ON THE MINKOWSKI-HLAWKA THEOREM

BY
WorLreang M. ScHMIDT

1. Introduction

Let S be a bounded Borel set in B,, n = 2, of volume V(S), not con-
taining the origin 0. Then A(S), the critical determinant of S, is defined
as the greatest lowes bound of the determinants d(A) of lattices A having
no point in S. The Minkowski-Hlawka Theorem [3] asserts

1) Q(S) =V (8)/A(8) =z 1.

This inequality was improved by Rogers [7], [8], and Schmidt [10], [12],
[13]. The best results obtained were (i) Q(8S) > 1 forn = 2 (see [13, Satz
7)), G) QS z 21 + 277 4 377 (see [10]), and (iii)
Q(S) = nr — 2 forn = ny, where r ~ 0.278 (see [13, Satz 11]).

In this note we improve (i) to

() Q(S) =z 14,
and (iii) to
3) Q(S) =2 nlogv2 — e form = ¢ (log v/2 ~ 0.346).

Our proof of (3) will be much simpler than the proof of (iii) in [13].
Ollerenshaw [5] constructed a set Sy in R, with @(S,) = 1.317 ---, and
no set with a smaller Q(S) is known. Blichfeldt [1] proved

4) lim $upp.s V' Q(Ba) = /2

for the unit ball B, in R, centered at O; and this is the best known upper
estimate' for large n.

2. Proof of (2)

Let p be a prime. Put (z), for the image of the integer « under the ho-
momorphism from the integers onto the field F, of p elements. Put ¢, for
the mapping

¢p:g = (9(1)7 e ,g(n)) - ((g(l))P) Tt (g(n))p)

from the fundamental lattice A, onto the vector space V, of dimension n
over F, .

It is easy to see that ¢, creates a 1-1 correspondence between sublattices
of Ao of index p and hyperplanes of V through the origin O. Clearly, a sub-
lattice of determinant p is mapped into a linear subspace through O. The

Received April 2, 1962.
1 For a connected account of the subject see [2].
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number of points of this subspace will be p™*; hence it will be a hyperplane.
On the other hand, the set of points mapped into a given hyperplane through
O will be a lattice with exactly p” ™" points in every cube

c(i)ég(i)<c(‘i)+p (i=1,"‘,n);

hence it will be a sublattice of index p.
We divide the lattice points of A, into three classes as follows:

geT, if ¢¢3A;
geTs if ge3Aobutge2A;
geTs if gebA.

Put u(g) = %, %, 1if gisin Ty, To, T, respectively.
In the end of this section we assume n = 2.

LEMMA. Assume
D oesniag 1(g) < L.

Then Ao has a sublattice of index 2 or 3 which has no point in S.

Proof. Every lattice point in S must be of type Th or T5. Assume some
geT.isin S. Since u(g) = %, g is the only lattice point in S. ¢2(g9) = O,
and hence there is a line in V, through O not containing ¢.(g). Thus there
is a sublattice of index 2 not containing any point of S. Assume next that
no point of T is in S. Assume ¢;, ¢z, g5 of T, are in S. None of ¢;3(g;),
¢3(g2), ¢3(gs) are O. Applying a linear nonsingular transformation in V;,
we may assume ¢;(g1) = e1, ¢3(g2) = ez, and ¢3(g;) equals one or two times
e; + e, or e; + 26, , where e, , e, are basis vectors in V3. (The situation is
still simpler if two of the ¢;(g:)’s are dependent.) Now the line
21 + 22 = 0 (or z; + 22, = 0) meets no point ¢3(g;) (¢ = 1,2, 3). Hence
there is a sublattice of index 3 of A, which does not meet S.

Let now dA be the invariant measure in the space of transformations A
of determinant 1, first used by Siegel, normalized so that

deA=1,

where F is a fundamental domain with regard to the subgroup of unimodular
transformations. It was shown in [14] that

[ oo og) aa = v(s),

where p(X) is the characteristic function of S.

Assume now A(S) > 3. Let A be a linear transformation of determinant
1. Then one will have D, u(g) = 1, where the sum is over those g e Ao
where Ag ¢ S.
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Put differently, we have

12 0en p(AG) + 32 0en, p(Ag) + 12 0cen, 0(4g) 2 1.
By integration over F we find

VG+3is+ide) ]
hence V = 42. Since A(S8) > 3 was our only assumption, we proved (2).

3. Proof of (3)

We may assume V = 1. Let o be a subset of Ay whose points are linearly
independent mod 2. After applying a nonsingular linear transformation in
V., we may assume that ¢.(c) consists of basis vectors e;, - -+, ex. Now
the hyperplane z; + -+ + 2 = 0 of V, does not meet ¢.(c), and hence
there is a sublattice of Ao of index 2 not meeting o.

