A CONVERSE TO THE DOMINATED CONVERGENCE THEOREM

BY
Davip Brackweri! axp Lester E. Dusing

1. Introduction and summary

On a probability space (@, ®, P), let {f.,n = 1,2, ---} be a sequence of
nonnegative random variables in L; such that f, — f ¢ L; with probability 1,
and define ¢ = sup,f.. If geL;, the Lebesgue dominated convergence
theorem asserts that E(f,) — FE(f). More generally, as noted by Doob
[1, p. 23], if ¢ € Ly , then for any Borel field ® contained in @,

(1) E(fu| ®) = E(f| ®) a.e.

If one extends this result in a minor manner, Lebesgue’s condition ¢ e L;
is not only sufficient but necessary, as the following converse to the dominated
convergence theorem asserts.

TevorEM 1. Iff, 2 0,f, = fae., fueli,feli,and g = sup,fae¢Ly,
there are, on a sustable probability space, random variables {f5 ,n = 1,2, - }, %,
and a Borel field @ such that f*, ff |, fx , -+ have the same joint distribution as
f’fl,f27 Tt and
(@) PE(fz]e) —> E(f*|e)} = 0.

In view of this result, it is of interest to find conditions which will ensure
that g eL;. As a special case of interest, let h be a nonnegative random
variable in L; , let ®, be a monotone sequence of Borel fields contained in ®,
and let f, = E(h| ®,). Doob [1, p. 317] has shown that if & log h € Ly , then
also g = sup, fn € Ly . It turns out that the condition 4 log & € L, is necessary,
as well as sufficient, in the following sense:

TaEOREM 2. Ifh = 0,h € L1, hlog h ¢ Ly, there are, on a suitable probability
space, a random variable K* with the same distribution as h and a monotone se-

quence Gy of Borel fields, which can be chosen either increasing or decreasing, for
which

(3) g = sup, BE(h* | ®%) ¢ L, .

Theorem 2 will be an immediate consequence of the following result, which
gives sharp upper bounds on the distribution of g*, rather than only informa-
tion about the expectation of ¢* as in Theorem 2.

TurorEM 3. Let k¥ be any nonnegative random variable in L, , and let h be
the (essentially unique) nonincreasing function on the unit interval (0, 1] whose
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distribution, with respect to Lebesgue measure m on (0, 1], is the same as that of
k*. Define g on (0, 1] by

(4) mw=%fmwa

Then

(a) for any monotone sequence ®, of Borel fields contained in ®, and any
A >0,

(5) P{g* > N = mig > N,

where g* = sup, E(h* | ®,),
(b) for every € > 0 there is an increasing sequence C, of Borel fields in the
untt interval X for which

(6) Plg** = ke =mig=ke fork=0,1, 2,---,a’ndg** =g—c¢

where ¢** denotes sup, E(h|@,), and

(¢) for every € > 0 and every decreasing sequence of real numbers
{Qu,n=1,2,---} with0 = Q, = 1 and Q. — 0 as n — =, there are, on a
suttable probability space, a random variable f with the same distribution as h
and a decreasing sequence D, of Borel fields such that for every positive integer k,

(7) Plg, = ke} = Qxmig = kej,
where g1 = sup, E(f | D.).

The proof that Theorem 3 implies Theorem 2 will use the following result
of Hardy and Littlewood [2, p. 99]: For any nonnegative monotone decreasing
function h on (0, 1), either h log h, h(t) log g(t), and g are all in Ly, or none is.

Say that a distribution p on the real line dominates a distribution » if
w(z, ©) = v(x, ©) forallz. Theorem 3(a) asserts that for any nonnegative
K* in L, , the distribution of g, denote it by u, dominates that of sup, E[L* | ®,)
for any monotone increasing or decreasing sequence of Borel fields ®, . Part
(b) asserts that u is, in a very strong sense, best possible for increasing ®, .
Part (¢) asserts that the same distribution u is best possible for decreasing
®,. , though in a somewhat weaker sense.

