
DECOMPOSITION OF SUPERMARTINGALES: THE UNIQUENESS
THEOREM

BY

P. A. MEYER

In our preceding paper [1], A decomposition theorem for supermartingales
(to which we shall refer from now on as the "existence paper"), we have
proved that Doob’s decomposition problem was solvable for a supermartingale
belonging to the class (D). We shall be concerned here with the uniqueness
of such a decomposition. It will be proved more precisely that, among all
the possible decompositions for a potential, there is one and only one "natural"
decomposition. Just as in the existence paper, we are adapting to the super-
martingale case some proofs (from the paper [2]) which had been originally
designed for the case of excessive functions and Markov processes.
The reader is referred to the existence paper for hypotheses, terminology,

and notations. The numbering of theorems and definitions also follows that
of the existence paper.
We begin with a proof of the general uniqueness theorem, which leads to

a somewhat awkward characterization of the natural decomposition. A
simpler one is given in the next section, with the help of a notion of "ac-
cessibility" of stopping times. We conclude with some applications to the
theory of square integrable martingales.

1. DEFINITION 4. Let Y Yt} be a stochastic process, well adapted
to the t family, whose sample functions a.s. are right continuous and have
limits from the left (including for ). Let e and r be two positive
numbers (e > 0, 0 < r -< ). A sequence (T) of stopping times will
be called a (Y, e)-chain over [0, r] if the following conditions are fulfilled"

(i) T1 0; T(0) -< Tn+l(o)
(ii) The equality Tn (0) r holds for n large enough, except for an 0

set of measure 0.
(iii) The function s -- Ys(w) has a.s. an oscillation smaller than e on

each interval [T (), Tn+l ()[.
Some remarks may be made about this definition. We note first that it

is not empty. If we take indeed T 0 and, inductively,

T,+(o) inf {r =< r" r _>_ T,(), Yr(w) Yr.(w) > e/2},

we get a (Y, e)-chain over [0, r].
Let (S,) and (Tn) be two chains of stopping times (i.e., sequences of

stopping times which satisfy conditions (i) and (ii)). We construct a new
chain (R,), which will be called the refinement of (Sn) and (Tn), by ordering
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the values of S (o) and T () in their natural order, and taking for R()
the ph such value. If (S) or (T) is a (Y, s)-chain, the same is true for
(R).
The hypotheses about Yt} being the same as above, let A Atl be a

right continuous increasing process. We may define, for each s, the sum

_,t<__,-,,’,(.,)-’T(.,)._ (At(o,) A-;() (Yt(.,) Y-[(oo) ),

as it involves only a finite number of terms. If {At} is an integrable process
and {Yt} is bounded by some constant K, then this sum has a limit in the
L sense as s tends to 0; we designate this limit by the notation

_t=. (At- A-[) (Yt Y7).

The following lemma is the key to the proof of the uniqueness theorem.

LEMMA 7. Let {At} be an integrable right continuous increasing process, and
let Y Yt} be a right continuous martingale, whose absolute value is bounded
by a constant K. Let (Tin) be a (Y, s)-chain over [0, r]. The difference
(.) E[Y A, m Yrm (Arm+l A) ]0]
tends in the L norm, as s tends to O, to the random variable

][Et<__r (At A-I)(Yt Y-I) [0].

Proof. We establish first that, if we can prove the lemma using one par-
ticular sequence of (Y, s)-chains (s -- 0), then it is true for all chains. Let
indeed (S) and (T.) be two (Y, s)-chains, and let (R.) be their refinement.
We have, from the definition of (Y, s)-chains over [0, r],

and the same relation with (T) replaced by (S); the difference of the two
corresponding sums (.) is thus smaller than 2st[A] in norm. According
to this result, we muy compute the limit of (.) with the particular sequence
of chains we are going to construct.

Let D be the set of all 0 e t such that the function -+ Yt (0) possesses
more than n jumps whose absolute value exceeds s in the interval [0, r].
D decreases as n increases, and the lack of oscillatory discontinuities for
the sample functions of Ytl implies thut l D. 0 a.s. We may therefore
choose n so large that

AdI < s.

