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1. Introduction

Finitely generated proiective modules rise significantly in certain geo-
metric nd rithmetic questions. We shll show here that nonfinitely
generated proiective modules, in contrast, invite little interest; for we show
that n obviously necessary "connectedness" condition for such module to
be free is lso sufficient.
More precisely, cll n R-module P uniformly -big, where b is n infinite

crdinl, if (i) P cn be generated by b elements, nd (ii) PlOP requires
generators for ll two-sided ideals R). A free module with bsis of

elements is mnifestly uniformly -big. Our min result (Corollary 3.2)
sserts, conversely, that, with suitable chain conditions on R, a uniformly big
projective R-module is free.

Finally, we sk, for wht R re 11 nonfinitely generated proiective modules
uniformly big? For commutative rings, the nswer is quite stisfctory;
with mild ssumptions one requires only that spec (R) be connected (i.e.,
that there exist no nontrivil idempotents). For R Zr, with r finite
group, Swan (unpublished) hs established this conclusion when r is solvable,
ad it is undoubtedly true in general.
Our method relies on two bsic tools. One, nturlly enough, is

Kplnsky’s remarkable theorem [2, Theorem 1] which sserts that every pro-
]ective module is direct sum of countbly generated modules. The second
is n elegant little swindle, observed several years go by Eilenberg, nd which
might well hve sprung from the brow of Brry M:zur. It is this result,
recorded below, which permits us to wive the delicate rithmetic questions
which plague the finitely generated cse.

EILENBERG’S LEMMA. If P @ Q F with F a nonfinitely generated free
module, then P @ F _N F.

Proof.

F---F@F@ P@Q@P@Q@...

_P(R)F(R)F@...P@F.

Finally, I wish to thank Peter Freyd for several helpful conversations, and,
in particular, for pointing out the method in 2.
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2. Very big projectives: Freyd’s theorem

Notation. We denote by J(R) the Jacobson radical of R. If P is an
R-module, then P* HomR(P, R), and we denote by rR(P) (or simply r(P)
the image of the natural pairing P* (R) P -- R; -(P) is a two-sided ideal.
When P is proiective, one knows (or easily verifies) that for any two-sided
ideal I, /(P/IP) is the image in R/[ of (P). It follows that
if r,(P) R, then P/?IP 0 for all ?I. We shall say that R is p-connected
if r,(P) R for all nonzero projective R-modules P.

COROLLARY 2.1. If R is p-connected, then any infinite direct sum of nonzero
projective R-modules, in particular any noncountably generated one (by
Kaplansky’s theorem), is uniformly big.

Proof. By Kaplansky’s theorem we can reduce the problem to considera-
tion of a countably infinite direct sum, P, of nonzero countably generated
projective modules. We must show that P/tP is never finitely generated.
But this is evident from the remark above since an infinite direct sum cannot
be finitely generated.

THEOREM 2.2. Suppose R/J(R) is left or right Noetherian, and let be an
uncountable cardinal. Then a uniformly -big projective R-module P is free.

Proof. By Kaplansky’s theorem, P @r P with each P countably
generated; hence card F . Note first that

(.) if card F’ < , then @ ,r, P is still uniformly -big.

Suppose we can find a single dir.ect summand of P isomorphic to R. Since
this requires only a finite number of the P’s, we can remove them, and then,
by (.), find another such direct summand. Apply Zorn’s lemma now, and
observe, again by (.), that we could meet no obstruction before removing
direct summands isomorphic to R. But then, by Eilenberg’s lemma, we are
done. Hence, we need only find one such direct summand.

Since P is uniformly big, certainly (P) R. Hence if [ is any proper
ideal (left or right), we can find f P -- R such that f(P) - . Therefore,
f(P.) - ?I for some . It follows that we can inductively construct

f" P R, i 1,2,...,

so thatf(P).= <f(P) - J(R). If R is left Noetherian, weare forced
to stop, but this means that _f(P) - J(R) R; hence, by Nakayama’s
lemma, _f(P) R. But then _f @,_P-- R splitsoff the
desired direct summand.