Inequality (5) has the following consequence. Consider a fair gambling
system, which terminates after N plays, and in which the bettor is not allowed
credit, i.e., a sequence Xo, X1, Xz, - -+ , Xy of nonnegative random variables
which form a martingale; X is the bettor’s fortune after & plays, and for
simplicity let X, be constant. Suppose the bettor is allowed to choose, in
advance of play, either of the following options:

Option 1. He uses the system and, at the end is paid, not his final fortune
Xuw, but the largest fortune ¥ = max (Xo, -++, X») he ever had in the
course of play.

Option 2. He uses the system, achieving a terminal fortune Xy . If
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Xy is as high as possible, he is given Xy . If not, he is given his original
fortune X, and tries the system repeatedly until a final fortune Z is obtained
which (strictly) exceeds the final fortune Xy on his first attempt. He is
then given Z.

Though the distribution of Z need not dominate that of Y, it turns out
that Option 2 is always better, in the sense that E(Z) = E(Y).

One final easy observation. For any nonnegative martingale X, - -+ , Xy,
E(max(X;, -+, Xy)) = NE(X;). This bound is best possible in that for
every nonnegative X; with finite expectation and every ¢ > O and N = 1,
there is a nonnegative martingale, X7 , ---, X¥, where X; has the same
distribution as X , and for which E(max(X3 , .-+, X%)) > NE(X;) — e.

2. Proof of Theorem 1

The Borel field € will be the smallest field with respect to which some
random variable Z is measurable. We first reduce the theorem to the special
case in which each f, has only two values, 0 and v, > 0, and at every sample
point exactly one f, is positive. Thus, if p, = P{f. = v.}, we have 0 < p, < 1,
an =1,f=0,E(g) = annvn = .

To achieve this reduction, write

F, = max(f, — £,0), G, = min(f, — f, 0).
Then F, =2 0, FrelL,,
SUpp Fn =2 ¢ — feln, F,—0 ae.,
sup | Ga | = feLs, G,— 0 ae.
For any Borel field @, it follows from (1) that E(G,. | €) — 0 a.e., so that
P{E(fu|l€) — E(f|€)} = PIE(fa — f|€) — 0}
= P{E(F, + G.| @) — 0} = P{E(F,|e)— 0.

Thus if we find, enlarging the probability space if necessary, a Borel field
@ for which P{E(F,|@) — 0} = 0, it will follow that

PlE(fa|lC) — E(f| C)} = 0.

Thus we have reduced the theorem to the special case of the F, , i.e., to the
case f = 0.
Suppose now that f = 0. Denote by A, the event

rizg—1,fi<g—1 for i <K.

The A are disjoint, and D, P(4;) = 1. Choose a simple function (i.e.,
one with only finitely many values) s; such that s, vanishes off Ax,0 = s = f
on Ax, and

1
E(s) = fA fde—Ek.
k
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Then supy sk = 2 &S, SO that
Esups, = 2 E(s) = Zf fodP — 1
k k Ap

2> [ gaP—2=H@) —2= «.
k Ap
Since sy = fi, for any e,

P{E(s;| @) >0} =0 implies P{E(fi|€)—0} =0,

so that we have reduced the theorem to the case of the s;, i.e., the case in
which f = 0, each f, is simple, and at each sample point at most one f, is
positive. Starting from this case we represent each f, as the sum of a finite
number of nonnegative functions, each having only two values, one of which
is 0, and no two of which are simultaneously positive. Rearranging these
functions into a single sequence, omitting those which are 0 with probability
1 and, if the set B on which all these functions vanish has positive probability,
taking the indicator [ as an additional function, yield a sequence fi, fa, - - -
with the properties stated at the beginning of the section, and the reduction
is complete. We now prove the theorem in the special case.