Such a choice being made, we define the stopping times T inductively"
First, T 0; then

T+(o) inf{r =< r’r-> T(),

Y (o) Yr,(co) I> s/2, A, (o) Ar () > e/n}.
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The result is easily seen to be a (Y, e)-chain. Now we have

E[Y A ]o] E[, Y(Ar+

On the other hand, the L norm of the difference between (**) and the sum

(,,1) [E (f+ fT+)(d+ A,) l0]
is smaller than eE[A]. It is therefore sufficient that we prove the property"

YL+ ) AL+ )I] 0,

when e goes to 0. This expectation is majorized by the sum of two integrals"

(2)

(3) Ell (fr+ f+) (dT+ dr)[].
The sum (2) is quite easily bounded: In fact, Y+ Yr is smaller

than e, and (Ar+ Ar) than A (2) is therefore smaller than
eE[A]. Things are less simple with (3): First, the sum

--D

can be split into two parts" the contribution of those terms Yr+l Y+
which re greter thn e ( contribution which is itself smller thn 2Ke, s
there re t most n such terms by the definition of D, nd the corresponding
(A+ Ar) re smller thn e/n), nd the contribution of the terms with
Yr+, Y+ -<- e (miorized by e.E[ (A+ Ar)] =< e.E[A]).

The sum (4) is thus miorized by e. (2K E[A]).
The lst integral we hve to bound is

(5)

which is smaller than 2K. f, A dI <- 2Ke.
The L norm of the difference of (,) and (**) is thus majorized by

e. (4K + 5ElAn]), for arbitrary intervals [0, r] and (Y, e)-chains. Lemma
7 is thus proved.
We come now to the proof of our main uniqueness theorem.

THEOREM 5. Let {Xt} be a potential and belong to the class (D). There

A slight modification of this proof shows thst the L norm of the difference between
(,) nd (**) is smller then e.l[A]. We shll not need this result here.
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is one, and only one, integrable right continuous increasing process A {At}
which generates IXt} and possesses the following property: The equality

(5.1) E[t_ (At- A-I)(Yt- Y;)] 0

holds for every - (0 < - <= oo and every bounded, right continuous martingale

The right continuous increasing process A will be called the natural increasing
process which generates Xt}.

Proof of the uniqueness part. Let {At} and {Bt} be two integrable right
continuous increasing processes which generate {Xt} and satisfy condition
(5.1) for every value of r. Let Z be any bounded random variable, meas-
urable with respect to if,, and let Yt} be a right continuous version of the
martingale {E[Z[t]}. According to Lemma 7, the integral E[Z.A,]
E[Y.A,] and the sum

E[E Yrp (Ar+l A r,)] E[’. E[Yr (Arp+l Arp)
E[’ Yr (Xr Xr+l)],

relative to one properly chosen chain of stopping times (T), differ by an
arbitrarily small quantity; the same is true with At} replaced by Bt}; the
expectations E[Z.A] and E[Z.B] are thus equal. The random variable
Z being arbitrary, A and B being ff-measurable, this relation implies that
A and B are a.s. equal. Using now the right continuity of the processes
{At} and Bt}, we find that the set

{oo t, At () Bt (0)}

has probability 0; the two processes are thus essentially the same.

Proof of the existence part. We shall restate here, for the reader’s conven-
ience, some results which have been established in the existence paper.
There is a sequence of continuous increasing processes A}, whose po-

tentials {X/ increase to (Xt}, such that the random variables A are uni-
formly integrable. Let {A’t"} be any subsequence of {AS}, such that the
random variables A’ converge in the weak topology w(L1, L=), and let
{X’t ’} be the potential generated by{At’} ;the relation Ar’ E[A’ lift]-X
implies the weak convergence of the sequence (At) for arbitrary stopping
times T. There is a right continuous increasing process {A}, which gen-
erates {Xt}, such that the weak limit of the sequence (A’) is A’ the above
relation shows that the sequence (At) converges to Ar for every stopping
time T. We shall first prove that {A’t} satisfies condition (5.1).

Let Y {Yt} be a right continuous martingale, bounded by a constant
K, and let (T) be a (Y, s)-chain over [0, s]. We have just seen that the
difference

(.) ElY, A:] E[ Yr(A’ Ar)]Tp+l
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is equal to
E[Y.A:] E[, Yr, (Xr, Xr+)].

