ON THE HOMOLOGY DECOMPOSITION OF POLYHEDRA'

BY
C. R. CurJEL

Introduction. Summary

Let X; be a simply connected polyhedron (i.e., a simply connected finite
CW-complex). According to Eckmann-Hilton [6]—see also Brown-Cope-
land [3]—it is homotopy-equivalent to a polyhedron X built up by subcom-
plexes X;, X, © X; < --- € Xy = X, where X, is constructed out of
X, in a very perspicuous way by means of the 7" integer homology group
of X and an element in a homotopy group of X, ;. Tollowing [6] we call
X = {X,} a normal polyhedron, and the collection {X,} of the X, a homology
decomposition of X.

It is the purpose of this note to exemplify our opinion that the concept of
the homology decomposition can be used profitably to study homotopy sets
TI(X, Y) of the maps of a space X into a space Y.

All considerations rely on Proposition 2.2 which describes the circumstances
under which a map f : X — Y of the normal polyhedra X = {X,}, Y = {Y,}
induces a map f» : X, — Y, compatible with f. Proposition 2.2 follows from
Proposition 2.1, which generalizes the Blakers-Massey theorem on relative
homotopy groups [2, p. 198].

Section 3 contains the first example of an application of the homology de-
composition. Proposition 3.3 is a powerful lemma of Thom [10, p. 59],
for which we give a new proof. The idea of our proof is to climb up a homol-
ogy decomposition, using at each step known facts about homotopy groups of
spheres.

From Section 4 on, we restrict our attention to “selfmaps” f : X — X of a
simply connected polyhedron X. The composition of maps defines in the
homotopy set II(X, X) a multiplication turning II1(X, X) into a monoid.
Denote by T(X) the homotopy set of all selfmaps of X which induce the
trivial endomorphism of @, H*(X; H,(X)). It isa multiplicatively closed
subset of II(X, X). Theorem 4.2 states that 7 (X) is nilpotent. The order
t(X) of nilpotency of 7' (X) is a homotopy invariant of X which, by appeal-
ing to a theorem of Novikov [8], can be shown to assume any given value for
an appropriate X (Proposition 4.5).

An endomorphism & of ®; H*(X; Hx(X)) induced by a map f: X — X
satisfies necessarily a certain relation, and such a ® will be called admissible
(Definition 4.6, Lemma 4.7). The question for which spaces X every ad-
missible endomorphism of @, H*(X; Hix(X)) can be realized by a selfmap of
X is dealt with in Theorem 4.9: For 2-connected X this is the case if and
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only if X is homotopy-equivalent to a wedge of Moore-spaces (polyhedra
with exactly one nonvanishing integer homology group) and

Ext(H,,H,1) =0
for all r.

In Section 5 we consider selfmaps of a suspension £X. Its natural comul-
tiplication defines in II(ZX, £X) a group operation in addition to the mul-
tiplication by composition of maps, and II(2X, =X) is a near-ring (i.e., a
set with two binary operations coupled by only one law of distributivity;
see e.g. [1]). By using the distributor series of a near-ring (Definition 5.1,
compare [7]) Theorem 5.3 measures to what extent II(ZX, ZX) fails to be
a ring. It furthermore suggests the introduction of an integer-valued homo-
topy invariant d (X) of X which is equal to one in case I (£X, ZX) is a ring
(Definition 5.2).

In the sense of the Eckmann-Hilton duality [4] everything carries over
under considerable simplifications to spaces with a finite number of homotopy
groups.

It is a pleasure to thank P. Olum for his scrutinizing questions and sug-
gestions on the subject of this note. Our thanks are also due to J. C. Moore—
it was a remark of his on the “dual” situation which enabled us to give Theo-
rem 4.2 its present form—, to P. J. Hilton for the example at the end of Sec-
tion 5, and to the referee for the proof of the present version of Proposition
2.1, replacing a much weaker proposition of an earlier draft.

1. Notations. Definitions

(a) All spaces considered are polyhedra and have a basepoint 0 which is
respected by maps f, ¢, - - - and their homotopies f ~ ¢, - -+ . The trivial
map X — 0 e Y is also denoted by 0. A map f: X — Y and its homotopy
class in the homotopy set II(X, Y) will usually not be distinguished. =
stands for the suspension operators for spaces, maps, and homotopy sets.
The space obtained by attaching the cone CA over A to X by means of the
map (or class) f is denoted by CA _; X.

