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1. The present paper is a sequel to [1], which had the same title. We
shall refer to this as I, and, e.g., to its Theorem 3 as Theorem 3(I).
The classes of trigonometrical polynomials

J=fa(0) = Zam e
(t.p. or t.p.(n) for short) with which we were and shall be concerned are as
follows.

We have first two classes of f = f. (n arbitrary) with ‘“unitary” coefficients,
complex and real respectively

n
Cu: f =2 ame™, lam| = 1;

Ru: f= 2, cos (mh + am).
We consider further a wide generalization of ®, , namely the class & of

f= D amcos (mh + an) with real a, satisfying
(K) 2wl = kn’ X am,
where k is a positive constant (it is of course a positive absolute constant
for ®,).

We suppose usually, to avoid trivial exceptions, that o = 0. When ex-
ceptionally we use an f with @, % 0 we could tacitly suppose that it was

replaced by f(6)e”, with trivial differences in behaviour.
We distinguish also a class of “reasonable’” t.p.: the function

2 sin (2m 4+ 1)6
Vn mz=0 2m + 1

(which we shall meet below) is “unreasonable”; its factor +/n is spurious,
and the important mean square . a, is of the same order, namely =, as aj .
We may insist that a “reasonable’ t.p. should satisfy (at least) | am | < a(m),
where a(m) is independent of n. In the context of our present subject it is

Received July 17, 1961.



2 J. E. LITTLEWOOD
appropriate to require

i) > |an|" > Kn* for some positive a;
(ii) |am | < KmP,
where in the light of (i) we may suppose 8 > —1 (generally we have 8 = 0).

Notation. We denote positive absolute constants by A, and positive con-
stants depending only on, e.g., a, 8 by A(a, 8) or A,5. Constants whose
nature is irrelevant we denote by K. A’s and K’s are not in general the
same from one occurrence to another: when we wish to identify A’s [or
A(a, B)’s] temporarily we use suffixes 1, 2, --- . We use suffixes similarly to
identify, temporarily, sets of points, etc. The use is temporary, and we re-
start suffixes at 1 when we proceed to new matter.

O’s are absolute, and O;’s depend only on 8.

The range (—m, 7), qua set of points, we abbreviate to E, .

For a g(8) of class L', A > 0, we use the usual notation

o) = (& [1ora0)” = (g [ 1oP @)

and for a g defined in a subset £ of Ey we use

Mg, E) = (ﬁ [1or do)m-

We consistently abbreviate ¢” to E(x).

Other abbreviations which we shall use frequently are: » for ¥(n — 1),
u for v/n, w for E(2r/n), a for 3+/m, 9 for E(4r), v for /(2/7), and u, for
vV (3n).

2. The theorems of I with which we shall be concerned are as follows.

TuaeoreMm 3(I). For f e F, we have:
(i) Foreveryhin0 < \ < 2,

M) = (1= Aun) Ma(f).
(ii) For every g > 2,

M(f) 2 (1 + Aro) Ma(f).
(iii) |f] < (1 — Au)M,(f) in (positive) measure Ay, of 6.
The three results were shown to follow fairly easily from
TaeoreM 3'(1). Mi(f) = (1 — A»)Ms(f),

a particular case of (i). We will take the deduction for granted, and treat
Theorem 3'(I) as the equivalent of Theorem 3(I).
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TuroreM 4(I).) Let qi, «, a be constants satisfying

@ > 2, 0<«=aq, a =0,

and let f € Fr . Suppose now that

M, (f)y = (1 + a)Ms(f).
Then®

L0y > BMLG) (S35 @), where B = Ak g, 0).

In connexion with Theorem 3(I) we study what happens for means
M\(f, E), where E is a subinterval of Ey .

Our concern with Theorem 4(I) is to prove by an example that we cannot
replace « by 0: the theorem is then shown to be best possible for f ¢ F; in the
sense that none of its conditions can be relaxed. This was stated in I with a
proof for the conditions other than x > 0. A counterexample for “x = 0”
was given, but without proof (which needs in effect the new work in the
present paper).

3. The other main theorem of I is about a particular f(8) = F,(8) with
rather surprising properties. Let’

(1) n=1 (modS8), v =i(n — 1), uw = n'%
(2) w = E(2m™),
(3) F(6) = F.(0) = iw'"("‘“”?e'"“ (6] £ x).

