Ds such that

Id(n)l 2 h(n) fo I(x)12 art(x)
nNo

for every d (d(n))nro /l(N0, m), where l(x) Y’],ro Pn(x) d(n) h(n).

Applying the polarization identity it is easy to see that zr is in fact the orthogonal-
ization measure for (Pn)nNo, guaranteed by Favard’s theorem. In particular, see [5],
as a first result we have:

PROPOSITION 4.1.
(4.3) and (4.4). Then

Let Pn)nro be an orthogonalpolynomial sequence satisfying

suppzr =,9

___
Ds {x R: Ien(x)l lforalln 6N0}_

[1-2a0, 1].

We will now derive some sufficient conditions for x 6 supp zr. For this the next result
plays a fundamental role throughout the remainder of this section.

PROPOSITION 4.2. Let (Pn)nro define a polynomial hypergroup on No and x
Ds. Iffor every e > 0 them exists some (fl(n))nNo Cc(lo) with 11/3112 1
such that

L1 P1 (x) ,8 2 < e,

then the P2 condition is satisfied in x Ds. (The ll2-norm is in/2(No, m).)

(4.7)

Proof We show that (4.7) implies the following property: Given e > 0, n 6 N
there exists/ Cc(NO) with 11/ 112 1 such that

Lk/3 P, (x)/3 2 < 8 for each k 0, 1 n. (4.8)

We use induction and assume that (4.8) holds for some n 6 N. Then

IILI(L,,/)- P(x) P,,(x)/ll2 < IIL(Ln/)- Pn(x) L,8112

+ IP,,(x)l IIL/- Pl(X)/ll2
< 2e.
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Now we apply the recurrence relation

P1 (x) Pn (x) an Pn+ (x) + bn Pn (x) + cn Pn-1 (x)

and obtain the estimate

ILL,+1/3,- P+(x)ll=
1

LI(L,)- b-2- Ln- c’2-n Ln-an an an

[ 1
PI(X) Pn(x)

bn
Pn(x)’ Cn Pn-l(X)]an an an

1 2 -+- bn "[- Cn< (2e + bne + cnt) .
an an

After an appropriate modification of the e’s it is obvious that (4.8) is valid for
n+l.

In view of our general result we get for polynomial hypergroups the following
theorem.

THEOREM 4.2. Let (Pn)nNo define a polynomial hypergroup on No, and let x
Ds. Then x supp n’, if and only iffor every > 0 there exists Cc(NO) with
11/3211 and

IlLa/3- P(x)llz < .
by

Next we give a sufficient condition for x 6 supp zr. Let/3n z (110, h) be given

Pk(x) XIo hi(k)
/3n (k) 1/2" (4.9)

--o P(x) h(j)

It is straightforward to see that II/. 112 1 and

Ln(k)- P(x)n(k)
g(1, k, k + 1) n(k + 1) + g(1, k, k)

ak bk

+ g(1, k,k- 1)/3n(k 1) Pl(X)n(k)

Ck

=0

for all k 0, 1 n 1.
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For the sake of brevity let )n(X) (=0 P(x) h(k)) -1. Then we have

IIZ n el(x) n 2
2

,n(x)(lbn Pn(x)-t-Cn Pn-l(X)- PI(x) Pn(x)l2 h(n)

-[-]Cn+l Pn(x)]2 h(n + 1))
)n(X)(lan Pn+l(X)l2 h(n) + ICn+l Pn(X)I2 h(n + 1))
)n(X) an Cn+l (P2+l (x) h(n + 1) + P2n (x h(n))

For the latter equality we used the fact that Cn+ h(n + 1) an h(n). Therefore from
Theorem 4.2 we obtain:

PROPOSITION 4.3.
x -Ds. lf

Let (en)n.No define a polynomial hypergroup on No, and let

liminf P2n (x)h(n) + Pn2+l(X)h(n + 1)
0n 2,,-oo -,=o Pk (xlh(k)

then x supp zr.

To give an example where this criterion works, consider orthogonal polynomials
which are defined by the following reccurrence coefficients in (4.1) and (4.2):

and
a0 1, b0 0

a- for n odd,
an for n even.