Similar relations hold for {A’ n} and {Xn}.’ As the processes {A’} satisfy
condition (5.1), Lemma 7 implies that the norm of the differences

(,n) E[Y. A:] E[ fr (A’r+
is mjorized by s-(4K + 5 sup E[A"]), quantity which is finite,
s the rndom vribles A: re uniformly integmble. In order to establish
(5.1) for {At}, it is thus sufficient to prove that (,n) tends to (,) s n tends
to infinity. According to the definition of wek convergence, the expecta-
tion E[Y.A:] tends to ElY,.A:], nd it remMns only to be shown that
E[ Yr(X: Xr+)] converges to E[ Yr(Xr, Zr+)]. Le-
besgue’s theorem implies that the expectation of ech term in the first sum
converges to that of the corresponding term in the second sum. We there-
fore hve just to prove that the sums

X,+)

end to 0 as tends to infinity, uniformly in n. We have

E[Yr,(X;; Xr,+,)] E[Yr,(Ar,+’ A

N K E[Ar+ Ar] K X+].
The sum of all these terms for p k is thus majorized by K-E[X] N
K. E[Xr]; {Xt} belonging to the class (D), this quantity tends to 0, and the
.existence part of Theorem 5 is proved.

This reasoning gives some other results Let {A"} be another subse-
quence of the sequence {A2}, with the property that the random variables
A" converge in the weak topology; there is a right continuous increasing
process {A} which generates {Xt}, such that the random variables Ar
converge to A for any stopping time T. As {A} and {A} both are ntural
increasing processes, the uniqueness part of Theorem 5 shows that A and
A"r are a.s. equal. A simple compactness argument may prove now that
the whole sequence (A) must converge in the weak sense to A.
The following theorem will be stated without proof. Similar results have

been established in the paper [2] for additive functionals.

THEOREM 6. Let {Xt} be a potential of the class (D).
(1) Let (A t) , be the family of all natural increasing processes whose

potentials {Z} are dominated by {Xt}. The random variables (A)i,r are
uniformly integrable.

(2) Let {Z2}, {Zt} be potentials dominated by {Xt}, generated by natural
increasing processes {A2}, {At}. Assume that Z converges weakly to Zr for
every stopping time T; then A converges weakly to A r for every stopping time T.
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2. Property (5.1) seems somewhat difficult to handle. We are going
now to characterize the natural increasing processes in a simpler way. A
number of definitions concerning stopping times will be necessary for that
purpose.
We shall adopt in the sequel the following convention, which will save us

some artificial difficulties connected with the particular value 0. We shall
define t for < 0 as the trivial -field {0, ft}; if {X} is a supermartingale,
we shall set Xt E[X0] for < 0; if {A,} is a right continuous increasing
process, we shall define At 0 for < O. The time will thus take its values
in the interval ]-m, + m ].

DEFINITION 5. A stopping time T will be called a time of discontinuity for
the family {fit} if there exists a sequence (S) of stopping times with the
following properties"

(i) S a.s. increases to T.
(ii) The a-field /fis generated by U fs is different from fr.

DEFINITION 6. A stopping time T will be said to be
(a) totally inaccessible in the strong sense, if it is not a.s. infinite and if, for

every increasing sequence (S.) of stopping times, which converges to S -< T,
the event

{o:Vn, S(o) < S(o),S(o) T(o) < }
has probability 0.

(b) totally inaccessible in the weak sense, if it is not a.s. infinite, and if, for
every increasing sequence (S) of stopping times which converges to T, the
event

/o n, S(o) < T(o) < }
has probability 0.

(c) inaccessible, if there exists an event A e fir, with P[A] > 0, such that
the stopping time

TA(o) T(o) for o eA,
for

is totally inaccessible in the weak sense.
(d) accessible, if T is not inaccessible. We emphasize that must be

considered an accessible stopping time.
(e) left approximable, if there exists an increasing sequence (S) of

stopping times, such that

P{Vn, S < T; lim S T} 1.

DEFINITION 7. Let {At} be a right continuous increasing process. We
shall say that {At} charges a stopping time T if the event {At(co) A(0)}
has a strictly positive probability.

THEOIEM 7. A right continuous integrable increasing process A} is natural

if and only if
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(1) For every stopping time S, and every sequence (S,) of stopping times
which increases to S, the random variable As is measurable with respect to the
(r-field /,

(2) {A} charges no stopping time T, totally inaccessible in the strong sense.

Proof of the necessity. Let {A} be a natural increasing process; we have
seen that there is a sequence of continuous increasing processes (A}, such
that A converges weakly to As. The random variables A being measura-
ble with respect to k/ sn, the same is true for As.