(b) For Moore-spaces (polyhedra with exactly one nontrivial integer
homology group in dimension r > 1) consult e.g. [9]. We denote them by
K'(G, r) orsimply K, , Ly . Theirgroups G, H, - - - as well as all coefficient
groups considered will be supposed to be finitely generated. The ‘“homotopy
groups of X with coefficients G”’ are defined as II (K’ (@, r), X) and are re-
lated to the ordinary homotopy groups w.(X) by an exact sequence [5],
“the coefficient formula for homotopy groups”. For (X, K'(@G, 7)), the
cohomotopy groups with coefficients G, and their coefficient formula, see [9].

(¢) The inclusion

1: X, —» X =CK'(@,r) . X,
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is called an elementary cofibration (with attaching class or map « and pro-
jectiong : X — X/X, = K'(G,r + 1)) if

(1) X, is simply connected;
2) dimX,<r+ land H.u(X,) = 0;
B) x: Hy(X,) = Hy(X) fork = r.

It follows from (3) that
éxt Hopn(X) = H, 1 (K'(G,r + 1)) =G
A normal polyhedron X = {X,} is one obtained by a sequence
Xo—Xsg— - > Xy =X

of elementary cofibrations. The groups of the cofibers X,/X,; are the
integer homology groups of X; if H,(X) = 0 for some s, we insert a term
X, = X,_; so that we have X,/X, ; = K'(H,(X), r) for all ». Denote by
ir : X, — X the imbedding; 5y : H*(X; G) — H*(X, ; @), G arbitrary, is iso-
morphic for k¥ = r and epimorphic for & = r + 1. The rt* fundamental
class B e H' (X; H,(X)) of the normal polyhedron X = {X,} is defined as

A
where A} is the fundamental class of H' (K'(H,(X), 7); H,(X)), and ¢, the
projection X, — K'(H,(X), r); for arbitrary G the induced
¢ : H'(K'(H.(X),7); () = H (X, ; @)
is monomorphic. Distinguish X, and the r-skeleton X'.
2. Compression problems in cofibrations
For X = S" the following proposition reduces to Theorem II of [2].

ProrosiTioN 2.1. Let X be an N-dimensional polyhedron, and j : A —Y
a cofibration with projection ¢ : Y — Y /A such that

Y is (N — r)-connected,
Y /A s r-connected,
N—-—r=n.

Then the sequence of homotopy sets

nx, 4) 2 mx,v) ¥ nx, v/a)

is exact: If Ysf = 0, then f is compressible into A.

Proof.> Replace ¢ by a fibration p : E — Z,, where ¢ is the mapping

2 A proof is also possible by methods developed by I. Namioka in Maps of pairs in
homotopy theory, Proc. London Math. Soe. (3), vol. 12 (1962), pp. 725-738.
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cylinder of ¢, and E the space of all paths in Z, which start in
Y=Y X0cCZ,.

The fibre F of p consists of the paths in F ending at the basepoint of Zy .
Let 7: Y/A — Zy be the imbedding, and ¢ : ¥ — E the map defined by
oy =y X IeE; o induces a map p: A — F. Consider the homotopy
sequences of the pairs (Y, A) and (E, F):

—>‘ll’k(Y) "“>7|'1c(Y, A) '—'>7I'k-1(A) ‘—>7"k—1( Y) ”"Wk—l(Y,A) -

[ R [ (S
—m(E) > m(EF) > ma(F) — ma(E) > m(E F)— .

In view of w(E, F) = 7, (Zy) and the Blakers-Massey theorem, (o, p)x
is isomorphic for k¥ £ N and epimorphic for k = N + 1. By the five-lemma
px is epimorphic on 7y (A4) and isomorphic in the lower dimensions. Hence
the map p is N-connected:

—an(A) L2 1y (F) = my(p) » mxa(A) 5 ayy(F) — .

Replace p by the inclusion of A into the mapping cylinder Z, to infer that
under these circumstances any map f : X — F can be factored up to homo-

topy through p if dim X < N:
F
% Ip, J~ pg-
A

This means that ps is epimorphic on II (X, A):

nx, 4) L mxv) ¥ wx, v/4)

» I b
n(X,F) — (X, E) — (X, Z,).

The lower line of this diagram is exact; o4 and 74 are one-to-one correspond-
ences, and p4 is epimorphic. Therefore the upper line is also exact.
We now apply Proposition 2.1 to maps of normal polyhedra.