We call the corresponding orthogonal polynomials Karlin-McGregor polynomials,
since they were first considered in [4]. Applying the recursion formula of [5] one can
determine the linearization coefficients g(n, m; k) explicitly. Here we only state that
the nonnegativity of all g(n, rn; k) is fulfilled if a > 2 and > 2. The weights h(n)
are h (0) 1 and for n > 1,

h(n) {ct(a 1)(n-1)/2(fl- 1) (n-l)/2

fl(a- 1)n/2(fl- 1)n/2-1
for n odd,
for n even.

Furthermore applying methods of [8] (in particular property (T)) one can easily
deduce that Ds [-1, 1]. Now we consider some points x e [-1, 1] for which

Proposition 4.3 works. Let x 0. It is easily seen that Pn (0) (--_)n/2 for n even
and obviously P, (0) 0 for n odd. Hence

oo fln=0 P2n(O)h(n) 1 -t-
fl 1 k=l

t- 1
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For ct >/3 > 2 we have

P2n(O)h(n)=
n=0

Ot

and hence 0 supp r. Moreover, by Theorem 4.1 we get zr({0}) provided
ct >/5. In order to determine Pn (x) in general we observe that

x2 p2n(X) r P2n+2(x) -t- s P2n(X) "- P2n-2(x)

and Po(x) 1, P2(x) a-t X2 a-l’l where r (-1)(=1) $ (ot-1)+(fl-1)aS
t= -.
Now we can apply the method of difference equations with constant coefficients to
first calculate P2n (x) and then P2n+l (x) for fixed x ] 1, [. It is well known that

en(X) cX7 + where 1,2
(X2 S) q" (X’2 S)2 --4rt

2r

provided (x2 s)2 5 4rt. If (X2 S)2 4rt we have

P2n (X) )Ln(1 +nd), where . X2 S

2r

To be brief we only discuss the case where x2 =s 4-27=+ (/ct 14-//3 1) 2.
Without calculating the constant d explic-In that case we get /(a21)(-1)"

itly we see that P22n(x)h(2n) n2. Inserting P2n(x) into the recurrence system
we also obtain 2 n2.P2n+(x)h(2n + 1) Therefore Proposition 4.3 implies that

4rg (/oe 1 + 4/3 1) and 4---L-1 (/c 1 //3 1) are elements of supp

As already sketched above we have x 6 supp zr for those x such that (x2 s)2 < 4ft.
Hence we see that [-(/c 1 + //3 1),-I(/u- 1 /1 1)1] and

[.,_._ (/u 1 //3 1), -(/u + //3 1) are subsets of supp zr. If, in

addition, u >/3 then 0 supp
Choosing/5, (k) once more as in (4.9) we can derive a further result.

PROPOSITION 4.4. Let (Pn)nro define a polynomial hypergroup on No and let
x Ds. Assume that lim infn__,oo an 0 or liminfnoo Cn O. If

2en+l (x)h(n + 1)

Z=o P(x)h(k) n6No}
is bounded, then x
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We close this paper with an example which shows that the condition

lim P2n (x)h(n)
no :=o P2*(x)h(k)

=0

is not necessary for having x e supp zr. For that we consider the little q-Legendre
polynomials (Pn)nr0; see [1], p. 187. To have P,, (1) 1 we have to make a
slight modification by putting 1 x for x. For fixed q ]0, the little q-Legendre
polynomial P(x) Pn(q; x) are given by

PI(X)Pn(x) anPn+l(X) "" bnPn(x) + cnPn-l(X), n >_ 2

Po (x) 1, P (x) (q + 1)x q

where

(1 + q)(1 qn+l)
an qn

(1 q2n+l)(1 + qn+l)
(1 qn)(1 qn+l)

b,,
(1 + qn)(1 + qn+)

(1 + q)(1 q")
Cn qn

(1 q2n+)(1 + qn)

It is known (see [1]) that the (P,),,sr0 define a polynomial hypergroup on N0 and
supp zr 1 U 1 q2k. k 6 N0}. Furthermore h(n)

h(n-1) -. Hence we see that

h(n)

"=o h(k)

but 1 supp r.
The contributions of Section 4 are strongly connected with results of R. Szwarc;

cf. [11], [12], [13].
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