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1. The present paper is a sequel to [1], which had the same title. We
shall refer to this as I, and, e.g., to its Theorem 3 as Theorem 3(I).
The classes of trigonometrical polynomials

f f,(t) "a,em
(t.p. or t.p.(n) for short) with which we were and shall be concerned are as
follows.
We have first two classes of f fn (n arbitrary) with "unitary" coefficients,

complex and real respectively

e" f-- ’a,e", Jal 1;

" f cos (mO + ).
We consider further a wide generalization of , namely the class ff of

f a cos (too a) with real a satisfying

(K) ma kn a,

where k is a positive constant (it is of course a positive absolute constant
for ).
We suppose usually, to avoid trivial exceptions, that a0 0. When ex-

ceptionally we use an f with a0 0 we could tacitly suppose that it was
replaced by f(0)e, with trivial derences in behaviour.
We distinguish also a class of "reasonable" t.p." the function

n sin(2m+ 1)
=0 2m + 1

(which we shall meet below) is "unreasonable"; its factor n is spurious,
and the important mean square a is of the same order, namely n, as a.
We may insist that a "reasonable" t.p. should satisfy (at least) a < a(m),
where a(m) is independent of n. In the context of our present subject it is
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2 J. E. LITTLEWOOD

appropriate to require

(i) E lain > Kn

(ii) am < Km,
for some positive a;

where in the light of (i) we may suppose t7 > -1/2 (generally we have t7 >- 0).

Notation. We denote positive absolute constants by A, and positive con-
stants depending only on, e.g., a, by A(a, ) or A,,. Constants whose
nature is irrelevant we denote by K. A’s and K’s are not in general the
same from one occurrence to another" when we wish to identify A’s [or
A(a, t)’s] temporarily we use suffixes 1, 2, .... We use suffixes similarly to
identify, temporarily, sets of points, etc. The use is temporary, and we re-
start suffixes at 1 when we proceed to new matter.

O’s are absolute, and 0’s depend only on .
The range (-r, r), qua set of points, we abbreviate to E0.
For a g(0) of class Lx, X > 0, we use the usual notation

Mx(g) .-Ig d
E01

g dO

and for a g defined in a subset E of E0 we use

1 >‘da

We consistently abbreviate e"i to E(x).
Other abbreviations which we shall use frequently are" v for 1/2(n 1),
for v/n, for E(2/n), a for 1/2//r, # for E(1/4), , for v/(2/r), and t,l for

2. The theorems of I with which we shall be concerned are as follows.

THEOREM 3(I). For f e k we have:
(i) For every X in 0 < X < 2,

Mx(f) -<_ (1- A,)M(f).

(ii) For every q > 2,

M(f) >- (1 + Ak,)M(f).

(iii) Ill < (1 A)M2(f) in (positive) measure A of O.

The three results were shown to follow fMrly easily from

THEOnEM 3’(I). M(f) <i (1- A)M.(f),

a particular case of (i). We will take the deduction for granted, and treat
Theorem 3’(I) as the equivalent of Theorem 3(I).
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THEOREM 4(I). Let ql, , a be constants satisfying

ql 2, 0 <= q, a >= O,

and let f k Suppose now that

iql (f) <- (1 + a)i2(f).
Then

d
d-- {M(f)} > BM(f) ( <- <= q), where B A(k,q,,a).

In connexion with Theorem 3(I) we study what happens for means
Mx(f, E), where E is a subinterval of Eo.
Our concern with Theorem 4(1) is to prove by an example that we cannot

replace by 0" the theorem is then shown to be best possible for f e ffk in the
sense that none of its conditions can be relaxed. This was stated in I with a
proof for the conditions other than > 0. A counterexample for " 0"
was given, but without proof (which needs in effect the new work in the
present paper).

3
rather surprising properties.

(2)

The other main theorem of I is about a particular f(0) F(0) with
Let

/2(1) n---- 1 (mod8), - 1/2(n- 1), -E(2rn-),

(3) F(0) F(0) o(+)/2e (I 0[ _-< r).
m--0

We will begin by a further study of this function.
The results are in terms of Fresnel integrals and allied functions. I will

begin by giving a "dictionary," D, of what is relevant: proofs (of what was
not already known) are to be found in I. I alter the original notation slightly..
We denote the range (0, ) of 0 by R, and for an arbitrarily small positive

i, (8, r ti) by R. It is necessary to treat the ranges (0, ), (-, 0)
sepurately. We accordingly adopt the convention that 0 satisfies 0 =< 0 _-<
[and distinguish F(0) and F( 0)], using for a variable in r, ). We
associate with 0 [of (0, r)] a number h => 0 defined by

(D1)

What we state is a part result" we omit another part with which we are not here con-
cerned.

It is easily seen that (d/dX) {Mx(f) exists for a t.p. when > 0. In I the result was
stated in difference" form.

In I, n was merely supposed to be odd; the stronger assumption has minor conven-
iences.
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We write

(D2) 01 - 0 (0 =< 0 =< r), kl X(01) -- k,

[we abbreviate (the constantly occurring) 1/2v/ to ], and note

(D3) n0 4k, X()

We define, for the range 0 _-< k < ,
(D4) Z Z(X) V(X) + iU(X) ,E(-X) E(x) dx, , (2/r)1,

(DS) U U(X), V V(X) decrease from U(0) V(0) 1/2 as X increases
from 0 to .

4. The theorem of I referred to is (in our present notation) as follows.

Let n 1 (mod 8), and, for It <= -,
E (1/4r) occurs so often that it is convenient to abbreviate it to 7.

(D8) V 1 1.3.5 1.3.5.7.9

and we have Z 1/2i/h-1 -t- 1/4/X- -t- 0(X-).
U 0{(X -C 1)-1}, Z 0((X + 1)-1}, Z’= 0{(X - 1)-}

(D9)
(X >__ 0).

The definition (D4) of Z, U, V may be extended to negative values of X,
and we have

z(- v(- + iu(- /2,,
(D10)

Z(--) 1 + i- Z(X) x/2,- Z(X).

[()1/2 loT E(t2 + 21t)dt= E(--l2){u(k) u(k + T)/

(Dll) E(--l){u(--]c-- T) u(--])},

where (lc) E(lc)Z(lc) , E(z) dz.

We observe finally that Xl and Z(Xl) occur only in the eontext 0 -< X -< o
(corresponding to 0 -< 0 _-< -)" we abbreviate

(D6) Z(0) 2-1/n, E(1/4r).

(D7) Z’(X) -/- 2XiZ(X).