ProprostTioN 2.2. Let f: X — Y be a map of the normal polyhedra
X = (X),Y = (V)}, and let W e HYV(Y; Hoa(Y)) be the (r + 1)°
Sundamental class of Y = {Y,} (see Sectton 1(c)). There exists a map
fr+ X, — Y, compatible with f, fi, ~ j, f :
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x-L,y

o,
x -y,
of and only of

M =0 e (X, ; Hn(Y)) = Ext(H,(X), Ha(Y)).
Proof. (a) Suppose there is a map f, with fi, ~j.f.. Write
Ly = K'(Ha(Y),r + 1),
and pass to cohomology with H,;(Y) as coefficients:

Hr+l(X) (ﬁ—HH-I(Y)

Jr
i H (Y, 41) L H™ (Li41).
%
f Jr, r+1
r+l(X ) r T+I(Yr)
By definition B = ij X e where R denotes the fundamental class

of H'(Li41). Together with &f e = f¥j¥ ... we have
2rf h’r+1 — irf*‘]:i:lllpr h7’+l ﬁjr,r.’.]_ ¢r hl — 0

because of ¢ jrre1 = 0.
(b) By the cellular approximation theorem there exists a map
gr : X — Y, with fo, ~ jrpa 9, :

X”LY

Jivn

7:1‘ Y'r+1

r

LL;H .

/ T
g/ |Jrori
X Y,

By hypothesis ¢¥f*h"*" = 0. Therefore, with hi™ as in (a), we have
gr‘l’rhT—H = "Tf*JT-:ll‘PrhrH =

Because any map k : X, — L, is homotopic to zero if and only if k*hi™ = 0,
we conclude ¢, g. ~ 0. By Proposition 2.1 it follows from v, g, ~ () that g,
is compressible into Y, , i.e., that there exists a map f, : X, — Y, with
gr ~ jrrs1fr, and the proof of Proposition 2.2 is complete.
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CoroLLARY 2.3. Let f: X —Y be a map of the normal polyhedra
X = {X.}, Y = {Y,}. Suppose that f induces the trivial homomorphism on
®, H*(Y; H,(Y)). Then there exist maps fr: X, — Y, and f, : K, — L,
such that

fr 7/'r—l,r ~ jr—-l,rfr—l and f?l‘ ¢r ~ ‘prfr

for all elementary cofibrations i,—1,» of X and j,—1,» of Y:

’
K;——fr—> L;

g

Proof. Since i f*W'™ = 0 for all r, there are, by Proposition 2.2, maps
frt X, —> Y, for all . By carrying out the compressions from the cofibra-
tion at the ‘“top’” on downwards, the map f,_; will be compatible with f, .
In view of ¢, fr 4, 1,» ~ ¥, jr_1.» fr-1 = 0 and the homotopy extension property
of 4,1, , there exists a map f, with fr ¢, ~ ¥, fs .

3. A lemma of Thom

The following Proposition 3.3 is a lemma of Thom [10, p. 59] for which
we give a proof by induction on homology decompositions. Since the lemma
deals with the homology homomorphisms induced by maps, we first consider
Lemmata 3.1 and 3.2 which follow directly from the coefficient formulae for
cohomology and homotopy groups (for the latter see [5]). Note that any
induced homomorphism is always an element in an abelian group Hom ( , ).

Lemma 3.1. Let f: ZX — Y be a map. Suppose fx | Hy(ZX) of finite
order for k = r — 1, r. Then *| H' (Y; G) is also of finite order for all coef-
ficients G.

Lemma 3.2. Consider a map f of Moore-spaces, f : K' (G, r) — K'(H, r).
Then we have

(@) ffI|H (K'(H,r); H) = 0if and only if f« | H.(K'(G, 1)) = 0.
(b) If f«|H,(K'(G, r)) = 0, then there exists an integer m such that
mf ~ 0.

ProrosiTioN 3.3 (Thom). Let X, Y be polyhedra, X of dimension
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= 2n—2 and Y at least (n — 1)-connected. Suppose fx| H«(X) of finite
order. Then f itself is of finite order in the group

OX,Y)=UEX,z2Y) = ---.