If, on the other hand, we must use the right chain condition, we simply re-
place f(P) by f(a)R for suitable a P, in the above argument, and
proceed in the same way.
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COROLLARY 2.3. If R/J(R) is left or right Noetherian, then a uniformly
-big projective R-module P is a direct sum of uniformly o-big modules.

Proof. If 0, there is nothing to prove, and if > 0, then P is
free by the theorem above.
A cheap extension of the above argument even requires no chain condition.

PROPOSITION 2.4. Suppose R is p-connected and P is a projective R-module.
Then the countable direct sum P @ P @ is free.

Proof. By Kaplansky’s theorem we reduce our problem to the case" P is
countably generated and nonzero. Since r(P) R, we have fi e P*,
i 1, n, such that if(P) R; hence P @ @ P (n times) has
a direct summand isomorphic to R, so P @ P @ has a free direct sum-
mnd of infinite rnk; now use Eilenberg’s lemma.

3. Reasonably big projectives
Corollary 2.3 reduces our problem to countably generated modules, and

here we must do some rather tedious nd uninspired iuggling with infinite
matrices.

THEOREM 3.1. Suppose R/J(R) is left Noetherian. Then a uniformly
o-big projective R-module is free.
COROLlaRY 3.2 (Main Theorem). If R/J(R) is left Noetherian, any uni-

formly big projective R-module is free.

Proof of 3.1. We are given uniformly 0-big proiective module P; say
P Q F with F free module whose elements we shall identify with
(ultimately zero) sequences of elements of R. Say P is generated by
as,’",,"" ,andam- (al,a,...,ak,...).

Consider the row finite matrix

A (a), i,j= 1,2,3,....

The elements of the first column generate a left ideal which, by hypothesis,
is finitely generated mod J(R), say by al, a. Then, after subtract-
ing linear combinations of a,..., a from the remaining a’s, we may
assume a e J(R) for i > n. Now apply the same procedure to the ele-
ments of the second column beyond the nl Then, for suitable n, we render
the second column zero mod J(R) beyond the (n - n2) tl row. We continue
this way, considering next the elements of the third column beyond the
(n n), etc. Since this process alters given a only finitely often, it
defines a legitimate change of generators for P, the result being that we may
assume A is also column finite mod J(R ).

Before continuing it will be convenient to introduce some provisional nota-
tion. If (b, b,.-.) eF, we call S() {ilbJ(R)} the "modJ
support" of . Moreover, we write
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(/) the two-sided ideal generated by those b e J(R),
()’ the two-sided ideal generated by the b for all i,
[t) the right ideal generated by those b e J(R).

We propose now to construct a linear combination, , of the a’s such that
generates a free direct summand of F. Specifically, we shall construct a

sequence nl < n2 < < n < and homomorphismsf F--. R such that
(i) the n may be taken to exceed any prescribed bound;
(ii) ifi j, thenS(a) S(a) 0;
(iii) f is (right) linear combination of coordinate projections on S(a );

nd
(iv) the sequence of left idels _Rf(an) strictlyincresesmod J(R).
Suppose for the moment that this is possible. Then, since R/J(R) is left

Noetherin, we re compelled by (iv) to stop t some k, t which point

<= Rf(an) R. Hence we can write 1 _<_k rf(an) for suitable
r e R. Let f __<f. Then by (ii) and (iii) we see that

f(an) =- f(an) mod J(R)

for alli. Hence, if ra, thenf(/) ------ 1 modJ(R), sof() isa
unit, and splits off the desired direct summand.
Now since A is column finite mod J(R), S(an) is disioint from S(an) for

sufficiently large n. By condition (i) we may construct a second sequence
as above with these large n, and produce another element, say 2, generating
a free direct summand of F. The restriction on n guarantees that
S() n S() 0. Continuing in this way we get a third such.element, a
fourth, etc. We see thus that once the above construction is accomplished,
then we will be able to produce a sequence 1, 2, 3, such that

(1) each n is in P (i.e., is a linear combination of the a’s),
(2) S(/n) S() 0 for n m, and
(3) [n) R for all n. (For since generates a free direct summand of

F, its coordinates generate the unit right ideal, and we may then disregard
coordinates in J(R).