U, V have the asymptotic expansions, for large h (> 0),

U 1 1.3 1.3.5.7
.+2X 2+.X 2+.X
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n-1

F(t) F,(t) o, e’ti, 0m 0m(m+l)/2, 0= E(2m-).
mO

rill2. T--1/2-t-We have M2(F) For <-_ 0 <= we have the following estimates
for] F I2, noting that F O

(I F(0)]/) 1 W cos x -t- 1/2W

0(--+),+ {W sin x sin nO (W cos x W )cos nO} -where

W= 2{U(X) + V(X)} 21Z ,
and

W(O) 1,

The upper and lower bounds of lF/g 12

2x - arctan (U- V)/(U - V),

x(o) o.
as nO increases through 2- (which leaves

unaltered to error 0(-1) are, to error 0(-+),

92(X), m2(X) 1 W cos x + 1/2W :t: W(1 W cos x + 1/4W) /2.

We have m(O) O, and max i(),) 1.347 at 1.45 ..., so that

IF(t) <-- 1.35 for all t, and min F(t) < 0().
For -+ <l<- r we have lF(t)l-- -b 0(-), and for - _< -_.< r

we have iF(t)i + 0().

We proceed now to extend this in several ways: (a) we estimate F instead
of IF[ (b) we introduce a function which is more fundamental than F
(F is a combination of (t) and
O(n-), i.e., n times smaller than the individual terms. (c) is not a mere
luxury, since it is required in developments; if it is found surprising, the ex-
planation is that F (and ) is a kind of cousin of the elliptic O-functions.
The approximation, in fact, could be carried in principle to 0(-), for any
given numerical

5. We define

(J)(t) o,e"i, 1/2(n-- 1) (Itl --<r).

It is then easily seen thut o__ o (m <- ), und so

F(t) (t) - e(-)*(--t) o e, F(--t) e-(-)*F(t) (It[ _-<).

We recall that v E(1/4r), a 1/2’/, Z Z(),), Z1 Z(), where , z
are defined in (D1, 2), Z and Z in (D4, 11).

THEoaE 1. We have

(i) (0) 1/2w/2{Z-b vE(1/2nO-- 1/2O)Z} + X-F O(p-2) (0 <= 0

_
r)

where
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(ii)

(iii)

where

(iv)
X {1/2-k- 6)o() + 6)(0)E(-1/2nO) -k--(2’)1/2Zq

.- #-l{aZ - aE(--1/2nO + 1/20)Z1 + aE(--h + 1/2) + 6)(O)E(-1/2nO)}.

In these formulae the 6) O)’s (not the same at different occurrences) are elementary
functions of O, independent of n, regular in 0 < 2r; and they are expansible as

am 0 or b -’km, with radii of convergence 2r in 0 and 2 in ,
[twice the extreme value (r) for (O) ]. The 6)o(0) ’s are 6)’s with ao O.
The a’s are absolute constants. We do not need the explicit (and elementary)
forms of the 6) and 6)o, nor of the a’s.

There are alternative forms of (i) to (iv) in terms of instead of O; i.e., with
:i:2aX for 1/2nO, and 4-1k for O.
For F(O) we have F(-O) E[-(n 1)0}F(0), and

(v) F(O) TI + T + -Ta + 0(-) (0 R),
where

(vi) Ta E{(n 1)0}[vE(--k -k- 1/20) 1/2w/2Z{i E(--nO + 0)}],

T 1/2-k- 6)0(0) -k- 6)(O)E(1/2nO) -k- 6)(O)E(nO)
(vii) -- 1/4(2r)1/2Z’{1 -E(nO- 0)},

T3 aE(nO 1/20 ) + Z"{a + aE(nO 0)}
viii

+ aE(nO O)Z + (0) + (O)E(nO)
The result F(0) uT1 + o(u) was stated without proof in I; more precision

in the error-term was treated as irrelevant for the time being; it would in fact
have been O(u).

Proof of Theorem 1. The results for F follow from 5(ii) and those for
(0).
We can take (0) together up to a point: consider (0), where a 1.

We have for 0 R, by the Poisson Summation Formula,

(o) ( + 0) ao + (G + G_),
ml

(1) GM GM(O) Jo E{x(x + 1)n-1 + x(qO + 2M)}where dx

(M m).
The series converges (by a well-known theorem), but not necessarily abso-

lutely. Writing
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(2) x t(n/r), T 1/2(vn)/(1 n-),
we have, for M --2, --1, 0, 1,

E(t + 2/ct) dt (1/2n)l/{u(k) u(k + T)}

(1/2n)l/:{u(-/ T) u(--k)},
by (D11 ), where

t kM(aO) 1/2 (n/r) /(rO "k- 2M" + -n-)
(4)

(1 n-)T(zO/ + 2M + n-),
the last equation being by (2). (4) and (2) yield

(5) + T (n/)(aO + 2M + ) [exactly].

For m 2 we have from (4)

(6) T > k > Amn/;
_

<

_
T < --Amnl/;

and this is true also for m I when z -1 (but not when a 1). By (3),
(6), (D8), and (Dll) we have for m 2

G +

(7) -n)

(E{ (T -- k_} (n/)(mn/)_._
( + T) + (_ + ) .+ 0

Calculations from (4) and (5) give

(T+) - -1

E() ,E(O) + O(n-),
and from this, (4), and (7) we find, after some reduction

( + G_.)(o)

= 2aO
viE(vO) 2(- 0)

i

+ "- a (m + o) + (m o)

n(o)
(m + + o)

+
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6. We now consider G+/-l(rO) and distinguish z =t=l, taking first z -1,
for which, by the remark below (6) of 5, G1 - G_ behaves like G G_
for m => 2, and is found to contribute an expression of the form (8) above,
with z -1, so that

{GM(--0) -{- G_(-0)} {0(0) + E(-n0)(0)}
(1)

+ u-{(0) + E(-nO)(O)} + O(u-).
Taking now 1, we see easily that G(0) behaves like G(0) for m 2,

and contributes the form (8), with a 1; further, that

_(o) (n)’E(-cL){u(-_- T)- u(-_)}
(2)

[u(x) E(z)Z()].
We find

112.--1/2--_ (n/)1/(2- 0) ,, --k_- T X
(3) k (n-- 1)--nO+O+h+O(n-) h--nO+O+O(n-);

(k_l+ T) k h + nO O + O(n-1)
[n + 0 + O(n-) + 0 + O(n-).

(2) and (3) lead, after reduction, to

G_(O) 2E(nO O)Z + E(nO)(O) + -lE(nO)(0) + 0(-).
Combining this with the known G and 7 (G + G_) we have

{G(0) + G_M(O)} 2E(nO- O)Z
(4)

+ [0(0) + E(nO)(O)} + -{(0) + E(nO)(O)} + 0(-).

7. It remains to estimate G0(0). We have [exactly]

/+ T l0+ T X(r+0)

(allowing ourselves when a 1 a momentary departure from the conventions
about h(0) ). Hence

Go(O)

2[Z(k) --E{(/cWV)-k}Z(kWv)]

2(k+T) +4(k+T) + o(,-)}1,
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and on reduction

0(0) 1/2v2uz() + {(2)’z + ((O)E(1/2nO)}

+ u-’{aZ" + 5)(0)

This, together with (4) of 6, gives the result of the theorem for (0).