Proof. (a) It is no restriction to assume Y simply connected and
X = =*X’. Let {X,} be the suspension of a homology decomposition of ZX’,
and {Y,} any decomposition of Y. All X, are suspensions, and all

¢ X, — K'(H.(X), 1)
are suspended maps. If for f, g : X — Y there exist maps
fT:gT:XT—)YT)

then this is also the case for f 4+ ¢, and we can take (f + ¢). = fr + ¢».
(b) Letj:Y,,— Y, with projection ¢ : ¥, — L, be part of {Y,}, and
K. one of the cofibers of {X,}. Then we have

(1) The sequence (K., V,_,) -2 (K., Y,) iR (K., L) is exact.
(2) The group I(K;, Y,) is finite for s > 7.

(1) follows from the Blakers-Massey theorem in [2, p. 198]; (2) is an easy
consequence of (1), the fact that «.(S™) is finite for » < 2m — 2, and the
coefficient formulae for homotopy and cohomotopy groups.

(¢) Let fx|H«(X) be of finite order. By Lemma 3.1 there exists an in-
teger ¢ such that (¢f)* = f* = 0 on H*(Y; H(Y)) for all k. By Corollary
2.3 there are maps f, : X, — Y, compatible with each other for all r.

To anchor the induction let X be a Moore-space, X = K'(G, s). There
are two possibilities (1), (2) for the corresponding Y, :

(1) Y,= K'(H,s). We know that fi | H*(K'(H, s); H) = 0. Apply
Lemma 3.2 (a) and (b) to conclude that mf ~ 0.

(2) Y, has several homology groups (write ¥ = ¥s, J = fou1,s):

Ys—l

In view of (¢f.)* | H°(Ls; H,(Y)) = 0 and Lemma 3.2(a) and (b) there is
an integer m such that mYf;) = m¥x«fs) = ¢=mfs = 0. By remark (1)
of (b) we infer mf, = jxg, g e W(K'(G, s), Y;1), and this element g is of
finite order by remark (2) of (b). Thus mf; = jxg¢g and, consequently,
myf are also of finite order.
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(d) For the induction step we have to prove: Suppose f,: X, — Y,
of finite order, and, of course, frys | H ™ (Yyy1, Hi1a(Y)) = 0. Then fr
is also of finite order (write ¢ = ¢, , 4,41 = 1, €tc.):

! ’
K 41N ~ Lr+1

X, I 3Y,.

We can assume f, ~ 0. Therefore f,.1 ~ g¢ (see diagram) because of the
homotopy extension property of ¢ and the relation f,4;7 ~ jf. ~ 0. Since
¢* is monomorphic on the (r + 1)-dimensional cohomology, we conclude
Wg)* | H " (Lyys 5 Hy1(Y)) = 0, and by Lemma 3.2 also

m(g) = mWPxg) = ¥x(mg) = 0.

Again by (b) we have mg = ji h with b eI (K, , Y,) of finite order. Since
¢ is a suspended map, ¢* is homomorphic. Therefore mf,, = ¢*(mg) =
6”74 h, which means that mf,,, is of finite order as the homomorphic image of
h, and the proof of Proposition 3.3 is complete.

4. Selfmaps of polyhedra. The invariant ¢(X)

The composition of maps defines in IT1 (X, X) the structure of a monoid with
identity and zero element. Consider the cohomology functor #¢* which
maps the monoid II(X, X) homomorphically into the multiplicative struc-
ture of the ring of endomorphisms of ®; H*(X; H;), Hy, = Hx(X). The
set 3¢*7(0) of all “cohomologically trivial” selfmaps is multiplicatively
closed in II(X, X) and will be denoted by T'(X), T(X) c (X, X). In
the first part of this section we study 7'(X) and define an integer-valued
homotopy invariant {(X) of X; in the second part (Definition 4.6 et seq.)
we discuss the case when 3¢* is epimorphic.

The following proposition prepares for Theorem 4.2.

Prorosirion 4.1. Consider a Moore-space K' (G, r). If G has no 2-tor-
ston, then T (K' (G,n)) = 0. Otherwise T (K'(G,r)) is nilpotent of order = 2.

Proof. (a) Write K’ = K'(G, r), G = H,(K’'). By Lemma 3.2(a)
we know that f e T(K’) if and only if fs« | G = 0. Consider the coefficient
formula for homotopy groups in (b) below. Since 7 (K') =G ® Z.,
obviously Ext (G, G ® Z;) = 0 if G has no 2-torsion. Therefore, if G has
no 2-torsion, any f : K’ — K’ with f4 | G = 0 is homotopic to zero.