Before we establish assertion (2), we shall prove a lemma:

LEMM 8. Let T be a stopping time, totally inaccessible in the strong sense.
There is a right continuous, uniformly integrable martingale Y {Y} whose
only discontinuity is a unit jump at time T.

Proof. Let U} be the right continuous increasing process

Ut(o) 0 for < T

Ut() 1 for => T

The strong total inaccessibility of T is equivalent to the regularity of the po-
tential generated by Ut} this potential is thus generated by another increas-
ing process {Vt}, which is continuous. We therefore have

E[V U ]] U V.

The second member is the martingale {Y,} we are looking for.
Let us show now that assertion (2) is implied by this lemma. Let c be

positive constant, S the first time Y,(0) exceeds the value c, {Y} the
martingale obtained by stopping {Y,} at time S; the martingale {Y}
is bounded, and we have, using (5.1),

E[(Ar- Ar_)(r; r;_)] 0.

The result follows as c tends to infinity.
Proof of the sufficiency. We may obviously restrict ourselves to the case of

.a purely discontinuous increasing process {A,}. We begin with an easy
remark: Let {Y,} be a right continuous bounded martingale, and let (S)
be a sequence of stopping times which increases to a stopping time S. If H
is any event in k/n ffs, the limit

is equal to O; this follows from (1) and the martingale property.
We shall "extract" from {At} a natural process in the following way: We

choose a positive number e, such that P{supt (At AF) -> e} > O. Let T
be the instant of the first jump of [Atl whose size exceeds e. The stopping
time T cannot be totally inaccessible in the strong sense, and so we may find
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stopping times S. and S, such that the sequence (S) increases to S, and
the event

/S(o) <: S(o) n,S(o) T() < }
has a positive probability. We consider the following process"

Bt(o) 0 for < S(),

limn[As() Ash(co)] for t-> S().

Let r be any positive number. The expectation

E[,-’t<=. (Bt B-;) (Yt YT)]
is equal to

lim I (As As,)(Y,s Y,s, ) dP,

which is zero. Condition (5.1) is thus satisfied, and {B} is a natural process;
the process {At Bt} possesses properties (1) and (2), and so we may apply
again the same procedure. If we take into account the fact that a series of
positive increasing functions on [0, + m ], which converges to a finite value at
infinity, converges uniformly on [0, + m ], we see that we may in fact go on
transfinitely. The process {At} must then be reached after a countable
number of steps, and we find therefore that {At} is a natural increasing
process.

3. This section will contain a more detailed study of the notion of accessi-
bility. Its results are independent of the preceding ones, and will not be used
afterwards.

THEOREM 8. A stopping time T is inaccessible if and only if there exists a
right continuous, uniformly integrable martingale Yt}, such that

P[{Yr YT}] > O.

Proof. If P[{Yr # Y7}] > 0, there is an e > 0 such that one at least of
the events

A {Yr() > YT(o) -+- el, A’ {Yr() < YT() e}

has a positive probability. Let us assume for instance that P[A] > 0, and
prove that T, is weakly totally inaccessible. We consider a sequence of
stopping times Tn which increase to Ta, and the sets

B {o: T(o) < Ta()},

B {o:Vn, T(o) < Ta(0) < m}.

Using the martingale property, we get

f., Y.,, dI:, f.,, Y,. dI’,
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Yr being taken as Y when T is infinite.
uniform integrability, we obtain

Passing to the limit and using

or

lim Yr dP fn, Yr dP

NnBn)N{ TA-----} NnBn)n{ TA=Z}
Y dP -4- fB Yr dI,

which contradicts the hypothesis that Yr majorizes Y - on B, unless we
have P[B] 0; T is thus weakly totally inaccessible.

Let us suppose conversely that T is inaccessible. There is an event A e fir
such that the stopping time T is totally inaccessible in the weak sense. If
it happens to be strongly totally inaccessible, then the existence of the mar-
tingale Y} follows from the proof of Theorem 7. If it is not strongly totally
inaccessible, there exists a sequence of stopping times S, increasing to a
stopping time S, such that the event

has a positive probability. We shall prove that B (which belongs to
does not belong to the a-field / ffs this will imply the theorem, as we may
take for Yt} a right continuous version of the martingale {P[B Yt]}.
Assume indeed that B belongs to / Ys. It is possible to find an increas-

ing sequence of integers n, and a sequence of events B e 5:s, such that

P[ (B n B) u (B n B)] <: P[B]/2.
Let C be the intersection B n B. n n B, and let C be f3 C.
positive probability. Consider now the stopping times

C has a

R() S(o) foreC; R(0) foroC.