We will begin by a further study of this function.

The results are in terms of Fresnel integrals and allied functions. I will
begin by giving a ‘““dictionary,” D, of what is relevant: proofs (of what was
not already known) are to be found in I. T alter the original notation slightly.

We denote the range (0, =) of 8 by R, and for an arbitrarily small positive
8, (8,  — &) by Rs;. It is necessary to treat the ranges (0, =), (—m, 0)
separately. We accordingly adopt the convention that 8 satisfies0 < 6 < =
[and distinguish F(8) and F(—6)], using ¢ for a variable in (—=, 7). We
associate with 6 [of (0, )] a number A = 0 defined by

(D1) = N0) = 327" = 4770, or 4m\* = nf’.

1 What we state is a part result: we omit another part with which we are not here con-
cerned.

2 It is easily seen that (d/d\) {M(f)} exists for a t.p. when X > 0. In I the result was
stated in ‘‘difference’’ form.

3 In I, n was merely supposed to be odd; the stronger assumption has minor conven-
iences.
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We write

M2) o=7—0 O=20=7), M=Nb)=au—\ a=3Vr
[we abbreviate (the constantly occurring) 3+/= to «], and note

(D3) nh = 4aul, AMw) = ap.

We define, for the range 0 < A < o,

(D4) Z =Z(\) = V(A +3UQN) = yE(—=N\) £ °QE(af) dz, v=(2/m)",

(D5) U= UM),V = V(\) decrease from U(0) = V(0) = % as A increases
from 0 to .

(D6)° Z(0) = 27", = EQm).
(D7) Z'(\) = —y — 2MZ(N).
U, V have the asymptotic expansions, for large A (> 0),
U 1 1-3 | 1-3-5-7

VS N B UL TS UM
(D8) Vv 1 1-3-5 , 1-3-5-7-9
; T oz 9 + 26\ - h

and we have Z = 3iyA™ 4+ 2072 4+ O(N7P).
U=0{(0Z+17T, Z=00+1T, 2Z=00+17
(A = 0).

The definition (D4) of Z, U, V may be extended to negative values of A,
and we have

(D9)

(D10) Z(—w) = V(=) +iU(—w) = /29,
Z(=N) =1+4¢—Z(\) = 29— Z(\).
<§>1/2 fT E(f + 2kt) dt = E(—1"){u(k) — u(k 4+ T)}
0 0
(D11) = E(—K){u(—=k — T) — u(—k)},

where u(k) = E(MZ(k) = ~ f: E(2) da.

We observe finally that A; and Z()\;) occur only in the context 0 = A = au
(corresponding to 0 = 0 =< =): we abbreviate Z(\;) to Z; .

4. The theorem of I referred to is (in our present notation) as follows.

Let n = 1 (mod 8), and, for |t| < =,

4 E () occurs so often that it is convenient to abbreviate it to 4.
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F(t) = F,(t) = :i:wm e wm = ™™y = E(2rm™).
We have Mo(F) = u = n'®. Forn™*** < 9 < 7 we have the following estimates
for | F | *, notingthat F(—0) = E{—(n— 1)6}F(6) and so | F(—6)| = | F(9)|:
(| F(£0)|/w)* = 1 — Weos x + 3W*
+ (W sin x sin nf — (W cos x — 3W?*)cos n8} + Os(u™""**?),
where
W= 2(U\) + V*\)} =2|Z 5, x =\ +arctan (U — V)/(U + V),
and
W) =1, x(0) = 0.
The upper and, lower bounds of | F/u |* as n0 increases through 2x (which leaves
N unaltered to error O(u™")) are, to error Os(u*1?),
am*(\), m(\) =1 — Wecosx + W & W(1 — Wecos x + 3WH"2
We have m(0) = 0, and n(lgx M(N) = 1.347 ---at X = 145 ---, so that
| F(t) | < 1.35 u for all t, and min | F(t)| < 0s(x’).

For y ™ < |t| £ 7 we have | F(1)| = u + 0s(u* ), and for y > S t < =
we have | F(t)| = u + 05(u’).