(b) Let G be arbitrary and f« |G = g« |G = 0. The coefficient for-
mula is natural with respect to covariant maps:
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0 — Ext(@, mn(K")) —2— I(K’, K') —P— Hom(G, @) — 0

lo I I

0 — Ext(G, ma(K")) —%— (K, K') —2— Hom(G, @) — 0,

where f; are induced by fo: m(K’') — m(K’). By hypothesis gg = 0.
Therefore ¢ = ag: and f4 g = fxagr = afigi. In (¢) below, we show that
fi = 0, and the proof of Proposition 4.1 will be complete.

(¢) To compute w41 (K’), inspect, according to Peterson [9], the first
derived homotopy exact couple of Massey (see Fig. 1 in [9]) which is natural
with respect to maps f:

1I'r+1(Kl) %’ T g Hr(K/; Zz) = G ® Z2

|7 [

1I'T+1(K,) < = P—g——% Hr(K,, Zz = G ® Zz .

In view of fx|G = 0 we have f4x |G ® Z; = 0. Therefore fy = 0, and
fi | Ext (@, 741 (K'")) = 0 as was to be proved.

TareorEM 4.2. Let X be a stmply connected polyhedron with q nontrivial
homology groups, g1 of which have 2-torstion. Then any product of ¢ + q1 self-
maps which induce the trivial endomorphism of @ H*(X; Hy(X)) vanishes.
In other words, T (X) is nilpotent of order < q + ¢ .

Proof. Apply Proposition 4.1 if X = K'(G, r). Suppose for induction
that for any Y with s homology groups 7' (Y) is nilpotent of order ¢. Con-
sider a homology decomposition {X,} of an X with s + 1 homology groups,
and let p be such that X, has s homology groups. Let f, g, hi, -+, h; be
elements of T (X), and recall Corollary 2.3:

! !
kI g 9 g
¢ \h

N
x I x_9 xIh ¥

i T

X, X, X, X,.

By hypothesis [ ]}~ #; induces on X, the trivial map. Therefore 11 i ~ he.
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If H,(X) has 2-torsion, then ¢'f’ ~ 0 by Proposition 4.1, and
(IL hs)gf ~ hg'f'e ~ 0;

in the opposite case ¢’ ~ f’ ~ 0, and already ([] 2;)g ~ 0. Thus T(X)
is nilpotent of order = ¢ + 2 or =t + 1 according to the presence or ab-
sence of 2-torsion in H,(X).

CorOLLARY 4.3. Let X be a simply connected polyhedron with g nontrivial
homology groups, q1 of which have 2-torsion. Denote by To(X) < II(X, X)
the set of all selfmaps of X which induce the trivial endomorphism of H(X).
Then To(X) 1is nilpotent of order = 2q + 2q, .

Proof. Write out three times the coefficient formula for cohomology
groups to verify that [To(X)]' © T(X). Therefore [T,(X)"*" = 0.

Examples of applications of Theorem 4.2. Let X be a simply connected
polyhedron.

(1) The endomorphism of = (X) induced by a selfmap f such that
S+ | He(X) = 0 is nilpotent for all 7.

(2) An idempotent element f e II (X, X), f° = f, cannot satisfy the con-
dition f4 | H+(X) = 0 unless it is equal to zero.

(8) If fell(X, X) suspends trivially, =f = 0, then f is nilpotent (con-
sider the induced homomorphisms of I (X, X) and I (ZX, ZX)).

Theorem 4.2 suggests Definition 4.4 which in its most general form reads as
follows:

DeriniTION 4.4. Let X be a topological space, and H a homology theory.
Define t(H; X) to be the order of nilpotency of the multiplicatively closed
subset T'(H; X) of (X, X) consisting of all maps which induce the trivial
endomorphism of @, H*(X; Hy(X)).

Considering the integer homology one defines analogously # (H; X). For
polyhedra ¢(H; X), to(H; X) depend only on the homotopy type of X. In
this case we write t (H; X) = t(X), to(H; X) = £ (X) and, as we have already
done, T(H; X) = T(X), Thy(H; X) = Ty(X). To determine the range of
values of £(X) considered as a function of X, we invoke the following theorem
of Novikov.

TareoreM oF Novikov [8]. For any given integer r > 0 there exist integers
ky > ko > -+ > k, and maps f, of spheres, f. : S** — 8%+, such that the com-
position

Slcl fl Skz f2 .. fr—l Sk,

18 mot homotopic to zero.