The sequence (R) increases to the stopping time To, which contradicts the
weak total inaccessibility of Tx.
The proof of Theorem 8 gives the following"

CoRollaRY. Assume that the family ff} has no time of discontinuity.
total inaccessibility in the weak and the strong sense are equivalent.

Then

THEOREM 9. A stopping time T is accessible if and only if it is possible to
find an increasing sequence of stopping times T) with the following properties:

(i) limT T; T() < T(w) a.s. foreveryn,
(ii) fir /ffr.

Proof. The sufficiency follows immediately from Theorem 8 and from the
well known martingale convergence theorems" no uniformly integrable
martingale can have a discontinuity at time T under conditions (i) and (ii).
Let us suppose conversely that T is an accessible stopping time, and let 9 be
the family of all events A e fir which possess the following property:
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There is a sequence (S) of stopping times, which increases a.s. to T, such
that S (0) < T (o) a.s. on A for every n.

Let us prove that contains every countable union of its events" We con-
sider a sequence (A) of events which belong to , their associated sequences
of stopping times (S), and their union A. For arbitrary integers m, p we
choose an integer/cm such that

P[{ T (0) Sk.p(0) > l/m}] _-< 1/2m+.
We may assume that/cm increases with m for each p. We take then

S (o) inf
The stopping times Sm are smaller than T, strictly smaller than T on A. It
remains to be shown that limm S T a.s. This follows from the inequality

P[{ T () S() > i/m}] =< , 1/2+" 1/2.
We may thus find an event A in such that

P[A] supers P[G].

The stopping time Tx, (where A* is A) must then be totally inaccessible
in the weak sense; T being accessible, A must be a.s. empty, and this
proves the existence of a sequence (Tn) which satisfies condition (i). Using
accessibility again, we find that it satisfies condition (ii), and Theorem 9 is
proved.

COROLLnY. Assume that the family {t} has no time of discontinuity.
a stopping time T is accessible if and only if it is left approximable.

Then

If the family {fit} has no time of discontinuity, it is possible to give another
simple characterization of the natural increasing process which generates a
potential {Xt} of the class (D). Let T be an accessible stopping time, B an
event in fir; the stopping time T. being accessible, we choose a sequence
(T.) of stopping times which increases to T. a.s. and takes values strictly
smaller than T.. Let {At} be any right continuous increasing process which
generates {Xt}. The relation

E[Xr Xr.] E[Are Ar]

gives, through a passage to the limit,

or
E[X, Xr,] E[Ar,

f, (X- X,) dP (At A) dP.

The event B being arbitrary in fir, the integrated random variables must
be a.s. equal. We may express this fact in the following manner: The ac-
cessible discontinuities of Xt} a.s. are negative jumps.
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We construct now a right continuous increasing process in the following way"
Let s be a number, and let T, T, T be the instant of the first, second,

,/th iump of/X} in the interval [0, s], whose size exceeds . According
to the proof of Theorem 9, each T is the infimum of two stopping times T
and -i the first of which is accessible, the second being totally inaccessible.
Then we define {A} as the sum

We get a right continuous increasing process, which charges no totally in-
accessible stopping time, and therefore is natural. We let e tend to 0. The
above computations show that the expectations t[A:] are majorized by
E[A]; these processes converge thus to a natural increasing process, which
we shall call the sum of all accessible discontinuities of {X,}. It is now easily
seen that this process is the discontinuous part of the natural increasing process
which generates {X,}. Every right continuous increasing process which
generates {X,} possesses these discontinuities; the natural process is thus the
"smoothest" one among them.

4. The most interesting applications of our theorems occur in the theory of
Markov processes. We are then given a compact metrizable space E and a
strongly continuous Markov semigroup {P,} on the space C(E) of all real-
valued continuous functions on E. We have explained at the beginning of
[2] (after Hunt and Blumenthal) how to construct a canonical Markov
process which admits that transition semigroup; we shall denote by {X,} its
random variables, and by fi;, the completed a-field generated by the random
variables Xs, s =< t, as explained in [2].