We proceed now to extend this in several ways: (a) we estimate F instead
of | F|; (b) we introduce a function ¢ which is more fundamental than F
(F is a combination of ¢(¢) and ¢(—1¢); (¢) our estimate has an error O(u ") =
0(n™), ie., n times smaller than the individual terms. (c¢) is not a mere
luxury, since it is required in developments; if it is found surprising, the ex-
planation is that F (and ¢) is a kind of cousin of the elliptic #-functions.
The approximation, in fact, could be carried in principle to O(x "), for any
given numerical %.

6. We define
é(t) = Zo:wmem”, v=3%n—-1) (|t|=n).

It is then easily seen that w,—1—m = wn (M = »), and so
F(t) = ¢(t) + " P%(—t) —w, ",  F(—t) =€ “PF@) (|t|=m).

We recall that n = E(ir), « = 3% Z = Z(\), Z1 = Z(\y), where A\, A\,
are defined in (D1, 2), Z and Z; in (D4, 11).

TaeorEM 1. We have

(i) #(8) = 3v2ulZ + nEGn8 — 30)Z) + X + 0(x™) (0 £ 0 = 7)
where
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X = {4+ ®(0) + ®(6)E(ing) + 71‘(27!')1/2Z'}

+ u"{ ®(0) + ®(0)E(in6) + aZ”}.
¢(—0) = ulnE(—=N + 36) — 3v2{Z + 1E(—3nb + 30)Z)}]

(ii)

(i) ’
+ X, +0W? (0=0=s7),

where

(iv) X = {34 ®(0) + ®O)E(—3ins) + %(27)1/2Z/}

iv

+ w {aZ” + aE(—3n6 + 36)Z: + aE(—N + 30) + ®(8)E(—inb)}.
In these formulae the ®(8)’s (not the same at different occurrences) are elementary
functions of 0, independent of n, regular in | 8 | < 2x; and they are expansible as
S an 0™ or 28 by ™\", with radii of convergence 2w in 0 and 2ap in A,
[twice the extreme value N(w) = au for X(0)]. The ®y(0)’s are ®’s with a; = 0.
The a’s are absolute constants. We do not need the explicit (and elementary)
forms of the ® and ®y, nor of the a’s.
There are alternative forms of (i) to (iv) in terms of \ instead of 9; i.e., with
420\ for £3in6, and dap”\ for 6.
For F(6) we have F(—0) = E{—(n — 1)08}F(6), and
(v) F(0) = uT1 4 T2 + u7'Ts + O(n™) (6 ¢R),
where
(vi) Ty = E{(n — 1)6}[nE(—\"+ 36) — 3v/2Z{1 — E(—nb + 0)}],
iy T2 OO + GOEG) + ¢OE)
vii
+ 1(2m)'"Z'{1 + E(no — 0)},
(viif) Ty = aE(n — 16 — \°) + Z"{a + aE(n6 — 6)}
viil
+ aE(3n6 — 30)Z, + ®(6) + ®(6)E(5n6)

The result F(0) = uT) + o(u) was stated without proof in I; more precision
in the error-term was treated as irrelevant for the time being; it would in fact
have been 0;(u’).

Proof of Theorem 1. The results for F follow from §5(ii) and those for
(0).

We can take ¢(==0) together up to a point: consider ¢(g6), where ¢ = 1.
We have for 6 ¢ R, by the Poisson Summation Formula,

6(a8) — (3 + 3, ™) = Gy + Z_l (Gn + G_n),

1) where G = Gy(d8) = fy E{nz(z + 1)n™" + (o0 + 2Mn)} dz

(M = +m),

The series converges (by a well-known theorem), but not necessarily abso-
lutely. Writing



MEAN VALUES OF TRIGONOMETRICAL POLYNOMIALS 7

(2) ¢ = tn/m)", T =3(@)"*(1 —n),
we have, foor M = ---, =2, —1,0,1, ---

1/2 T
u = (3) [ B + 20 @t = Gn)™ulk) = ulk + 1))

= () u(=k — T) — u(—k)},

(3)

by (D11), where
k = ku(o8) = 2(n/m)"*(c0 + 2Mx + 7n")
= (1 — n )T (ob/m + 2M + n7),
the last equation being by (2). (4) and (2) yield
(5) k+ T = 3(n/m)"(c0 + 2Mr + =) lexactly].
For m = 2 we have from (4)

(6)  hm A+ T > km > Amn'®;  kiw < kem + T < —Amn'?;

(4)

and this is true also for m = 1 when ¢ = —1 (but not when o = 1). By (3),
(6), (D8), and (D11) we have for m = 2

e [ (L 4 LY _ (BUT 4 k) — )
G 0= s [1{( 4 £2) - (R

m POk 2 B e [ (5 + )
_ (E{(T(I;: ’jf');)z— Ji ) + {(T(;: ki);)z }>] O ).