ProrositioN 4.5. 1. For any giwen integer r > 0 there exists a simply
connected polyhedron X with r nontrivial homology groups and t(X) = r.
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2. For any giwen integer r > 0 there exists a simply connected polyhedron X
with r nontrivial homology groups and t(X) = 1.

Proof. 1. Consider X = 8§ v --- v 8 and f: X — X defined by
f|8% = f,: 8% — 8%+ the k, and f, being the integers and maps of Novi-
kov’s theorem. Obviously feTo(X). Let 7: 8" —- X and p: X — S
be the injection of the first and the projection onto the last factor of the
wedge X. Since pff ---fi = pf" % = frafra --+ fi is not homotopic to
zero, f' is not trivial either. This means £ (X) = r. Because all homol-
ogy groups of X are infinite cyclic, we have £ (X) = t(X). By Theorem
4.1,t(X) = r. Therefore t(X) = r.

2. Let My be the complex projective space of r complex dimensions.
Since dim My = 2r and 7;(M¢y) = 0 for ¢ < 2 and 3 < 7 < 2r, a map
f: My — My is homotopic to zero if and only if its induced homomorphism
on Hy(My) is trivial. This means that fi = 0 implies f ~ 0. Hence
to(Myy) = 1. But again t(My) = t(My) because all homology groups of
M are infinite cyclic.

We now turn to the question which endomorphisms of ®; H*(X; Hy),
H;, = H;(X), can be realized by a selfmap f: X — X.

Consider f* induced by f : X — X:

0 — Ext(H,_,, H,) —%— H'(X; H,) —P— Hom(H, , H,) — 0

P
0 — Ext(H,_,, H,) —% H(X; H,) —"— Hom(H,, H,) — 0,

where f; is induced by fx | H« . The natural ring structure of Hom (H, , H,)
defines a ring structure in H' (X; H,)/a Ext(H,_;, H,), and f* induces an
endomorphism ﬁ of the additive group, (or, as we shall say, an additive
endomorphism) of the ring H (X; H,)/a Ext(H, , H,). Since f* is essen-
tially f. induced by f« | H., we have f*(ab) = aff(b) in the ring

H (X;H,)/a Ext(H,y, H,).
We summarize these considerations in Definition 4.6 and Lemma 4.7.

DeriNtTiON 4.6. The endomorphism & = @, %, of @, H'(X; H}) is called
admissible if ®, induces for all k an additive endomorphism &} of the ring
H*(X; Hp) /o Ext(Hi_ , Hi) such that ®f (ab) = a®f (b).

LemMA 4.7.  The endomorphism f* of @, H*(X; Hy) induced by f : X — X
1s admassible in the sense of Definition 4.6.

To study the problem under which circumstances every admissible endo-
morphism of ®,H"(X; H;) can be realized by a selfmap, we first have to
consider Proposition 4.8.

PropositioN 4.8. Let X be a simply connected polyhedron. Consider the
following admissible endomorphism ® = @ P of @ H*(X; Hy):
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" = Id for k=7,
=0 for k>r.

Suppose that ®” can be realized by a map f: X — X, ®” = f*. Then
Ext(H,, Hrya) = 0. If furthermore X is 2-connected, then in any homology
decomposition {X,} of X the r'" astaching map o, : K'(H,41 , r) — X, vanishes.

Proof. (a) Consider a homology decomposition {X,} of X. By Proposi-
tion 2.2 and the homotopy extension property of ¢ = 4,,41, there exist
maps fr, fru1, S/ compatible with each other (write ¢ = ¢rp1, Kryg =
K'(Hrpa,r+1)):

’ ’
Kr+1 _— Kr+l

X, -—-—fr—> X,.

It follows from the coefficient formula for cohomology groups and the fact
that an epimorphic endomorphism of a finitely generated group is isomorphic
that fi is an automorphism of Hy for £ < r. Therefore f, is a homotopy
equivalence. Consider on the other hand cohomology with H,., as coeffi-

cients:

Hr+l<X) M Hr+1(X)

ok ok
1y ‘[ J'&r

sk

HT+1(XT) (____Lr_____ HT+](XT).
Since ¢ is epimorphic and ¥ = 0, we have ff = 0. But f, was seen to be
an equivalence. Therefore H ™ (X,) =~ Ext(H,, H,.:) = 0.