THEOREM 10. (1) The family {} has no time of discontinuity.
(2) A stopping time T relative to the family {if,} i accessible if and only if

the process {X,} is a.s. sample continuous at time T.

Proof. The well known theorem of Blumenthal asserts that, if T, is an
increasing sequence of stopping times with limit T, then Xr. tends a.s. to Xr
on the set where T is finite. It follows that a time T which bears discontinui-
ties of the process {X} cannot be left approximable.

Let us translate assertions (1) and (2) into the language of martingales:
(1) means that, for every integrable random variable Y, every increasing
sequence of stopping times Sn which converges to S, ][Y ffs.] converges a.s.
to ti;[Y ffs]; (2) means that, if the sample functions of {X,} are continuous
at time T, then the same is true for those of the martingale {E[Y if,I}. Let
H be a linear space of integrable random variables which is dense in L1; it is
sufficient to prove that these relations are true for random variables which
belong to H. Let indeed (Zn) be a sequence of random variables which con-
verge to Y in the L sense, and let {ZT}, {Y,} be right continuous versions of
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the martingales E[Z fi;t], ElY fit]; using a well known inequality of Doob,
we find that

),.P[supt Yt- Zl>_- ] -< Eli Z" Y I].
If some continuity property holds for the sample functions of the {Z}
processes, it is thus also true for the sample functions of {Yt}.
We choose now for the space H the linear space spanned by the random

variables
Z al Xtl a. X.... a, , Xt,,

where al, an are functions in (E). The random variables
Z, E[Z It] are easily computed; for instance, if belongs to the interval
[ti, ti+l[, we have

Zt a o Xtl a o Xt,.Pt+I_t(X, b),

where b denotes a function in e (E). The verification of the properties of this
martingale is now standard, and will be left to the reader.
One particular consequence of Theorem 10 was used in the paper [2] (Lemma

2.1 of the second part); Dr. J. W. Woll pointed out to us that the proof given
therein was wrong. No attempt will be made to fix it here, as the results we
have proved are much more general.

5. We shall give some applications of the existence and uniqueness theo-
rems we have proved to the theory of martingales. We consider only square
integrable martingales, more precisely, martingales {Yt} such that

supta+ E[Yt] < .
This is only apparently stronger than square integrability, as any square
integrable martingale satisfies this condition on every finite interval. The
extension to general square integrable martingales will be obvious, and will be
left to the reader.
We are going to prove that such a martingale may be decomposed into one

"fixed discontinuity part", one sample continuous part, and a continuous sum
of "pure iump type martingales." The analogy with Paul Ltivy’s decompo-
sition of a process with independent increments is very striking. We shall
need for that purpose the following definition:

DEFINITION 8. Let {Xt} and {Yt} be two square integrable martingales;
we shall say they are orthogonal if the process {Xt. Yt} is a martingale.

This terminology is iustified by the remark that, if one of the random varia-
bles X0, Y0 is equal to 0, then the expectation E[Xr’.Yr] is equal to 0 for any
stopping time T.

Let {Xt} be a right continuous martingale with sups E[X] < o, and let
(S) be any sequence of stopping times which increases to a stopping time S.
The random variable Z lim (Xs Xs.) is easily seen to be square integra-
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ble; as it is s-measurable, and its conditional expectation with respect to
/ fi;s. is equal to 0, any right continuous version Zt} of the martingale
{E[Z St]} is equal to 0 up to time S, to Z after time S. Let {Y} be the
martingale {Xt Zt}; the martingales {Zt} and {Yt} are orthogonal. Let
indeed A be an event in t we have

n{l n{<}

The random variable Z.Isl is -measurable; the first integral is thus
equal to

fa Z.Y

On the other hand, the event A n {t < S} belongs to the -field Ss, and
thus to s. The second integral must be equal to

fa Z. dPYs

as Z is s-measurable; now the equality Ys Xs Zs lim Xs, and the
fact that Z is orthogonal to any random variable which is measurable with
respect to s, imply that this integral is 0. Therefore, we have

f. Z. Y dP f, Z. Y dP f, z. Yt dP.