For G0(- 0) we hve

ko --X+au-1, o+ T l,

Go(-e) V2E(-){U(o) U(ko + T)}

2[2vE{ (k a-l)} Z(k a-)
Z ,E{--2aX + 2a-h a:-:}] + 0(-)

,[,E(-x: + o)( i,-:) + 0(,-)
V2{Z ,-Z’ +

ZvE(-nO + )(1 ia:-)] + 0(-).

On reduction, and combination with (1) of 6, we obtain the result of the
theorem for (- 0), and this completes the proof of Theorem 1.

8. In view of possible applications I note the following.

THEOREM 1. COROLLARY. The results for (0), F(0) are valid over
-An- with errors 0(1).

We have worked with the convention that h(t) is defined only for h 0.
We can however, for > 0, define h(-t) as -h(t), and then we have

E() dz and

In ghe range Ae- N N O, 0 and X () are 0(-), and wigh X X()

z(x) z(-x + xz;(o) + o(x) z(-x) + o(-.
In

r (0) z(x) n(0 o)1,

leg us subsgiguge 0 --0’, X’ X(O’) --X(O), and subsgiguge for (0) from

(o) (-o’)
.[n(-x’ + o’) {z(x’) + n(-o’ + o’)z(x’)l] + o().

We find easily ghag T 0(1), so ghag ghe resulg for
--A-, ). Similarly for (-0)" ghe corresponding resulgs for F(O) ghen

follow from ghe definigion of F.
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9. The results for F ]in I follow (naturally) by straightforward calcula-
tion from those about F in Theorem 1. Since Z 0{(X q- 1)-1},
Z1 0{ (1 -4- 1)-1}, we can, however, now give much stronger forms. If we
incorporate, for completeness, the upper bound for F from I, we have the
following theorem, which exhibits more clearly the behaviour at F at its criti-
cal point 0 0, and of (0) at its critical points 0 0, ,r. (-0) has no
particular importance. We recall that R is (0, ,r), Ra is (, ,r ), and that

E().

THEOREM 2. We have F( O) E{ (n 1) O} F(O) (O e R), and

(i) F(O) gE(nO 1/20 n20/4,r) -k 0{g/(g0 q- 1)} (8 eR).

(ii) In particular the error term is 0a(1) in ( <- 0 <= ,r).

(iii) For all 8, [F(-g0)[ < (1.35)g (n > no).

(iv) For all 8, ()1 < A1 .
( )+0( ) (OR)(v) (o)=o o+ },( o)+t

(vi) In particular, (8) 0(1) (0 e R).

10. The properties (iv) to (vi) of (0) enable us to construct new func-
tions with interesting behaviour (F is of course the first of these).

In the first place, O(t) (I I<- ,r) itself provides the counterexample to
"K 0" in Theorem 4(I) mentioned in 2.
Let E be the range (1/4r, -); and let #1 M2() ({n)/. Then
[ <em in E for n > n0(e), and we have

1 (fx fc )M=(6)] dt + A dt ex + A

If, e.g., h e1/2, this gives, for small enough e, and so small enough h,

Mx 3a<e 1 + 1

(by straightforward eleultion, where is smll with e)

This is incompatible with the conclusion (d/dh)(Mx) > BM. of Theorem 4(I)
fork > 0.

Further remarlcs on Theorem 4 I
(i) If 0 < K < q2 < ql, and if a (quite general complex)g has

Mql (g) <= (1 + a)M2(g) then

n{ix(g)l <-_ CM(g) (K -<_ X -<_ q), C A(K, ql, q, a),
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where D{Mx(g)} is lim sup {Mx+(g) Mx(g)}/e as ---. O.

Since Mx >= CM2(g) in the range concerned, by the convexity of means Mx,
it is enough to prove that Dm(k) <- CM, where

re(X) M - g dO.

Let E be the set in which

[gl 1, m(X) M(g, E), m2(X) M(g, CE).

Then Dm(X) O, and so

2 DIn(X) 2m(X) lim sup fc g x exp ( logegl) 1
do

lim sup fc g x {log g + e(log g )]g } dO.

Since log g 0, the coefficient of e is less than A g for a fixed but arbi-
trarily small and small enough
is finite, and

lim

In this, log g Cg (q-q), and so

as desired.

(ii) That f should be real in Theorem 4 (I) is essential. Thus, even in the
narrowest complex class e we can find fn’S behaving as follows. Given any c
in0 c l there is an f of

Mq/M: (q > 2), Mx/Mc (0 < X < 2).

Again, given any q > 2, there are f
Mq/M (q > q), Mx/M: I (0 < X < q).

In the first case we take f e if c 0; and it is easily verified that
[cn]

-2Fn(O) enei emei, with a c 1, has the desired properties when
0<cl.

[n]
In the second case emi + e(inl+)iFn(O) has the desired properties when

1/(ql- (<

11. Theorem 3’(I) [representative of 3(I)] is about the entire inter-
val E0. It is natural to inquire whether anything similar is true for a sub-

Part of this was stated in I without proof.
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interval E. Is it, again, possible, to take an extreme case, for a real t.p.(n), not
necessarily belonging to 5, to be of the form aM.(f)l 1 - 0(n-")}, > 0,
in an E? Since

f #’n sin (2m -t- 1)0
2m+l

is actually Ms(f) 0(1) in the interval (1/4r,-r), say, the question (of the
extreme case) becomes whether such behaviour is possible with "reasonable"
functions.
Our final answer, which leaves open the actual question, is that a reason-

able real fn with Ms of the order of n with positive K, can be of the form
ak nK-11s 0(1) in an E, and indeed ak n

-1/ 0(1) in (i =< 0 -< r 6).
K can be arbitrarily large.

We shall, however, begin with a study of what can be proved, for an E, on
the lines of Theorem 3(I). The arguments seem interesting in themselves
even if the actual results appear rather unexciting; they have also the interest
that, when adapted to the complete interval E0, they give an alternative proof
of Theorem 3’(I), and indeed extend it in a certain direction. Moreover, both
proofs are rather queer.

12. We begin with a lemma about any function g(0), not necessarily real
or a t.p., defined in E and satisfying Ml(g, E) :> (1 e)M.(g, E). Let us
denote by " any number satisfying 0 -< " =< Ben, where A is an absolute
constant, where the positive constant B depends only on the parameters of the
context, and where in particular the B’s in Lemma 1 below are A’s (only a
number like 10 of pairs B, A are involved in all). We denote by 3 any
("small") set satisfying 3 < ’. We have now (with absolute O’s)

LEMMA 1. Suppose that g is defined in E and satisfies
(1) Mi(E, g) >= (1 )Ms(E, g) (1 ).
Then, if E* is a subinterval of E, we have

(i) , g dO [E* I -t- O(’s);

(ii) , [g[ dO E*[ -t- O(tg).