Assume now that S is a set with A(S) > 2. Given any linear transforma-
tion A of determinant 1, there will be a set of lattice points g1, --:, g4,
dependent mod 2, such that Ag; e S (Z = 1,---,d). In fact there will be
a minimal dependent set of this kind, that is, a set of points dependent mod
2 such that every subset is independent mod 2. There will be a minimal
dependent set of at least three lattice points, since every minimal dependent
set mod 2 of two points consists of two identical points mod 2. There will
either be at least 3n/4 lattice points g;, Ag; ¢ S, or there will be a minimal
set with 3 = d < 3n/4. By integration over F we obtain

3n/4 1

) [ Todpaa+ X 5[ T adg) - pldg dd = 1,
F g d=3 G2 JF  g1,0rt0d

min. dep. mod 2

Denote the two terms to the left by I;, I,. Clearly, I; = (4/3n)V. In
the next section we will show

(5) I, < 277" 4 ¢ (7/8) "V,

Hence either (4/3n)V = (4/3) log2 = c5, or ¢s(7/8)™*V* = (1 — ¢)/2,
or 2%"" = (1 — ¢;)/2. Each of these inequalities yields

Vznlog2—c¢ forn=c.
Since this holds for any S with A(S) > 2, (3) is proved.

4. An estimate

We start by listing some needed formulas. As mentioned by Siegel and
proved explicitly by Rogers [6] and Macbeath and Rogers [4],

[ 3 g, -, g a4
F g1,

s gmelo

(6) lin. indep.
= / [ fP(Xl, ...’Xm)Xm ...de.
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Here Ao is n-dimensional, m < n, and p is a Borel-measurable function in
n X m variables. Next, let k £ 0, k;, - - -, k»n be relatively prime integers.
Then form < n

];' Z P(Agl’ ) Agm) dA

9L m
(7) indep., such that
k—12k;g; isalso in Ag

=k’"f”’fp(X1,-",Xm)dX1-"de.

This was first shown® in [6].
Let now p1, * -+, pmya be characteristic functions of compact Borel sets

in R,,and pf , -, pms1 the characteristic functions of balls in R, , centered
at O, such that

[ oixyax = [ p5(x) ax (=1, ,m+1).
Then an inequality of Rogers [9] implies
f M f PI(XI) M Pm(Xm)Pm+1(Z aiXi) Xm e de
< f fpl(xl) e o (X (D X)) dXy - dXo.
Finally, let p*(X) be the characteristic function of a ball of volume V in
R.. Then it was shown in [13, Lemma 21] that for integers ¥ > 0 and
E; 0@ =1,---,m),fore > 0and n > n(k, m, &)

@ | [0 X S i) aX, - X

é ((m + l)m—lm—mk2 + 8)n/2vm.
We mention

(10) m+D""m" <3<} (m = 2)
and
(11) (m+ 1)""'m™™ < em™,

Now we are ready to estimate

1@ =1 T adg) - pldgs) da.
dir 5 e

min. dep. mod 2

At first we take the part of the sum where ¢;, - - -, gq are independent over
the rationals. We have gs = ¢1 + -+ + ga—1 + 2h, where g1, -+ + , ga, b

2 The best way to arrive at (7) is to prove (6) as in [4], and then to apply the method
at the end of [11] to derive (7) from it.
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are independent over the rationals, and using (6) we obtain

2 [ e (Xap (X o+ Ka + 27) dX, - dX e dY
= 27"V,

Next, we take the part of the sum where g;, - -+, gs are dependent over
the rationals, say,
kigi + - + kaga = 0 (k; integral)

We may assume that at least one k; is odd, but then this implies that all of
ki, -+, kqare odd, since g; , - - -, g4 is a minimal dependent set mod 2. By
multiplying our estimates by d, we may assume kq = max (| &y |, -+, | ka]).
We obtain the bound

d — .

-2 2 2 o(4g) - p(Aga)p(AK™ 2091 kigs) dA
Al 550 by, ki YF gncirgaca
kodd odd, |k;| <k such that also
k—1Zk;g9;€A0

=3-DIUED N o NN P76 ARRRG A

d! 150 ki, Thay
kodd odd, (ki <k

p(E I ki X)) dXy - dX e,

For the terms where k > 2", say, we estimate the integral over
X1, -+, Xaa by V%, Thus we obtain

a4 l)d—IVd—l/d! < @YY d) < 2t Ayl g
Summing over k& > 2" we obtain
n23n/42—11n/4vd—1/d! < 2—an/d! .
Next, let £ < 2", d > 3-2® = ¢,. Using (8) we obtain

[ [ o(X) o (X)o7 T ki X) dXs - dX.,
< f fp*(Xl) o oM (X )p (B ik ki X)) dXy - - dX,.

This last integral is for large n at most V°* (3%%:")"* by (9) and (11). In-
tegration over X, 41, - -+, Xa gives a factor V¥ < V¥, We there-
fore find the bound

n(k + 1) Be’) " VY/dl £ n2P"27MVYdL < 27V d

for our part of I(d), and summation over k < 2" gives 2" "V?¢/d!.
Finally for k < 2", d < ¢ we use (8), (9), and (10) and find the bound

(@/an Vg™ @™,
Putting our estimates together we see that
D scagama I(d) < 277 + ¢ (5) "2V,
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