The expectation E[Y] is smaller than E[X]. Operating in the same way
with {Y} instead of {Xd, and going on transfinitely, we split {X} into a sum
of two orthogonal martingales" {X}, the "sum of all fixed discontinuities
of {Xd", and X’}, a martingale which has no fixed discontinuities in the
following sense" For any increasing sequence of stopping times S, which
converges to S, lim X’. is a.s. equal to X’.
The discontinuities of/X’} are much more difficult to handle. We shall

need some preliminary lemmas, one of which is an improvement of Lemma 7.
It has been separated from Lemma 7 to avoid complicating too much the
situation at that time.

Let {Y,} be a right continuous martingale with sup, E[Y2,] < , and let
a, b be any numbers with a < b and 0 [a, b]. We denote by T1, T., ..., T,
the first, second, nth instant in [0, t] where a sample jump of {Y,} occurs,
whose value lies in the interval [a, b[; the set of stopping times
T1, ..’, T,, will be designated by Jr(a, b). The union of all Jr(a, b)
for

(a,b) (1, m), (1/2, 1),..., (1/2"+1 1/2"),...

will be written J+ we define in the same way J7 and J J+ u JT.

LEMMA 9. For every e > 0, we have

E[r.s,(,=) (Yr- YT)] =< Ei(Y,- Y0)].
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Let (ti) be any subdivision of the interval [0, t]; in the equality

l[i (Yt,+, ft,)=] [(Yt Yo)51,
let us keep only the terms in the first member which correspond to intervals
(ti, t+l) such that Yt+l (o) Yt (0) >- e; taking a sequence of sub-
divisions whose step tends to 0 and applying Fatou’s lemma, we obtain the
above inequality.

Let decrease to 0; more and more stopping times are added to the above
sum of the squares of jumps. As its expectation remains bounded, it in-
creases a.s. to a random variable which we designate by rJ, (Yr YT)=;
we may define in the same manner the sum extended to T e Jt+ or JT.

Let {At} be a right continuous increasing process, such that [A] < m.
We may define the sum

As tends to 0, this random variable increases; Schwarz’s inequality and
the above lemma show that its expectation remains bounded; it therefore
converges in the L sense. Operating in the same manner with J, we
define the integrable random variable

r (A r A) (Yr Y).

LEMM 10. Let {Y} be a martingale, with sup t[Y] < (T) a (Y, )-
chain over [0, ]; {A} a right continuous increasing process with I[A] < .
When tends to O, the conditional expectation

(.) E[AY , Yr.(Ar.+ Ar)

converges in the L norm to the conditional expectation

(**) E[r (fr Y)(At A)

Proof. We shall only indicate the differences from the proof of Lemma 7,
which arise from the fact that {Y} is no longer assumed to be bounded. In
fact, this boundedness was not used before we had to maiorize (4) and
(5). To deal with (5), for instance, we may split it into one innocent part,

f,’] Yr+ Y;+ l" (A+ Ar) =< e.E[A.],dP

(in the integrand, the sum ’’ is carried over the values of p satisfying
Yr+- Y+I <- e), and a disturbing one, the corresponding sum

tended over the terms such that Yr+ Y+ is greater than e. As
A r+l A+ is smaller than e, this sum is majorized by the integral, over
D, of the integrable random variable ’r. (Y, Y). If n has been
taken initially large enough, the integral

(r (Yr Y):) dP
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is arbitrarily small. The integral (4) can be handled in a similar way, and
the lemma follows.
The result of Lemma 10 may be easily carried over to an. interval It, ].

The (Y, e)-chains being now relative to this interval, the sum

(.) E[A.Y. AtYt , Y’m(Arm+l Arm)

converges in the L norm to

(**) E[r+.r()>, (Yr Y)(At A)

We are coming back to the case of a right continuous, square integrable
martingale Y {Yt} without fixed discontinuities. We begin with the
following lemma"

LEMMA 11. For every e > 0, the process

St _r+, (.) (Yr YT)

is an integrable, right continuous increasing process.

Proof. The only assertion which is not quite obvious is that about in-
tegrability; it follows from Lemma 9 and the inequality, if T belongs to
J (, ),

Yr- Y7 <= (Y,- YT)/e.
Let now be a positive number smaller than e. We obviously have

This difference, which we shall designate by -t is a right continuous in-
creasing process. As its discontinuities are jumps of {Yt}, and {Yt} has no
fixed discontinuity, they must be totally inaccessible in the strong sense.
The potential ’St is thus regular, and Theorem 3 from the existence paper
implies that {,t is generated also by one continuous increasing process
{G’}. We may define in the same manner processes {G}. The uniqueness
theorem implies that

G’=G +G.
We denote by {C’}, {C} the martingales {S’ G’}, {S G}.