In particular

(iii) f g dO < fp, f gldO < .
Further, there exist 1 and s such that

(iv) < Igi < + :, - < I1
in E except for a set .

This is proved in Lemmas 5, 6, 7 of I.
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13. We need next a form of Bernstein’s theorem for E, instead of the E0
of the original.

LEMM& 2. Let f be a t.p.(n), E a subinterval of Eo, and let E be E less a
small interval of length at each end. Let M be the maximum of Ill in Eo.
Then for tc >= 1

(i)

(ii)

Mk(f’, E) <- A{nMk(f, E) + M/-1},
Mk(f’, E) <__ A{nM(f, E) + nll2M}.

We have [2, I, 118, (13.18)]

_fT sin nt sin 1/2 (n + 1)f, =< 2._ sins1/2t f(O+t) dt

f’(O)l < A f(O + t)l x(t) dt + AM A + AMl--1,
--l g

M(f’, E) <__ An(k-)/k x(t) dt.M(f, E)

<- AnM(f, E) + Ai1-1

and this is (i).

AM

since x dt 0 n)

In I we used an extension of Bernstein’s theorem of a different kind; this difference
is only one of the differences in the two proofs of Theorem 3’ (I).

may depend on n, and be e.g. n-.
We do not use this, but it seems of interest in itself.

()

where

(t) sin nt sin

By Minkowski’s inequality

M(f’, E) <- M A If(O + t) x(t) dr, + M{AMI-I},

A ’,lf(O + t)

by H61der’s inequMiy, nd so

(2) M(I’,) An-’ x(*) II(O + *)l dO d,

since f x($) dt is easily seen to be O(n).
Now if E is a O b, we hve

(3) If(O + t)[ dO lf($) dO EIM(f,E) + 21M,
a--l

I(4) f(o + t)[ dO If(,) d, EI (LE).

Further, taking E Ez in (2) and substituting in it from (4), we have
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Again, substituting from (3) in (2), we have

M,(f’, E) < An- AM
xdt [M(f,E) + 21M} "

<- An{M(f, E) + 1M + AM/ln} <- An M(f, E) + An/M
if we choose n-, and this is (ii).

14. THEOREM 3. Let f f, be any real trigonometrical polynomial of degree
exactly n, E a subinterval of Eo and let E be E less intervals of small fixed length
at each end. Let

M.(f, E), M max lf in E0.
Let -n-, where is a positive constant, and let f, f( O - ). Let H
be the subset ofE in whichff, < O. Then there exists a positive absolute constant
c, with the following properties. For large n, either

(i) M(f, E) < (1- c),
or else

(ii) M(f’, E) < {o(n) -t- AM--}.
In the event of (ii) we have also

(iii) H l< o(1) + Aa(n)-i-;
and, if further Mqo (f, E) < K, qo > 2, we have also

(iv) i(f’, E) < o(n) - Aqo KM-.
In applications we usually have M o(n), and then all the M-terms

disappear.
We may normalize to u 1. If the statement about the alternatives (i)

and (ii) is false, there will exist, for any given ,f with arbitrarily large n and
satisfying

(1) i(f,E) > 1 .
If i" denotes any number of the form A (, E), it is enough to prove that for
such f we have (recalling that 1 ), the equivalent (ii) of (ii), namely

(ii)’ M(f’, E) < n - AM- for large n.

Let M(f, E) <__ M.(f, E) 1. Then from (1)

(2) 1 < __< 1, M(f, E) > (1 ).

By Lemma 1(iv) (with g f, u , E E), we have, except in an
; E,
(3) IIf[-ll<i",

It would be possible to prove that "large n" can be replaced by n no A (e, , E),
and e.g. o(1) by (), " small with e.
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and since, by Lemma 1 (iii)

we have

(4) f lfl- l ldO < .
By (4) and Lemma 2, with /,/c 1, and sincellfl2
a .p. (2), we have

( 1)ld0 <n+AM-1,

1 =f-- lis

Since, by Lemma l(iv), Ill > 1 " except in an 1 c E, it follows from
(5)2 that

so that

Hence, from (6),

f’ldO < n + AMS-1/(1 ) < n + AM5-.
Now by Lemma 2 with k 2 (say), and (4),

M.(f’, E,) < n + M5-,
f’l dO <- 2 M(f’, ) < (n + MS-).

AM5-,
the desired result (ii)’.

Taking next (iv) [to be deduced from (ii) or (ii)’] we have

Mqo(f’ E) <- Mqo(f’ E) < AKn + AM5-,
and from this and (7), and the convexity of Mx in log X,

"’qo < Kn + Ao KM-,
which proves (iv).

It remMns to deduce (iii) from (ii)’. We hsve, for 0 e H, except in an
t H,

and since f, f, have opposite signs,

f [f--f, ldO>2H--g-f >2[H-f,

0 Th fl is the only use we make of the hypothesis that f is real in deducing
(ii) from (1).

ff’l < rn + AM-.
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and so

1f f, dO > 21H r, since f $1dO and f f, dO

Hencen

21HI < r + dO f’(O + t)l dt < r + dt f’(O + t)l dt

< + d {,n + AM-},

by (iii) (with for ). This establishes (iii), and completes the proof of
Theorem 3.

15. When E is E0, the step at (1) in the proof of Lemma 2 becomes un-
necessary, and the lemma becomes the known result Mk(f’) <= AnMk(f),
Bernstein’s theorem with an extra A. The distinction between E and E is
thus unnecessary, and the final upshot is that the terms Mti-1 disappear
altogether. If now we add a hypothesis:

M.(f’) >= tcl/nM.(f), /c a positive constant,

this excludes the alternative (ii) in Theorem 3. We therefore arrive at the
following results" With c’s positive absolute constants and q0 > 2 we have"

(a) With hypotheses iqo(f < KM.(f), i2(f’) >= kx/n M(f), we have,
for large n,

ix(f) < (1- c)i2(f).

(b) Without the hypothesis on Mqo we have, for given and large n, either

(i) Mx(f) < (1 c)M(f),
or elsex2

(ii) HI < e

[where H is now the subset of E0 in which ff, < 0].
Now the hypothesis M.(f’) >__ kX/nM(f) is equivalent to the hypothesis f k

of Theorem 3’(I). Hence (a) is Theorem 3’(I) modified as follows. It is
weakened by the hypothesis about Mqo weakened by requiring n to be large,
but strengthened in that c is an absolute constant, instead of depending on k
as it does in Theorem 3’(I).