(b) For the map f' : Ky41 — K4y induced by fryy and f, (see diagram
of (a)) we have 1 | H* (K141 3 Hry) = 0. Therefore f'f' ~ 0 by Proposi-
tion 4.1. This implies ¢fry1 fryr ~ fif'¢ ~ 0. If X is 2-connected, it follows
from Proposition 2.1 that f,yifr41 is compressible into X, , fry1 fra ~ ig:

Xr+1 fr+1 fr+1 X

r+1

K’(Hr+1,7') %r X,« frfr XT.




ON THE HOMOLOGY DECOMPOSITION OF POLYHEDRA 133

In view of of,f, ~ fer1fri1 @ ~ igi, we have 7« gstx = t%(frfr) % for the
homology groups; ¢x is isomorphic because 7 is an elementary cofibration,
and (f f,) « is isomorphic because f, is a homotopy equivalence of X, . There-
fore g7 : X, — X, is also an equivalence. On the other hand, gia, ~ 0
because ¢ maps X,y = CK'(Hy1, 1) e, X» into X,. Therefore o, ~ 0,
and the proof of Proposition 4.8 is complete.

TareoreEM 4.9. 1. Let X be homotopy-equivalent to a wedge of Moore-
spaces. Suppose Bxt(H,, H.p) = 0 for all v, H, = H,(X). Then every
admissible endomorphism (see Lemma 4.7) of ®, H*(X; Hy) can be realized by
a selfmap f : X — X.

2. Let X be an m-connected polyhedron, m = 1, with the property that every
admissible endomorphism of @, H*(X; Hi) can be realized by a selfmap
f:X—>X. Then Ext(H,, H,11) = 0 for all r. Furthermore,

(a) If m = 2, then X is homotopy-equivalent to a wedge of M oore-spaces.

(b) If m = 1, then all attaching maps of any homology decomposition of X
suspend trivially (i.e., ZX is homotopy-equivalent to a wedge of Moore-spaces).

Proof. 1. In view of Ext(H, , H,4;) = 0 for all r, it suffices to prove the
following statement (the application of which to all Moore-spaces of the
wedge X will prove part 1 of Theorem 4.9): Every admissible automorphism
® of H' (K' (G, r); @) can be realized by a selfmap f : K' (G, r) — K' (G, r).

Let ®: H(K'(G, r); G) > H(K'(G, r); G) be admissible. Define
¥ : Hom (G, @) — Hom (G, G) by & = gdg":

0 — H'(K'(G, r); @) -2 Hom(@, @) — 0

| |
0 — H'(K'(G,); @) —P— Hom(G, @) — 0.

Since @ is admissible, so is ® : &' (ab) = a®'(b); in particular, ® (a) =
ad® (Id) for all a e Hom (G, @). Realize ' (Id) : @ - G by a map

f1K'(G,r) — K'(@,r)

with the aid of the coefficient formula for homotopy groups. Obviously
f* = @, and part 1 of Theorem 4.9 is proved.

2(a). By hypothesis the admissible endomorphisms " of Proposition
4.8 can be realized by maps for all . It follows from the same Proposition
4.8 that BExt(H,, H,y;) = 0, and that all attaching maps of any homology
decomposition of X vanish provided X is 2-connected.

2(b). Identify @, H'(X; H:(X)) = @ H*(2X; Hy(=X)) = H*, and
denote by Hom™ (H*, H*) the subgroup of admissible endomorphisms of H*.
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The meaning of 3¢¥, 3¢5 in the following commutative diagram is obvious:

(X, X) —2——9 n(zX, £X)

/
5&\ / ey
Hom™(H*, HY).

If 3¢f is epimorphic, so is 3¢5 . Apply 2(a) to =X to conclude that =X is
homotopy-equivalent to a wedge of Moore-spaces, and the proof of Theorem
4.9 is complete.

5. Selfmaps of suspensions. The invariant d(X)

The natural comultiplication of £X definesin I1 (£X, £X) a group operation
which will be written as addition though the group I (X, =X)* may be
nonabelian. The addition is connected with the monoid-multiplication by
only one law of distributivity in general: f(a + b) = fa 4+ fb. Itis customary
to call a set P with two binary operations + and - (called addition and
multiplication) a near-ring if (1) (P, +) is a group, (2) (P, -) is a monoid,
and (3) multiplication is left distributive with respect to addition (for near-
rings see e.g. [1]). Since the composition of maps is associative, I (ZX, ZX)
is an associative near-ring with an identity. Callg e II(ZX, =X) distributive
if (@ + b)g = ag + bg for all a, b; e.g. any suspended map g = Z¢’ is dis-
tributive. If 2 : (X, X) — II(ZX, =X) is epimorphic for some reason,
then II(ZX, ZX) is a ring.