LEMMA 12. The random variables C are square integrable, and the follow-
ing properties hold:

(i) E[(C Ct’)2 It] E[r,+.(’,),r(=>>t (Yr Y;)" ,1.
(ii) The martingale {C’} is orthogonal to every square integrable martingale

Xt} which has no common jump with it (which means that A r A7 0 a.s.

for every T e J (e’, e) ).

Proof of (i). We shall establish together the integrability of (C:’) and
the relation (i). Though the proof would work with any stopping time T
instead of t, we shall give it only for the case 0. Let r/be a positive
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number, and let (T) be (Im ,)-chain of stopping times over [0, ].
We already know that Sr’+l Sr is squre integmble, and the same is

’ ’ is a continuoustrue for Gr+
increasing process. We may therefore write, using the martingale property,

(c,+ c,) I0]

g,)l 0].
When tends to 0, the first sum in the second member tends to the second

member of (i), while the two lst sums converge to 0 in the L sense (their
expectations being respectively bounded by .[G] nd 2. [S’].

Proof of (ii). We shll pply Lemm 10 (or rther the generalization
which hs been pointed out fter Lemm 10), replacing in its statement Y}
by X}, nd A} by C’}, which is difference of right continuous integmble
increasing processes. The hypothesis that [X} nd [C’} hve no common
jumps implies that (**) is equal to 0, nd so the sme must be true for (.).
On the other hnd, [C’} being mrtingle, ech expectation

is equM to 0. It follows that [XC Xt ]ff] 0, nd this is the
definition of orthogonality.

THEOREM 11. Let Yt} be a right continuous martingale without fixed dis-
continuities, such that [Y] < . There exists one, and only one, right con-
tinuous martingale {C} with the following properties"

(i) The jumps of C} are exactly the positive jumps of {Yt}.
(ii) {C} is orthogonal to every martingale which has no jump in common

with it.

The martingale {C} will be called the compensated sum of the positive jumps
of Y,}.

Proof. We shall show that the random wriables C: C converge in
the L sense to a random variable C; let {C} be a right continuous version
of the martingale {E[C lift]}; as the conditional expectation operator di-
minishes norms, it will follow that C converges to C for every stopping
time T.

It is sufficient to remark that

s[ (c c:)] s[ (cf) ] [E,,.) (f f;)"]
(Lemma 12); Lemma 9 implies that (C:) satisfies the Cauchy condition, and
we thus have convergence in L.

Let us prove now that, if T is a stopping time which belongs to J (, ),
then {C} has at time T a jump equal to Yr YY. Indeed, if this were
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not true, the martingale {Ct+ C’} would have a iump equal to

(C+r C+r-) (Yr Y)

at time T for e < e. According to Lemma 9, we would have

E[(C+ C’) 2] >= E[(C+r- C+r-) (Yr- YY))"],
and this would contradict the convergence in norm which has been established.
On the other hand, the relation

t[ (C+) 21 t[r,,+ (fr YY)3]
which follows from Lemma 12(i), implies together with Lemma 9 and the
above remarks, that {Ct+} cannot have any jump besides the positive jumps
of Yt}.

If a martingale {Xt} has no iump in common with {Ct+}, it has no iump in
common with any {C}; it is thus orthogonal to {C} (by Lemma 12(ii)),
and a passage to the limit gives (ii).
Only the uniqueness remains to be shown. Let {Dr} be any martingale

which has the same iumps as {Ct+}; Dt} may be written /Xt + Ct+}, with a
sample continuous martingale Xt}. If {Dr} has property (ii), {Xt} must be
orthogonal both to {Dr} and {Ct+}, and thus to itself; this proves that
{Dr} {Ct+}.

All that has been done for positive iumps could have been done for negative
ones; this would have led to processes {C7}, {C7}. The martingale
Ct Ct+ C7 is the compensated iumps of all jumps of {Yt}.
8ome emphasis must be put on condition (ii) of Theorem 11: It character-

izes the "pure jump type" martingales, i.e., those martingales which possess
no continuous part. The proof at the beginning of Section 5 amounts to
saying that this property is shared by the fixed discontinuity part of any
martingale.
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