Let k be the positive integer such that 1 < 2P, < 2, and let S,,
n=1,2 ---,denote the set of integers ¢ = 2 for which 2" < »v; < 2",
Define:

Tn = Dies, Pi, ty = 1o 4 27D,
P= 2onTn = DiesDi,
where S = U S, = {f& i = 2and v; = 2k+1};
t= 2t

r 4+ 27"

Let W, Zy, Z1, --- be independent integer-valued random variables with
distributions as follows:

PW=0)=1-—1, P(W=mn)=1t, for n>0.
P(Zy=1) = (p — 27)/(1 — 1),
P(Zy=1) = p/(1 —1t) forz=2,7¢8,

P(Zy=12)=0 otherwise.

Forn = 1,
P(Z,=1) =27%"/

P(Z,=1) = pi/t. forieS,,
P(Z,=1)=0 otherwise.
Define X = Zy, and verify that P(X = n) = p, thus:
P(X=1)=20%0PW=n,Zn=1)=p— 2+ > 00 27%" = p,;
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forz > 1,7 ¢ 8,
P(X

l
It
Il

7)
P(X =4) =P(W =n,2Z, =) = pi.

Thus, if we define ¢, = v, on {X = n}, ¢, = 0 otherwise, {¢,} has the same
joint distribution as {f.}, i.e., ¢, has only the two values 0, v, ,

P{d’n:vn} = Pn,

and at each sample point exactly one ¢, is positive.

For any Borel field €, E(¢. | @) = v, P{X = n| €}. It sufficesto finda €
for which the event {v, P{X = n | € = 1 infinitely often} has probability one.
We show that the Borel field € determined by Z,, Z;, - - - has the property.
For 7eS,,

P(W =0,Zy=1) = ps;

for 7¢8S,,

PIX =4|e =0 if Zp##3,
PIX =i|€ =t, if Z,=i.

Thus, if Z, = ¢, v; P{X = | €} = v;t,. Sincet, = 27" and, for i eS,,
v; = 2" we have v;4, = 1. Thus, for n = 1 whenever 4, = {Z, # 1}
occurs, so does B, = {v; P{X = 7| €} = 1 for some 7 ¢8,}. The 4, are
independent, with P(A,) = r,/t, . We show that

Zn (Tn/tn) = o0,

Ifr, < 27 1, < 27D 50 that
(1a/ta) = 2"y, = Ziesn 2n+k+1p¢/4 = Ziesn pivi/4.

If r, = 2™ for infinitely many n, then (r,/t,) = % for infinitely many
n, and the series D (rn/t,) diverges. If r, < 27" for sufficiently large n,
say for n = no,

Don (Tafta) Z Dnmng Dies, Divi/4 = D icr Pivi/4
where T = {{ = 2,v; = 2™}, Since
Dipivi = o and  Dir piv; < 2"t > ps < 2mtF,
we conclude that Y p;v; diverges. Thus ), (7,/t,) diverges, so that, with
probability 1, infinitely many 4, , and hence infinitely many B, , occur. This
completes the proof.
3. Proofs of other results

For part (a) of Theorem 3 use an inequality of Doob [1, p. 314] which
asserts that, for every A > 0,

(8) MPiGEZ N £ [, B P,
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where g% = maXi<i<n E(n* | B;). LettingX | Ao > 0 yields

No P{gh > \o} g[ L* 4P,

{93>Mo}

Letting n — o, and dropping the subscript in Ay , you obtain, for every A > 0,
* *
(9) NP{g" >\ = LM} r* dP,

and letting A T Ao yields an inequality like (9) with the event {g* > A} re-
placed by {¢* = A\}. For any X for which P{k* > A\ = 0, we have also
P{g* >\ = 0,and (5) is trivial. If P{h* = A} > 0, note that g is monotone,
and let u be the largest number for which g(u) = N. Then for any event A
for which

1
P(4)
we must have P(4) < u. The event A = {¢* = \} has the property, from
the remark following (9), so that
(10) Plg" = N S u=migzN.

Letting A | Ao yields (5), and (a) is established.