Calculations from (4) and (5) give

(T + kam)® — kim = £2mav + en+ vo0 — 3an ™ = 1r + vob — Len ' =y,
E(¥) = nE(ve0) + O(n™),

and from this, (4), and (7) we find, after some reduction

i (G + Gos) (00)

= 200 2(w — o6)
=1 Z:, pren ey R LS Z Imir? = (x + ob)?

+ p [a ; {(Zmﬂr + of)? + (2mmr — 00)2}

1
— anE(ved) {(2m1r Sy

1 —2
+ @2mr — 7 — 00)}] +0G™)

= {00) + EGnod)®(®)}+ u{®0) + E(3n0h)@(0)} + O(u™).

(8)
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6. We now consider G.1(¢6) and distinguish ¢ = =1, taking first ¢ = —1,
for which, by the remark below (6) of §5, Gi + G—; behaves like Gs + G x
for m = 2, and is found to contribute an expression of the form (8) above,
with ¢ = —1, so that

1y 21OH=0) + Gl =0 = (00) + B(~40)(0)

+ u7{@(0) + E(—3n0)@(0)} + O(u™).

Taking now ¢ = 1, we see easily that G1(8) behaves like G4 (0) for m = 2,
and contributes the form (8), with ¢ = 1; further, that

@) G(0) = Gn)E(—=kL){u( =k — T) — u(—k-1)}
[u(z) = E(2")Z(x)].
We find
—ky = 2n/m)"*2r — 0) — 2T k= T = N
3) Ka=n—-—1Dr—n0+20+N+0n")=N—n0+36+0(n");
(ha+ TP =Ky = N=N+n—30+0n"
=nr + 00+ 007 = Lxr + w9 + O(n7).
(2) and (3) lead, after reduction, to
G-1(0) = $v/2unE(3n6 — 30)Z: + E(3n60) ®(0) + u'E(3n0)®(8) + O(u™).
Combining this with the known Gy and Y7 (Gax + G—»x) we have

“ 3 1Gu(6) + G-u(9)) = 3v/2un(3n0 — $60)2,

+ {®@(0) + EGro)@(8)} + w7{@(6) + E(In0)@(8)} + O(u™).
7. It remains to estimate Gy(=£6). We have [exactly]
k= ko = ko(s8) = oX + au’},
E+T=k+T=Nnx+ a0)

(allowing ourselves when ¢ = 1 a momentary departure from the conventions
about A(8)). Hence

Go(0) = 2 2 uE(—FK) {u(k) — u(k + T)}
=1/2ulZ(k) — E {(k+ T) — I} Z(k + T)]

=472 [ 200+ ™) =BG 0 §0)

’Yi Y —3
'{wc v taerre TOW )}] ’
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and on reduction
Go(8) = 3v2uZ(N) + (3(2m)"Z" + ©(0)E(3n6))
+ 1 aZ" + ®(0) + ®(60)E(3n6)} + O(u™).
This, together with (4) of §6, gives the result of the theorem for ¢(8).
For Gy(—6) we have
ko= —N+au, k4 T=)>x,
Go(—0) = $v2uE(—ko){w(ko) — u(ko + T)}
= W2lZ(—N+ o) = ZLEN — (A — aw Y]
= IV2V2E(—(N — ™)} = Z(N — ™)
— ZynB{—2ap\ + 200\ — 0] + O(u7Y)
= ulnB(—X" + 30)(1 — a’s™") + 0(u™)
— V2AZ — au7'Z' + 3’072}
— ZynE(—3§n0 + 30)(1 — i’ )] + O(u™).
On reduction, and combination with (1) of §6, we obtain the result of the
theorem for ¢(—60), and this completes the proof of Theorem 1.
8. In view of possible applications I note the following.

