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1. Introduction
Let S be a bounded Borel set in R, n >- 2, of volume V (S), not con-

taining the origin O. Then A (S), the critical determinant of S, is defined
as the greatest lowes bound of the determinants d(A) of lattices h having
no point in S. The Minkowski-Hlawka Theorem [3] asserts

(1) Q(S) V(S)/A(S) _-> 1.

This inequality was improved by Rogers [7], [8], and Schmidt [10], [12],
[13]. The best results obtained were (i) Q (S) > 1 for n 2 (see [13, Satz
7]), (ii) Q(S) >- 2(1, 4- 21-’)-1(1 + 31-) -1 (see [10]), and (iii)
Q(S) >= nr 2forn _>_ no, whereto0.278 (see [13, Satz 11]).
In this note we improve (i) to

(2) Q(S) > 16

and (iii) to

(3) Q (S) => n log /2 cl for n >- c. (log x/2 0.346).

Our proof of (3) will be much simpler than the proof of (iii) in [13].
Ollerenshaw [5] constructed a set So in R. with Q(So) 1.317 ..., and

no set with a smaller Q(S) is known. Blichfeldt [1] proved

(4) lim SUpn- /Q (Bn) <=
for the unit ball B in R centered at O; and this is the best known upper
estimate for large n.

2. Proof of (2)
Let p be a prime. Put (x) for the image of the integer x under the ho-

momorphism from the integers onto the field F of p elements. Put for
the mapping

,.. "", (g(’)g (g() g())
__

((g()), ))

from the fundamental lattice A0 onto the vector space V of dimension n
over F.

It is easy to see that creates a 1-1 correspondence between sublattices
of A0 of index p and hyperplanes of V through the origin O. Clearly, a sub-
lattice of determinant p is mapped into a linear subspace through O. The
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number of points of this subspace will be p.-1; hence it will be a hyperplane.
On the other hand, the set of points mapped into a given hyperplane through
0 will be a lattice with exactly p-I points in every cube

c() <= g() < c() + p (i 1, ..., n);

hence it will be a sublattice of index p.
We divide the lattice points of A0 into three classes as follows"

geT1 if g 3A0;

geT if ge3A0butg2A0;

geTa if ge60.

Put (g) -, 1/4, 1 if g is in T, T, T, respectively.
In the end of this section we assume n 2.

LEMMA. Assume

Then A0 has a sublattice of index 2 or 3 which has no point in S.

Proof. Every lattice point in S must be of type T or T. Assume some
g e T: is in S. Since (g) -, g is the only lattice point in S. . (g) O,
and hence there is a line in V through 0 not containing (g). Thus there
is a sublattice of index 2 not containing any point of S. Assume next that
no point of Tisin S. Assumeg, g:, gaof Tarein S. None of Ca(g1),
a(g), (g) are 0. Applying u linear nonsingular transformation in Va,
we may assume (g) e, (g.) e:, and Ca (g) equals one or two times
e e. or e 2e, where el, e are basis vectors in V. (The situation is
still simpler if two of the a(g)’s are dependent.) Now the line
x x 0 (orxW 2x. 0) meets no pointa(g) (i 1,2,3). Hence
there is a sublattice of index 3 of A0 which does not meet S.

Let now dA be the invariant measure in the space of transformations A
of determinant 1, first used by Siegel, normalized so that

fl,

dA 1,

where F is a fundamental domain with regard to the subgroup of unimodular
transformations. It was shown in [14]

fo p(Ag) dA V(S),

where p(X) is the characteristic function of S.
Assume now A (S) > 3. Let A be a linear transformation of determinant

1. Then one will have (g) >= 1, where the sum is over those g e h0
where Ag S.
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Put differently, we have

E0 (A) + 1/2 E,0 (A) + E,0 (A) __> .
By integration over F we find

V(- + 1/2.-/-.-) >- 1;

hence V >_- . Since A (S) > 3 was our only assumption, we proved (2).

3. Proof of (3)
We may assume V => 1. Let be a subset of +/-0 whose points are linearly

independent mod 2. After applying a nonsingular linear transformation in
V2, we may assume that 2(z) consists of basis vectors el, ek. Now
the hyperplane xl + + xk 0 of V2 does not meet 2 (), and hence
there is a sublattice of A0 of index 2 not meeting z.