11 Observe that 0 -t- below need not belong to H or even En it belongs obviously,
however, to E/. for large n.

15 This is true for all positive a; in I we hada < 1 (though that sufficed).
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The result (b) is parallel to a result at a certain stage in the proof of Theorem
3’(I). As we said above, the two proofs differ considerably. One main
novelty here is the use of (4) 14. We go on now to complete the proof of
what we will call Theorem 3"(I), namely 3’ modified by n being large but c
an absolute constant. This argument, while different in detail from the
parallel one in I, depends, as that does (and apparently inescapably), on the
identity (3) below. There is incidentally nothing corresponding to this for
an interval E.

16. Suppose "f e ff implies that Ml(f) > (1 c)M(f) for large n" is
false, so that there exist fn . ff with arbitrarily large n, and satisfying

M(f) > (1- e)i.(f).

Then, always for such f and large n, we have H < . Since then both H
and its translation by an amount v are 8’s, and, by Lemma 1 (iii),
f fl do < r, we have on the one hund

On the other hand, for 0 e CH, f and f, have the same sign. Since by Lemma 1
(iv) we have in CH, except for 81 c CH,

we h veX If < in CH 8. Then

and then

2-- If--f, dO >= An- a, > Ak,

since f e Y. This contradicts (3) and establishes Theorem 3" (I).
18 Here, of course, the argument turns on f being real.

and

Now if f a, cos (too + oe), we have

(3) 2 f f’ dO a 2 sin=(am).

1 -1If we choose, say, ar 1, we have ramn ra < r, and so

1 --1sin (ramn- > A ramn
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17. We proceed now to construct a "reasonable" real function with the
behaviour mentioned in 11. The proof is inevitably rather long, with much
detail that the reader can ignore if he wishes.

THEOREM 4. Let k >= 3 be integral, and s a nonnegative integer. Let

g(t) gk,8(t) f0 ({(t) 1/2}k (1/2)) e"ti dt (I <- r),

h( t) g( t) g( t) dt’

so that g and h are trigonometrical polynomials of degree 1/2k(n 1 -F s, and h has
n1/, E(1/4r) Then in R [or <= 0 <- rconstant term O. Let

k--2h( O) a -t- ra log #. -t- O(tk-),
where

(k 3)
r r(k)

(k > 3).

a depends only on k, a (which depends on s) is given by

a i(1 + /) k- + 2-8/2 ’] f0 {/E(--X) 2-/ Z}- Z’ dh

+ 2 X[/nE(-X) -2-/ Z} n E(-kX)] dh s(k),

where

l(k) is not O, so that14 ak 0 for one of s O, 1. We select the appropriate s,
with a O; let sgn a and f t) ah( t). The real and imaginary parts
off then have each the property of being a real polynomial with zero constant term,
such that

f(O) a(], n)- H- 0(1) (0 R),
where a(k, n) -lal/v/2 as n ---+ . M.(f) is of the order gk-a/2
and -2 z(-4)/(-) O’s depend only on k and s, and O’s in addition on .
We use a’s for absolute (complex) constants, ’s for constants depending

only on k (b’s are used consistently in a certain sense; see below).

18. We begin with

LEMMA 3. In the range A, or 0 -< h -< ag [a 1/2v/r], let

E E(h) E(agh -+-a2 -3
t- aag-h),

This is incidentally a guarantee that the result a 0 does not depend on some slip
in the rather elaborate detail!
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where al a2, aa are absolute constants satisfying either

al > A, ai A- 2aa2 > A, or else a < -A, a-4- 2aa -A.
Let

d (agh A- a. "4- a3 h) h - a3 g--l),h2 g--1 (al "-I- 2a2D

so that

D] > Ag, D(0) alg --k
Suppose now that in A the function H(X) satisfies

H H(h) 0(1), H()(h) O(lx)

Then we have upper bounds as follows.

(i) EH dh
iD i-OJ O(M), O(M2), O(M3),

where
--3M1 (1 + /1)/.t-1, M2 l g- + l g-2 +/.t

(r 1, 2, 3).

" io/(o)(ii) (art X)EH dX t D(O)
In particular

’ iaH O
(iii) (art X)EH dX t D(O)
We have also the crude result

(iv) (a, h)EH dh 0(1) if

O(#MI), O(ttM), O(ttM).

O(t-) if l l 13 1.

H 0(1), H’ 0().
r--1(i) to (iii) are very powerful. In applications we always have l, -<_ g

and often l 12 la 1.
The results (i) follow by straightforward calculation from the identities

foEH dh E -fo LDJoFE/-/-’ [Ed()]EH dX -- E- dX;

dh FEH1x [EH’]x

" 2a2 FEHEH I_--(.Jo -.Jo iDalo

fo
x EH’ fo’ E d () dX/ (2a -l- I) dX 2a

iD

This being true for the extreme values
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The results (ii) follow from (i) when we observe that the l, for AH/t, l’r say,
satisfy

Z’ =< A(,- + ), ’ -< A(t- + Z), ’ _<_ A(Z- + l).

LEMMA 4.

For

" d
t (X -t- 1)(Xl + 1)

0(log n).

=< (x + )A +
,,o ,,/. AI (, x) + ].}

LEMMA 5. If a, b are absolute real constants, a O,

N(ax + b.-x) dx (ax’) x _b .- (b.-x)2b-X
If we wrige b-/a, ghe lefg side is

(-’) l(x + )/ax (x) x

+ o(-).

[E{a(}, + ti) E(aX2)] d}, -F 0(t-)

-j, E{a(,+ x)} dx+O(#-2

-E(X) (X) / e(-) /

which gives the result desired.

19.

(t) dt,

h has zero constant term, and g and h are t.p.(/c(n 1) + s), and h has
zero constant term. We calculate

2-- g(t) dt g(O) dO + g(--O) d

and then g(O) in R. Since (0) 0(1) in R, we must obviously have
h(O) constant to 0(1) there; but it is not obvious that h(O) need be large.
We do not calculate g(-O) itself (its behaviour is not of interest), and we
work with a foula for f g(-O) dO [by-passing g(-O) itself].
We begin with g(O) and g(O) dO.

16 We use 4 --1/2 to get rid of the term 1/2 in X and X1 of Theorem 1.
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20. Write T Z + /E(2au), 2at-l)Z1, and recall that

T a( A- 1)-1 A- aE(2atX 2att-1),)Zl -4- 0{( A- 1)-} 0(1),
z’, z" o{ (x + )-}.

From Theorem 1, and with its notation, we have in (0, r), after a little
reduction [we can, and often do, absorb, e.g., E(1/20) or E(sO) into a (P or (P0],

(1)

(2)

lf0

art

2g-1 (ag )dh;

g(O) dO P’I "i-- P zt- P’3 -4- O(t-3),
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21. We begin by disposing of P3 and P’3.
E{p(2atX 2a-X)} to E. Now

Abbreviate

T1-2 Zk-2 -Jr Z c ZI-Zf E,
pl

where c 0(1), and similarly for Tk-1. It is easily seen that in P,
the terms in E(2rauX), both explicit and arising from the expansions of Tk-2

and T-1, contribute, by Lemma 3, 0(-1) to the fox and f$ concerned.
Further since Z’, Z" 0{ (X - 1)-2}, the terms in 0(Z’), O(Z") also con-
tribute 0(t-1) to these integrals. Thus

P3 0(-3) + 0(-3) [ Z-20 dX,

P’ 0(u’-) -[- 0(-4) [ (au- h)Z’-(90

Now for p => 1, in particular for p k 2,

(2)

and similarly

0{(X -}- 1) -1} X dX

0(1) 7’ bm I--’X" 0(1),

(au h)Z-6)o dh O(u) + 0(1) [b,, [-hm+l O(u).