TaroreEM 1. CoroLLARY. The results for ¢(=+0), F(=+0) are valid over
—An™" £ 0 £ 7 with errors O(1).

We have worked with the convention that A(¢) is defined only for A = 0.
We can however, for ¢ > 0, define A\(—£) as —A(t), and then we have
ZIN=0)) = vE{—N()) fm E@®dz and Z{N—8)} = 22(0) — Z (\(9)).

—\(t.

In the range —An™" < ¢ < 0, 6 and N’(¢) are O(n™"), and with X\ = A(¢)
Zi(\) = Zy(—\) + 20Z1(0) + O(N') = Zi(=)) + O(n7").
In
T = ¢(0) — 3vV2{Z(N) — nE(3nd — 36)},

let us substitute 8 = —¢’, X’ = N(8’) = —A\(0), and substitute for ¢(68) from

$(8) = ¢(—0)
= ulnE(=N* + 30') — 3V2AZ(N) + nE(—3n0’ + 36')Z;(N)}] + O(1).

We find easily that T = O(1), so that the result for ¢(8) in (0, =) extends to
(—An7", 7). Similarly for ¢(—8): the corresponding results for F(40) then
follow from the definition of 7.
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9. The results for | F | in I follow (naturally) by straightforward calcula-
tion from those about F in Theorem 1. Since Z = O{(A + 1)7},
Zy = O{(\; + 1)}, we can, however, now give much stronger forms. If we
incorporate, for completeness, the upper bound for | F | from I, we have the
following theorem, which exhibits more clearly the behaviour at F at its criti-
cal point 8 = 0, and of ¢(8) at its critical points § = 0, 7. ¢(—6) has no
particular importance. We recall that R is (0, =), R;is (8, 7 — §), and that
n = E(ir).

THEOREM 2. We have F(—6) =E{—(n — 1)6}F(6) (0 ¢R), and
(i) F(6) = unE(n6 — 36 — n*6/4x) + Olu/ (w60 + 1)} (6 €¢R).
(i) In particular the error term is O5(1) in (8 = 6 £ =).

(ili) For all 0, | F(£0)| < (1.35)u (n > nyo).

(iv) Forall 0,|¢(£0)| < Ayp.

(v) ¢(6) =0 0—‘_“_——1> +0 (m——_—“o)—Jr—l) (6eR).

(vi) In particular, $(8) = 0s;(1) (0 ¢ R;).

10. The properties (iv) to (vi) of ¢(6) enable us to construct new func-
tions with interesting behaviour (F is of course the first of these).

In the first place, ¢(¢) (|t| = =) itself provides the counterexample to
“k = 0” in Theorem 4(I) mentioned in §2.

Let E be the range (i, 2r); and let uy = Ma(¢) = (3n)"’. Then
|| < ewin E for n > ne(e), and we have

Mx(tb)))‘ 1( A ’\)_;)\ 3 4>
(M2(¢) = fEe at [ Ara) =134l

If, e.g., A = &, this gives, for small enough ¢, and so small enough A,

M, 3 A, e—1/2 N —e—1/2

fre e8]
B 3 As
)t

(by straightforward calculation, where { is small with ¢)

3/4 3/2
< &M =\,

This is incompatible with the conclusion (d/d\)(My) > BM, of Theorem 4(I)
for k > 0.

Further remarks on Theorem 4(1).
G) If 0 < k < ¢ < ¢, and if a (quite general complex) g has
My (g) = (1 + a)Ma(yg), then

D{M\(g)} = CMa(9) (k=N =), C=A4AKa,q,a),
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where D{M(g)} s lim sup {M1.(g) — Mr(g)}/c as e — 0.

Since M) = CM,(g) in the range concerned, by the convexity of means M, ,
it is enough to prove that Dm(\) < CM} , where

m(\) =M§=§17-r[_:|gwo.

Let E be the set in which
Then Dm;(A\) = 0, and so

Mg, B),  m(\) = Mi(g, CE).

27 Dm(N\) £ 27me(A) £ lim supf |g &P (eloilgl) — 1
CE

< tmsup [ [P {log|g| + eClog|g)*|g 1} de.