Assume now that S is a set with A (S) > 2. Given any linear transforma-
tion A of determinant 1, there will be a set of lattice points gl, g,
dependent mod 2, such that Ag e S (i 1, d). In fact there will be
a minimal dependent set of this kind, that is, a set of points dependent mod
2 such that every subset is independent mod 2. There will be a minimal
dependent set of at least three lattice points, since every minimal dependent
set mod 2 of two points consists of two identical points mod 2. There will
eitherb at least 3n/4 lattice points g, Ag S, or there will be a minimal
set with 3 <= d <= 3n/4. By integration over F we obtain

d=3 . gl,’’’,gd
mira dep. mod

Denote the two terms to the left by Ii, I.
the next section we will show

Clearly, 11 (4/3n) V. In

(5) 12 -< 21-’e + c3(7/8)n/2vc4.
Hence either (4/3n)V >= (4/3)log2 c5, or c(7/8)1VC4 >__ (1 c)/2,
or 212-% >_- (1 c)/2. Each of these inequalities yields

V->- nlog2- c6 forn -> c7.

Since this holds for any S with A (S) > 2, (3) is proved.

4. An estimate

We start by listing some needed formulas. As mentioned by Siegel and
proved explicitly by Rogers [6] and Macbeath and Rogers [4],

f _, p(Agl
gl," ",gmeA0

(6) i. io,.

Ag.,) dA

f f X.,) dX1 dX.,.
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Here A0 is n-dimensional, m < n, and p is a Borel-measurable function in
n X m variables. Next, let/ 0,/1, ,/m be relatively prime integers.
Then for m < n

(7)
fv p(Agl

gl," ",gin
irdep., such that

k-l,kigi is also in A

.., Ag,,,) dA

p(X1, ..., X,,,) dX1 dX,,,.

Then an inequality of Rogers [9] implies

(8)

Finally, let p* (X) be the characteristic function of a ball of volume V in
R,. Then it was shown in [13, Lemma 21] that for integers /c > 0 and
]c # 0 (i 1,...,m),fore > 0andn > n(/c,m,e)

We mention

(10) (m -t- 1)’n-m _-< - < - (m >- 2)

and

(11)

Now we are ready to estimate

I(d)
min. dep. mod

At first we take the part of the sum where g, g are independent over
the rationals. We have g gl + -t- ga- -t- 2h, where gl, g-l, h

The best way to arrive at (7) is to prove (6) as in [4], and then to apply he method
at the end of [11] to derive (7) from it.

p*(Xl) o*(X,,)o*(k,- tcx) dXl dX,,

<- ((m -l- 1)-Im-mlc "t- e)’/V.
(m q- 1)-m <- em-.

p(Agl) p(Age) dA.

f o (x) dX f or(x) dX (i 1, ..., m + 1).

This was first shown in [6].
Let now m, p+ be characteristic functions of compact Borel sets

in R, and ol p+ the characteristic functions of balls in R, centered
at O, such that
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are independent over the rationals, and using (6) we obtain

if fd p(Xl) p(Xd-)p(X J- + Xd_ + 2Y)dX... dX-dY

2-’V/d!.
Next, we take the part of the sum where gl,..., g are dependent over
the rationals, say,

;cl g W + ;cg 0 (;c integral)

We may assume that at least one ;ci is odd, but then this implies that all of
;, ;cd are odd, since gl, g is a minimal dependent set mod 2. By
multiplying our estimates by d, we may assume ]ca max (I lcl I, 1/ I).
We obtain the bound

d k>0 ,..., d-1 gl,’’’,gd--1
k odd odd, ki k such that also

k-lZkigieAo

fd,
o(X) o(X-)

k>O kl,’’’, d--1
k odd odd, ]k k

(- E: {x{) x x_.
For the terms where > 2n, say, we estimate the integral over

X,..-, X by V-. Thus we obtain

d-( + 1)-V-/d[ d2---V-/d[ n2an/--V-/d[.
Summing over k > 2n we obtain

n2a/2-nV-/d < 2-V/d
Next, let 2n,d > 3.2s c. Using (8) weobtain

= X) dX, dX,.

This last integral is for large n at most V* (3}=c7*) /= by (9) and (11). In-
tegration over X,+,, X_ gives a factor V--* V-* We there-
fore find the bound

for our part of I (d), and summation over k 2n gives 2n-"V/d!.
Finally for 2u, d c we use (8), (9), and (10) and find the bound

(d/d !) V*’2=’ ()

Putting our estimates together we see that

./,I (d) 2=-"e + c () "=V’.
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