To measure the deviation of II (X, £X) from being a ring we use the fol-
lowing definition of the distributor series D" (P) of a near-ring P. It is
slightly different from that given in [7].

DeriNiTiON 5.1. Let P be a near-ring.

(1) Define D’(P) = P.

(2) Call[a,b,fl =(a + b)f — bf — af with a, b, f € P a 1-distributor of P,
and denote the subgroup of P™ generated by all 1-distributors by D' (P).

(8) D™(P), n = 2, is defined as the subgroup of P generated by all
elements of the form [a, b, f] with f ¢ P and a, b ¢ D" (P). The generators
of D" (P) are called n-distributors of P.

It is obvious that D"**(P) = 0 fork > 0 if D"(P) = 0. Thus it makes
sense to write d(P) = n if D" '(P) # 0, D"(P) = 0 such that d(P) = 1
if Pisaring. If D*(P) O for all k, we write d(P) = «. This obviously
suggests the following definition.

DerintTiON 5.2, Let X be a topological space. Call d(X) =
d(II(ZX, 2X)) the order of distributivity of X.
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The integer d (X) is an invariant of the homotopy type of X but not of =X

in general. If eg. X is an (n — 1)-connected polyhedron of dimension
< 2n — 1, then d(X) = 1.

TaeoreEM 5.3. Let X be a simply connected polyhedron with n nontrivial

homology groups. Then d(X) = n (ie., all n-distributors of M (ZX, =X)
vanish) .

Proof. (a) Write ZX = Y. Consider a homology decomposition {Y,}
of Y obtained by suspending one of X. By induction we shall prove in (b),
(¢) below the following statement which obviously includes Theorem 5.3:
Let Y, have s nontrivial homology groups, and let a® ™, b“™ be two (s — 1)-
distributors of II(Y, Y). Then for any f: Y, — Y we have

[a(s—l), b(s—l),f] = (a(s—-l) + b(s—l))f _ b(s—l)f . a(s—l).p = 0.
(b) Lets = 1,1ie., Y,is a Moore-space K'; a, b eII(Y, Y).

a, b
_

Y Y

7
i)
Y,=K'/

In all possible cases considered = : II(Z7'K’, X) — I(K', V), Y = =X,
is epimorphic. Therefore f : K’ — Y is a suspended map. Consequently
la, b, f1=0.

(¢) We assume the theorem for s = ¢. If a?, b'? are g-distributors of
(Y, Y) and f : ¥, — Y is any map, we have to prove that [a'?, b?, f] = 0
if Y, has ¢ 4+ 1 homology groups:

(@ 1@
a®,b
Yy— Y

/
5
/
Y,

By definition a'” = [a; , a2, f'], where a; are (¢ — 1)-distributors of II (Y, Y)
and f/ : Y — Y is any map.

Let Y, t < r, have ¢ nontrivial homology groups. Since z: Y, — Y is
a suspended map, we have

a% = [ay, a2, = o, a0, f1; fi:Y, —»Y—Y.

By induction hypothesis, [a1, a2, f?] = 0. Therefore we can find maps
a, b with @ ~ a'?, bp ~ b‘?:
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Y)Y,
N b
¢ &
(2) (2)
y o507y
7
o
Y, Y,

Now use the fact that ¢ and ¢f are suspended maps:
@® + ) f ~ (ap + bo)f ~ ((@+ b)¢)f ~ (a+ b) (¢f)
~ agf + bef ~ a®f + b,

which means [¢'?, b'?, f] = 0.

Example. The following example of a space X with three nontrivial
homology groups and d(X) = 3 is due to P. J. Hilton.

Take

X=VieiSvS8vys =2X=ViaSivsvsys.

Consider the identity maps 4 : Si — Si, the Hopf map v : 8° — SI, the
generator a : 8° — S° of m(S;). Then [iy, 52, 7] = & % 0, [is, 14, v] =
8 # 0, [81, 82, @] 3 0. Therefore d(X) = 3. But d(X) = 3 by a simple
direct argument. Hence d(X) = 3.
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