Since log | g | = 0, the coefficient of ¢ is less than A; | g | ° for a fixed but arbi-
trarily small 6 and small enough . For 8 < ¢; — ¢, the integral of 4; | g | **°
is finite, and

lim sup = /;Elgl"loglglda.

In this, log | g | < C|g | ‘““"®" and so

21I’D’m()\) < Cf lg l(ql+q2)12 do < C,
as desired.

(ii) That f should be real in Theorem 4 (I) is essential. Thus, even in the
narrowest complex class €, we can find f,’s behaving asfollows.® Givenanyc
in 0 =< ¢ < 1 there is an f, of @, such that, asn — «,

M/My— o (g > 2), My/M;—c¢ (0 <X<2).
Again, given any ¢; > 2, there are f, ¢ @, such that, asn — oo,
M,/M,— « (q¢> q), My/My—1 (0<X<aq).

In the first case we take f, = D re™" if ¢ = 0; and it is easily verified that

fen]
F.(0) + ">, ™ with @ = ¢ — 1, has the desired properties when

0<c=1.
[nk]

In the second case Y e™" + 1! %R (9) has the desired properties when
k=1/(gn—1) (<1).

11. Theorem 3’(I) [representative of 3(I)] is about the entire inter-
val Ey,. It is natural to inquire whether anything similar is true for a sub-

5 Part of this was stated in I without proof.
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interval E. Isit, again, possible, to take an extreme case, for a real t.p.(n), not
necessarily belonging to ., to be of the form aM.(f){1 + O(n %)}, « > 0,
in an E? Since
_ 2 sin (2m + 1)6
f=vn e =

is actually M»(f) 4+ O(1) in the interval (}w, 47), say, the question (of the
extreme case) becomes whether such behaviour is possible with ‘“‘reasonable”
functions.

Our final answer, which leaves open the actual question, is that a reason-
able real f, with M, of the order of n* with positive «, can be of the form
a4+ 0(1) in an E, and indeed a; "™ + 05(1)in (6 £ 0 = = — 9).
k can be arbitrarily large.

We shall, however, begin with a study of what can be proved, for an E, on
the lines of Theorem 3(I). The arguments seem interesting in themselves
even if the actual results appear rather unexciting; they have also the interest
that, when adapted to the complete interval E, , they give an alternative proof
of Theorem 3’(I), and indeed extend it in a certain direction. Moreover, both
proofs are rather queer.

12. We begin with a lemma about any function g(8), not necessarily real
or a t.p., defined in F and satisfying M1(g, E) > (1 — ¢)M.(g, E). Let us
denote by ¢ any number satisfying 0 < ¢ < Be*, where A is an absolute
constant, where the positive constant B depends only on the parameters of the
context, and where in particular the B’s in Lemma 1 below are A’s (only a
number like 10 of pairs B, A are involved in all). We denote by & any
(“small”) set satisfying | €| < {. We have now (with absolute O’s)

LemMaA 1. Suppose that g is defined in E and satisfies

(1) Mi(E,g) 2 (1 — e)Mx(E, g) = (1 — &)n.
Then, if E* is a subinterval of E, we have
@) [ 1ot =B + 0Csu);
E*
(i) [ 1a1do = 1B+ 0.
E*

In particular

(iii) f|9|2d9<s“u2, f\g|d0<s“u-
& &
Further, there exist &) and ¢» such that
) 1=fn<lgl<l+4+g, 1-=n<lgl’<l+ph,
in E except for a set &.

This is proved in Lemmas 5, 6, 7 of I.
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13. We need next a form of Bernstein’s theorem® for E, instead of the E,
of the original.

LemMmaA 2. Let f be a t.p.(n), E a subinterval of E,, and let E; be E less a
small” interval of length 1 at each end. Let M be the maximum of | f|in Eo.
Then fork = 1