The remark on gambling systems is a consequence of E(g*) = E(g), which
follows from (5). For, with A* = X, , and ®; the Borel field determined by
X0, ,X:i,9" = Y,and

fh*dPg N
A

B(Z) = fol () du,

where a(u) = ¢ (smallest v with h(v) = h(u)). Since a(u) = g(u),
E(Z) z E(g), and the proof is complete.

For part (b), let C, = {(n — 1)e = g < ne}, and let @, be the Borel field
determined by Cy, +-- , Cpy . If C,is nonempty, it is an interval ¢ < u = b.
When C, occurs, E(h | @,) = E(h|u = b) = g(b) = (n — 1)e. Thus, on
Cn,E(h|@,) =g — & and ¢ = sup, E(h| C,) = g — & everywhere.

For part (¢), set Qo = 1, and define p, = Q1 — @, so that p, = 0,

T p. = 1. Let « be a random variable, independent of ¢, b (this may re-
quire extending the probability space) with P{a = n} = p,. The Borel field
D, will specify the value of « and, when o = k, will specify, for every ¢,
1 =7 = k — n, whether C;, defined in the proof of part (b), occurs. More
formally, if I; is the indicator or characteristic function of C; (I; has 1 as its
valueon C; and 0 off C;), and J} is the indicator of {« = k}, D, isthe Borel field
determined by the functions J , k = 1,2, - - - , and those functions J;, I, , for
whichk > nand1 =7 =k —n. Then,forany< k,nwithe >k —n >0
we have, on C;n {a = £},

E(h| D) = E(h]a, UpraCj) 2 (K — n)e.
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For k =< 4, we choose n = 1;fork > ¢, wechoosen = k — 1 4+ 1. We then
see that on C; n {a = k} either g; = (K — 1)eor s = (¢ — 1) according as
k =7ork > < We conclude that, on (U;>;Ci) n{a > j}, g1 = je. Since
Ui Ci = {g = je}, we obtain

Pl z je} 2 Plg = je} Pla > j} = Q; P{g 2 jél,

which is assertion (7).

The proof of Theorem 2 is now easy. We may suppose that & is a nonin-
creasing function on the unit interval, and that probability is Lebesgue meas-
ure. Since h log h is not in L, , the result of Hardy and Littlewood referred to
following (7) implies that g, defined as in Theorem 3, is not in L;. To
choose ®% increasing, with ¢* ¢ L;, choose as ®% the €, of part (b) of
Theorem 3. Theng* = g — ¢,sothat g* ¢ L;. To choose ®}; decreasing, note
first that, since g ¢ Ly, 2_rm(g = ke) = «. We may then choose a mono-
tone sequence @ converging to 0 with 1 = @, = 0,k = 1,2 -- - , for which

(11) 26 Qum(g = ke) = oo.

For this choice of @ , and &} chosen as the D, of (¢) of Theorem 3, the ¢* of
Theorem 2 is the g; of Theorem 3. From (7) and (11), clearly,

2 Plg" = ke} = o,

so that ¢* ¢ L, . This completes the proof.
As for the final remarks about nonnegative martingales, let

Y = m&X(X]_, ,XN),
and note that ¥ < D X,;, so E(Y) £ NE(X;). To find a process where
E(Y) > NE(X,) — ¢ let X7, - -+, X be the successive fortunes of a gambler

who at time j gambles as follows. He stakes his entire fortune X} on a long
shot, so that with small probability, namely ¢, his fortune increases to
1X¥ , and with high probability, namely 1 — ¢, his fortune decreases to 0.
It is easy to verify that E(Y™*) = nE(X;) — (n — 1)t 'E(X,). This com-
pletes the proofs.

Added in proof. Theorem 2, with a particularly interesting choice of ®j ,
has also been obtained by D. L. BURKHOLDER, in Successive conditional ex-
pectations of an integrable function, Ann. Math. Statistics, vol. 33 (1962), pp.
887-893.
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