From these and (1),
(3) Pa 0(-3), P 0(*-3).

22. Consider now P and P.. We expand T- as before as

aZ-1 --[- c, Z-I-’Z E 2pauX 2pau-lk
pl

and observe that the sum contributes O(u-1) to the integrals x0, f;"
concerned, by Lemma 3(i) Thus we may replace T- by (2-mZ)-I in
P2 and P

(1)

(2)

Z*-l 6’o + 6’E(2auk) dX

+
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The terms in (P(2ah) in P2 and P’ may be suppressed, by means of an easy
application of Lemma 3. Next,

(3) a r log (X + 1) + b O{X(X + 1)-’1 dh

a; og (x + 1) + 0();

and

"" ),)Z-1 dh6)o

(4)

In P2 we have

()

Z-lo dh bm -m fo""
,a og (x + l) + 0(,).

0{m(h q- 1)-2} d

zk-IZ’{E(80) 1}dh ’ (4as/)m
m!

Z:, (4")m! (-) x(x + )- dX 0(),

and similarly the corresponding term in P is 0().
Finally

tO(---2-)(0 R),
(6) Jo Z-Z’ dh k-{Z Zk(0)}

+ 0(-1) (e R);

(a X)Z-Z dX k-n 2-/ + X O{(X + 1)--} dX

--. + 0(1).

From (1) to (7) we find

lO(t*-)(0eR)(8) P
[(--2--lr)tk- -- a r log t" t*- - O(t*-)

k--3 tk--3(9) P 2--r)t
-2 -- a r log t" t -t- 0 ).

(0 eR);

23. We have now to discuss P and P’I. Let

p k-1 .2--/2+r/ T dX q- T {E(4sa--X) 1} dX
(1)

P q- P,
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(2)

We have

Let

T d,

k--1

T Z -k Z[ E --I- cv Z-’Zf E, c,, 0(1).
pl

H Z-VZ (1 =< p_-< k- 1).

H is O(gZZ) 0{(X -t- 1)-(X -t- 1)-} 0(1), and H’ is afortiori 0(1).
Since H(0) 0(-+) 0(1), we have l 1 in Lemma 3, and

fo HE,dX O. +0 + O(i) 0(),

by Lemma 3(i). Similarly, by Lemma 3(ii),

(., h)HE dh

It follows that

in Ra, we have

k-1 2--k12+lrl12 foPn g(5)
(0 +. R),
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Similarly

(6)

In (6) we have

XZk dX

and so

hZkdh+ 0(1) f; XZ dX + 0(-),

- 2-kr Z d + k- --2-+(7) P= XZ d + 0(-).

In Ply, again, we may replace T by Z, and we have easily (after earlier
work)

(8)

xz dx + o(,-) o(.*-).

Ckl 2-k/2+lTrI/2 fo Z/ dX,

2-+1 + s i2-/+2 fo Z dX,akl

C2 Ckl, ak2 akl.
This disposes of g(0) and (1/2) g(O) dO; we now take up the more

eomplieaed (-0) and (1/2) (-0) dO.
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24. The abbreviation T has now served its purpose, and we may, without
confusion, now abbreviate by (what corresponds in g(-0) to the old T)

(1) T E( _2 A- 2a-l)t) 2-112/Z -t- E Z}.

We will now also abbreviate E{ -p(2aX 2a-X) to E (the new form
appropriate to -0). We have at once, for 0 e R,

(2) -g(-O) -.2/ TE(sO) dh + 0(-) 0(-).

We have also, from Theorem l(iii), (iv) [5],

(-o) o + + + o(-).

Q 2- ( X)T dX,

, + + ..
=.- (. X)[-(Z" + N(-X + X) + Z)

+ -(. +N +N + Z’ + Z’})]
We begin wigh . We may in ghe firsg place suppress [wigh error 0(-)

always undersgood] ghe germs in Z’, Z’, sinee Z’, Z" are each O (X + 1)-}.
We may nex suppress he erms of Tk-t, T-e, expanded by he rinomial

gheorem, which are of ghe second or higher degree in Z and Z, since such
germs are O (X + 1)-}, O (X + 1)-I(x + 1)-I, or O{ (X + 1)-1, which,
inegraged from 0 go , give 0(1). hus, wriging N* for N(-X + 2-X),
and E for (E*), we have- (- X) *[E_ E* + aEZ
(4)

+ E_a($Z + SE Z)(o + E + E2)] dX + 0(u-a).

All terms in Z inside the square bracket are of the form HE Z E,
with H and E satisfying the conditions of Lemma 3(ii)a, and since
Z(0) 0(-), they contribute 0(-) O(u-) to Qa. There then re-

main in the square bracket only terms of types

E(--uh + vg-h) and E(-uX + vg-X)Z, with u 1.

For these we integrate by parts on the E’s in (4), and their contribution to
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Q3 is easily seen to be O(tk-3).
(5)

25. Consider now Q2. We have first

Q2. k- (a, k) 5)E1( c,qr E* ZqEr Zi) d), c,q 0(1).

Now EI.E* E is an E of the type of Lemma 3, and )ZqZ is an H with
H, H’ 0(1). By Lemma 3 (iv) (the weakest form)

(1) Q. 0(*-).
Next,

In the second germ ghe E E* E(0) behave as in Q (where ghere was a -to spare), and Lemma a gives easily O(-a). Thus. -1/2(.).- (. x) 2 * (o)z--’z ax + o(.-),

where is ghe binomial expansion of (hE* 2-Z)-E(0). In this we
can replace E* E(0) by N(-mX2), since in ghe difference in ghe two inge-

grals, which is

" (at X)E(--mX)Z--mZ’[E{-(2m -t- 4s)at-lX} 1] dX,

we can expand the square bracket as

{--(2m -t- 4s)ai}
r!

and integrate by parts on the ,E(-m},), when we easily find the contribu-
tion to Q3 to be 0(u-3). Next, the part integrand

1/2 k--,(vE* 2- Z) Z E(sO)

in the first term of (2) is of the form

-^v - E(sO) + O(,ZZ’),

the integral f7 of each of these is convergent (integra,te by parts on
),ET*_ E(sO) in the first--the second is O{ (X - 1)-} ), and f0" is -t- O(t-).
Thus the said part integral in (2) contributes O(t-) to Q2a. We thus at-



J. E. LITTLEOOD

rive at

Q2 --1/2(2r)l/ka,k-2 (vE(--)J) 2-1/Z)k-IZ’ d), d- 0(-).