Before going further with these/’s let us return to the construction from
which they are to be derived. We shall proceed by induction, so assume
nl < <: n- and f, ..-, f- have been constructed satisfying (i), (ii),
(iii), and (iv). We are interested in continuing only if

Now since the matrix A is column finite mod J(R), we cn choose an N >> n
so that if n __> N, then S(an) n S(a) for all m -< n. I claim further
that we can choose n >- N such that (an)’ = I. For otherwise, if

n>= (an)’, then R and PlOP is generated by the images of
al, a, contrary to our assumption that P is uniformly big. We may
therefore choose n.+ >__ N so that (an.+)’ = I. It is clear then that we
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have satisfied (i) and (ii).
ideal containing J(R),

We must now construct fj+l. Since is a left

U U

The last relation means that there is a right linear combination of the co-
ordinates of a+ in S(a+) which does not lie in ?l. This same right linear
combination of coordinate projections on S(a+) then defines a functional
f+:F --> R such that f.+(+)e . We have thus constructed f+
satisfying (iii) and (iv).
As always our strategy will be to find in P a large free direct summand and

then invoke Eilenberg’s lemma. This will be accomplished once we show
that, if , ., is sequence of elements of F satisfying (2) and (3) above,
then the submodule generated by the ’s contains a free direct summand of F
of infinite rank.
To prove the above statement there is no harm in adding to F a large free

direct summand to guarantee that there are infinitely many coordinates at
which all the have zero projection. Choose such a free coordinate for each
n, and let S’() denote the result of adjoining it to S(). Since [) R,
there is an elementary change of basis involving the coordinates in only S’(),
which puts a 1 in the free coordinate and zeros elsewhere for in the S’()
coordinates. Since S’(t) n S’(m) 0 for n m, these transformations
define a global change of basis. After this change each has a distinguished
coordinate where it has a unit, and all other coordinates are in J(R). More-
over the distinguished coordinates are different for different n. Hence, if we
list the distinguished coordinates first, in sequence, and then the remaining
ones, the coordinate matrix for the ’s assumes the form

Ul

U2

This matrix is row finite (by definition). By subtracting multiples of 1 from, 3, multiples of . from 3, 4, etc., we may further render the
matrix zero below the main diagonal. It is important to note that these sub-
tractions leave unchanged the format of the matrix, in particular leave units
on the diagonal, in order to iustify continuing from one column to the next.

After altering the ’s in this way, it is clear that we can choose a subsequence
1 1, ’2 n., SO that if i j, / and ,. do not simultaneously have
nonzero projection on any of the first set of coordinates.
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If we list the coordinates now according to the distinguished coordinates of
the ,’s, then the coordinate matrix of the ,’s takes the form

Vl

V2

0 Vn
eJ(R)

The /’s evidently generate the desired free direct summand of F.

COROLLARY 3.3 (Kaplansky). If R is local, all projective R-modules are free.

Proof. One need only show that if P is proiective and not finitely generated
then P/J(R)P is not finitely generated. This follows from Nakayamas
lemma and the fact that P J(R)P for any nonzero proiective P over any
ring [1, Proposition 2.7].
Now from Corollary 2.1 we get

Coov 3.4. If R is p-connected and R/J(R) is left Noetherian, then
any infinite direct sum P of nonzero projective R-modules is free. In particular,
this is so if P is not countably generated.

4. Commutative rings
In this section R is commutative and spec (R) is its space of prime ideals

(Zariski topology). We shall (abusively) call R connected if spec (R) is
connected. One checks easily that R is connected if and only if R has no
nontrivial idempotents. Moreover, it is evident that R is connected if it is
p-connected.
We shall find it convenient to introduce a further notion suggested by

Serre’s treatment in [3, 2-3]. Let denote the equivalence relation on
spec (R) generated by inclusion ). We call the equivalence classes the
S-components of spec (R), and we call R S-connected if there is a unique
S-component.

Let P be a proiective R-module and e spec (R). Then P is a free
R-module of rank pe(). The virtue of S-components is that pe is clearly
constant on each of them.