In this the integral taken to converges like

i [Z’l O{(X+ 1)1 dX,

and finally

(a) + --’k.-’ (n(-x) -"z)-z x + o(.-).

9.6. In the remaining term Q of Q2 write

Y yE* 2-1/Z, W y2-1mE Z1,

so that T- Yd- W. Then

Q.1 -2kk-3 fo""
(1)

(az ) Y-(Po d

all

Eq Z 5)0 d,.

The second term is 0(-3) by the argument used for Q2.. Expanding
yk-1 in the first (and absorbing the E(p2a-,) in E* into (P0), we have
[with c 0(1) as always]

Q2i --21c-a fo""

(2)

k--1

(au 3,) cz, E(-p,)(--2-/2)--’Z--’6’o dk
pO

+ 0(,-)

(a )Z-(o dX

We substitute (o b-. The first term in (2)2 becomes

(3)

Since

z_l_o{()_]_l)_(k_)}__{{(X-t-1)-a (k 3),

{(Xd- 1)-} (1 > 3),

the term m 1 in (3) contributes -u ra log u d-O(u-); and the terms
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m > 1 are easily seen to contribute k-O(1) lbm O(uk-3) Collect-
ing, we obtain

#k-3(4) Q.I a r log + 0(k-).
From (5) 24, (1), (3) 25, (2), (3) 26, and the present (4), we find

g(-O) dO

(5)

27. We have from (3) 24,

Q 2- (o x) gN(0) dX

ZZ EE(sO) dX + 0(-).
p,ql

In the thirdterm let H Zf Zq-, E EE E(sO). Since ZZ 0(-),
H and E satisfy the conditions of Lemma 3(iii), so that the term, which be-
comes

k--1 a, c (., X)H dX,

is of the form

Thus

(1)

zf(o) z(o),- + o(,_) , Z: o(,--)

+ o(-) o(-).

Q1 Qn -1-- Qi,

(a x) (nE( X + 2ap-zx) 2-/Z) dk,

E(4sap-zX) 1 dh.

We write (for an expression whose powers will now occur frequently)

J E( X) 2-1Z.
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Writing au-, k , and for the moment Z for Z(t) etc., we have

Q -2#- (a# + e) (E(-f) (1 + ie) -2-/Z -2-/

-2- g# e + 0()) d$

2-2 (p- t) [J kJk- {ir2yE( 2)

+ k(k 1) g-: (Z’) e] dt

--2- (J kJ- 2- Z’ e) dt T 0(-).

It is easily seen that the terms of the first integrand in contribute 0(-a)
to Q, and that the second integral also does this, so that

Q -2- (a t) (J 2-1/2 Z’ Jk-) dt W 0(-).

Writing momentarily x(t) for the integrand and replacing, as we may,

we find, on reduegion (noging ghag J(0) 0) and a regum go X as variable
of inegragion,

n -2- (. X) (J 2-z eZ’kJ-) dX + 0(.-)

1/2 k--1 j dh-- d-- Jd 2-2 J

k2isa - Z’ J-i dk

21/2 2 k-3 j-Z’ d + 0(-).

In this we have f:, Z’J- dh 0(-1), and

xZ’- dx XZ’ N{-( 1)x} dX + O(XZZ’) x,

of whieh ghe second is " 0 (X + 1)-} dX 0(1), and ghe firsg is easily
shown o be 0(1) by ingegraging by pargs on XN. Henee

( :- )1/2 dX + kp-2 J-Z’ dkQn- -v - J 2-3/2

(2) & + z: + o(-),

S= g dh, $2= hJdh.
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(3) jk /kE kh2) 2-1/2v-1kE{ (k 1)h}Z
+ E{-( 2)k}Z+ 0{(k + 1)-a}.

Now f:.E{-( 2)kZdk 0(-), by partial summation on the E.
Hence, from (3)

12 - (
_i, E(-)- ,- + 0(,-) _i- ,- + 0(,-).

For $2 we have -s 2,, E(-x) dX + 2,- X(J E(-X)) dX

(5)
2.- X {J n

In ghe lasg germ ghe inegrand is

BXZN{ (k 1)X} + ZN{ (k 2) X} + 0 (X + 1)-}
ghe ingegrals (from o of ghe firsg gwo are 0(-) by ingegragion by
pargs on gheir XN’s, and gha of ghe lasg is 0(-).
The firsg germ in S is

rom his and (2), (4), (), we have

( I"Qll ck3 + 2-a/2 jk-1 Z’
()

+ [ x{J n(_x,)l + o(.-).

29.
fore)

(1)

From (1) of 27 we have, writing ’ 28ott-1 (and 0/
-1

aS be-

-.- (. x)n(-x) ((e+ e’)x/- ex/) x,

([{2(-- 1)e + 2e’}Xl- N{2(k- 1)eXl) dX,

k--2

(E[{2( --p) + 2’}X] E[2(k p)X])
In the general term of U write 2( p) 2 h -, 2(k p) h
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and E E{ (/ p)X}. Then the term is

c -2 a X EZ X" dX.

We split this into the two parts corresponding to a and -k, and except when
p k, integrate by parts on auEk and --kEk respectively; it is easily seen
(since Z O{ (k + 1)-} that the result is 0(-). The term p k is

)
_

(h i) (h i) dX,( -x)o{(x + )-1 m x
and since 3 this is easily found to be O(g-). Hence

(2) u o(*-).

30. Consider now U. We have

(h i) (h i)
m!

For m => 2 the mth term of is

-.([ /oaum --2(k 1)i
Z EXm-IZ dX

u- --2(k 1)i + fl EhZ dh T m Eh-Z dh

The integrated terms vanish at h 0 and Z(h) is 0(-) at h a; also
Z O{ (X + 1)-}; and it easily follows that the total is O(u-), so
that

_
contributes - 70(u) 0(-a) to U. Thus, abbreviat-

ingE{- (k- 1)k} toE

--2m,-k-U (a [ dX -z [ dh)+ (-)( )i
0 0

": o

([ )= _(_) (-)

--4si.-1([_2(k 1)i Z];"
1 " 1 " )

(o) z’ dx +si "2( )i + 0(.-’) + 2( )i
..-’{0(1) + 0(1) + 0(1)}.

(1) U =. , + E{-(k- 1)X}Z’dx

+ 0(.-).



MEAN VALUES OF TRIGONOMETRICAL POLYNOMIALS 33

31. It remains to estimate U1. We have first

U U W U,

u -n%’.- [{-x + (e +
(1)

Nl-x + x/l ax,

Now the square bracket in U and U is

Ei--k(X )}{1 + 0(,-)} E{-k(X e)}{1 + 0(-)},
where 1 e + eqc-.
Hence

(z--,, E(--kX’) dh + 0(.-)

{ + o(x’) ex {-(. + )’1 a + o()

which reduces to

Since N( k) N( ) n we have- /-{ 1 + n() g -. + i( + )1 + o(.-).

U is similar. We have

U12 {1 -b O(X) } d,
2//z-2

E(--1/4rkn) (1 2kati)(a + t) dt + 0(-’),

which reduces to

U s-.’/-’{1 q- 1/2ri(s q- k)} q- O(t-).
With (1) and (2) this gives

Vl 81
k-2

71"]-I + 0 k--8
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32.

(1)

From this, (1) 30, (1) and (2) 29, we have

Q12 81z
k-2 I2-1/2r/k-1 k ( " E{-(k 1)),}Z d,)

+ -] + o(-).

Substituting from this in (1), and collecting from the result, (6) 28, and
(5) 26, we obtain a result of the form

1 f0 #k-1 k-. /z-3(2) - g(--0) dO c + a + a r log . -t- O(

(with explicit c and a).
We recall now from (8) 23,

k--1 k--2(3) g(O) cz - az + a r log (h - 1).z- + O(z-),

(4) 2
g(0) dO c z + ak2 z + a r log . - O( ),

Ck2 1/2Ckl.
From (2), (3), (4)

(5) h(O) g(O) g(O) dO g(-O) dO

ck k-1 -t- a - a r log (h + 1).-a + a r log . + 0(-)
with c c ca, a a a aa, and on reduction a has the form
stated in Theorem 4.
For further reference we recall the values

( : :n2-:- Z dX,Ck2 :Ckl

/2 jc -- dX.
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33. We next prove that ck O, or ck2 c3. This would follow at once
from M.(h) 0(tk-), a result stated for the equivalent f in Theorem 4.
But we are unable to prove this result except indirectly via c O.

k(n--1)

Let g( t) ,sothath ame Then

(1)

mare e"ti --ie-tb(t), b(t) {)(t) 1/2} (1/2),

m21aml < A f_
since I < Ate.
(2)

It follows that

(t) dt 0(),

Further, is majorized by (1 -e)-k, so that

am O(m-i).

k(n--1)1 12 2k--2 --2

2r lhl dt- lain < 0(1) m -+- (wt)

o{ ()-} + o{ ()-}.
/-) this givesIf we choose w

(3) M(h) 0(--(-)) o(-).

Now if c 0, we have [hi > A(k)-1 in (, ), which is incompatible
with (3).

34. We recall [from (3) of 23 and (2) 24] that, for 0 e R,

(1) g(O) tt-i 2i-/e"/e Zk d, + 0(-),

(2) g(--O) ---2’ T E(sO) dX + 0(,-);

and by arguments parallel to those for (1/2r) f g(-0) d0 [but much simpler,
since (i) the ltter has an extra integral sign, (ii) we need only error 0(-)
instead of the much more exacting 0(-)] we can replace (2) by

-i i/ j(2) g(-O) - .2 dh + 0(-).

where

g(t) dt (c + c)- + 0(-),

(3) c r dh, c
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From (1) and (3), and (2)’ and (3) respectively we get, for e R,

h(0) k-lAk Zk d, - O(k-),

h( 0) -1’ J -=, dX+O( ).

Since f Z dh O{ (h + 1)-(-1)}, and

dX 0(1) N( kX’) dX

O{(X + 1)-},
ig follows from

2k--3 --2 2k--3hldt<, (X+l dX O( ),

as desired.
Since (as we observed above) () is 0(1) in R, we must similarly have

h(O) constant to error 0(1) in R.
It is easily seen that the coefficient (k) of s is not 0; the proof of Theorem

4 is accordingly completed.

35. The relation c 0, i.e.,

(1) f ({E(--h2) 2-/Z} + (2-/Z}) dh 0,

establishes an identity connecting the various integrals f E(-p,)Z-’ dh
occurring in the expansion of the left side of (1); in particular, when k is
even, this is of the form

Z dh c E(--ph)Z- dh + n
expressing the left side in terms of integrals with lower powers of Z (but of
course with factors E).
The case lc 2 does not provide an example of the desired kind: it does,

however, provide us with a curiosity. We shall find that the three definite
integrals

can be evaluated in finite terms.
By arguments similar to those used in the proof of Theorem 4, but naturally

a good deal simpler, we arrive at the following result. 0 r is not singular
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for

g.(t) (t)et’ dt,

and we have for 0 of R (not merely R)

1/2 Zg(O) r

(2) g(--O) --2vlI2t fo
x
{iE(--2k2) 2/ZE(--k) + Z} dk

+ 0(log n).

Since g(O) is t.p. we hve g(r) g(-r), nd since the two f concerned
in (2) re f + 0u-) when () au, (2) yields the identity

z
_

(-x) %z(_) + z ,
which reduces, on substituting for f E(--2X) dh, to

z,, + (1+i) ZE(--X) dh.

It is not difficult to evaluate the integral on the right. We have

z(-x) (-) (x)

The integral in the second term on the right is

-( i )im [ E(- + )x E(x) dx

lira E{(--2 + is)t E(y) d dt

1I- [lim E{ (--2 + ie)t}t-’/ (Yi)m! y-/ dy dt

lim E{(--2 + ie)t} m!(m + )
dt

I i e)-- 1
lim m!(m + )

m(2i + --i 2m + 1

2o (2 + 1).

This is, as might be expected, the identity (1) with k 2.

2112(2-1/2) 2m+l
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From this, (3), and (4), we find

I _--1/2

(5)
y v) + 2ivy} dx {1/2v/ + o (v/2 + 1)

which gives

U2 V) dh and

(It is possible to give a direct proof of (5).)
we proceed to give a direct proof that

We have

+ i-’ og (W’2 + ),

UVdL

We need a third identity, and

(U -[- V) dk -}(2r).
d (U + V) -2,V, U + V 2, V
dX

fo (: + ) x fo x V(x) x xV(x) x

lira 2 xV(x) dx 2 lira x
X-oo

cos(x ) dt dx.

x xfo f (x2-- t2) dt dx + cos (x2- ) dt dx

fo
x

jl fox (sin(x=-x=)dt xcos (x- #) dx+ x
2X

sin dt + 0 + 0

So

fo (U -t- V2) d), f sin dt 41-(271") 1/2.

When l 3 it is possible to evaluate a in finite terms.

I observe finally that there is one real identity available for any even index
/ 2, namely

( )6t E(--1/2K [r) {(Y V) + 2iVY} dh O.

For/ 2 we have in particular

U + v* 6UV) d), --4 U V) UV dh
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This arises from the transformation

3Z dX " -r)

(1 + u + uv + uvw)(1 + u + u + uvw)’
which has an analogous form for general lc 2.
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