PROPOSITION 4.1. Every nonfinitely generated projective R-module is uni-
formly big if and only if

(a) p, is constant on spec (R) for all projective P, and
(b) if a projective module P is locally finitely generated, then P itself is

finitely generated.
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Proof. Suppose every nonfinitely generated P is uniformly big; then surely
R must be connected, so (a) holds for finitely generated P. Hence, to prove
(a) and (b) we may, by Kaplansky’s theorem, assume P is countably, but
not finitely, generated. Then P/9)P PlOP is free of rank N0 over
R/F for every maximal ideal , since P is uniformly big. It is then clear
that pp() 0 for all , and this proves (a) and (b).

Conversely, assuming (a) and (b) we want to show that P is uniformly
big, where, again, we may assume P is countably, but not finitely, generated.
If P/2P is finitely generated for some maximal ), then (a) implies this is
so for all T2, so P is locally finitely generated, contradicting (b).

PROPOSITION 4.2. Suppose R has only finitely many primes minimal above
O. Then

(1) The S-components agree with the components, and R is a finite direct
product of S-connected rings.

(2) If P is a locally finitely generated projective R-module, then P itself is
finitely generated.

Proof. (1) Let@.,i= 1,.-. ,n,j= 1,... h be the primes minimal
above 0, with @i,i, @i" if and only if i i’. Set @ f3.@.;
then @ f3 @ is the nil radical of R. Moreover, since for i i’

@i -t- @,, R for all j, j’

it follows that @ -4- @i, R. Hence R/@ is the direct product of the R/@i
(Chinese Remainder Theorem). Since idempotents can be lifted modulo
a nil ideal, it follows that R itself splits into a direct product of n rings, each
of which is clearly S-connected; this establishes (1).

(2) First suppose P is finitely generated modulo each .. Then clearly
P is finitely generated modulo @. Hence there is a finitely generated Q c P
such that Q -4- @P P. If is any maximal ideal, then @ c 1 and P
is free of finite rank (by hypothesis), so, by Nakayama’s lemma, Q P.
Hence Q P since (P/Q) 0 for all ).

This permits us to assume (passing to R/) that R is an integral domain
and P is a projective module of finite rank, say n. Let M P be free of
rank n, so P/M is torsion. Write P (R) Q F with F free, and say M F0
with F0 generated by a finite number of basis elements of F; F F0 (R) F1.
Since the torsion submodule of F/M is contained in Fo/M, it follows that
P F0, and hence P is finitely generated (being a direct summand of F0).

THEOREM 4.3. Assume (i) R has only finitely many primes minimal above 0,
(ii) R is connected, and (iii) R/J(R) is Noetherian. Then every nonfinitely
generated projective R-module P is free.

Proof. We need only verify that P is uniformly big, by (iii) and Corollary
3.2; hence we must establish (a) and (b) of Proposition 4.1. But (ii) and
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Proposition 4.2 tell us, first, that R is S-connected, which secures (a), and
secondly affirms (b).

COROLLARY 4.4. If R has only finitely many primes minimal above zero and
R/J(R) is Noetherian, then for every projective R-module P we can write
1 el -4- e,. as an orthogonal sum of idempotents so that ei P is either
finitely generated or free as an ei R-module.

COROLLAIY 4.5. If R is connected and Noetherian, every nonfinitely gener-
ated projective R-module is free.
COROLLARY 4.6. With R as in Theorem 4.3, and X an indeterminate, every

projective R[X]-module is free as an R-module.

We conclude this section with a couple of examples to show how Proposi-
tions 4.1 and 4.2 can be disturbed.

(1) If P is the Z-submodule of Q generated by {P-liP is a prime}, then
P is locally free of rank one, but neither proiective nor finitely generated.

(2) Let R C(I), the ring of continuous functions on I [0, 1], let 9J
be the maximal ideal of all functions vanishing at some x I, and let P be the
ideal of all functions vanishing in some neighborhood of x. Then R is con-
nected; indeed every finitely generated proiective R-module is free (since I is
contractible). However, P is a countably, but not finitely, generated, inde-
composable, faithful proiective R-module such that r(P) P. It follows
that if is any prime ideal, then either (i) 1 : F, P, R,, and
evenl + P R;or (ii) c 1, P, 0, andP c 1. Thus R is neither
p-connected nor S-connected. This example, which seems to be well known,
was first pointed out to me by Kaplansky.
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