(i) M(f', By) £ A{nM,(f, E) + MUY},
(ii)® My(f', E) £ A{nM(f, E) + n'"M}.
We have [2, I, 118, (13.18)]

lf/(o)‘ < Iz‘/'_:sinntsinz%(n-l-l)tf(a_l_t) dt},

sin? £ ¢

’ “ dt ! .
(1) |f’(0)l_S_Af_llf(0+t)|x(t)dt+AM : 22—=Af_l+AM[‘,
where

. )
(1) = | sin n¢ sin ;— (n+ 1)1 .
By Minkowski’s inequality
l
17, 8) = 30644 [ 1560+ 9 1x0) d E} + ML {AMT,

| []1@ fE {( f_ z | fo+ &) dt) < f_ Z x(#)-1 dt)k_l]llk + AMT,

by Hélder’s inequality, and so
l 1/k
2)  M(f,E) £ An"T" [ [ x(0) ( [ 15+ 0P d6> dt] )
— E

since |2, x(t) dt is easily seen to be O(n).
Nowif Eisa < 0 < b, we have

b+l
@ [1fe+otas [ 116N de s | BIMGE) + 200,

b
@ [ 1e+olas [ 15N ds =B MG D).
l a
Further, taking £ = E;in (2) and substituting in it from (4), we have
1 1/k AM
M (f', Er) < A7 { f x(t) dt-Mi(§, E)} + =
-1

l

< AnM,(f, E) + AMI, since | xdt = 0(n),
and this is (i).

6 In I we used an extension of Bernstein’s theorem of a different kind; this difference
is only one of the differences in the two proofs of Theorem 3’ (I).

7 I may depend on n, and be e.g. n™=.

8 We do not use this, but it seems of interest in itself.
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Again, substituting from (3) in (2), we have

1/k
My(f', E) £ An*0% [ f AM

i x dt {M(f, E) + 21M’°}:| + 5=

< An{M(f,E) + IM + AM/In} < An M (f,E) + An'* M

if we choose I = n "%, and this is (ii).

14. TurorEM 3. Letf = f. be any real trigonometrical polynomial of degree
exactly n, E a subinterval of E, , and let E; be E less intervals of small fixed length
6 at each end. Let

w = Myf, E), M = max |f| inE,.

Let 1 = amn™, where a is a positive constant, and let f, = f(8 + 9). Let H
be the subset of Es in which ff, < 0. Then there exists a positive absolute constant
¢, with the following properties. For large’ n, either

(1) Mi(f, Es) < (1 — c)u,
or else
(if) My(f', Bs) < pfo(n) + AMu™67'}.
In the event of (ii) we have also
(iii) |H| < o(1) + Ae(un)'Ms™
and, if further Mo (f, E) < Ku, qo > 2, we have also
(iv) My(f', Es) < o(un) + Ag KM§™.

In applications we usually have M = o(un), and then all the M-terms
disappear.
We may normalize to p = 1. If the statement about the alternatives (i)

and (ii) is false, there will exist, for any given ¢, f, with arbitrarily large » and
satisfying

(1) Ml(f, E;) >1—e

If ¢ denotes any number of the form A (38, E)e4, it is enough to prove that for
such f we have (recalling that u = 1), the equivalent (ii)’ of (ii), namely

(i)’ My(f', Es) < ¢n + AMs™ for large n.
Let M1 = Mg(f, E.s) = Mg(f, E) = 1. Then from (1)
(2) l—e<m=s1l, Mi\(f, Es) > (1 — &)p .

By Lemma 1(iv) (with ¢ = f, p = wm, E = E;), we have, except in an
&§C E;,

3) [FP—1]<y,

® It would be possible to prove that ‘“large n’’ can be replaced by n > ny = A (e, 5, E),
and e.g. 0(1) by ¢(e), ¢ small with e.
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and since, by Lemma 1(iii)
[risr=tiws [1rPd+1s) <z,
we have
(4) fm”“z_lldo<§'

By (4) and Lemma 2, with I = 8, k = 1, and since® |f|*> — 1 = f* — 14s
a t.p.(2n), we have

) [ |2 -l <t ams™, [ 11 <ont A

E; do E;
Since, by Lemma 1(iv), |f| > 1 — ¢ except in an & C E;, it follows from
(5). that

(6) fE | f1do <¢n+ AMS/(1 —¢) <¢n+ AMS.
—&1

Now by Lemma 2 with &k = 2 (say), and (4),

My(f',E;) <n+ Ms™,
so that

fg £/ 1d6 = | & | My(f',8) < ¢(n+ M&™Y).

Hence, from (6),

) [ 171 <on+ ams,

the desired result (ii)’.
Taking next (iv) [to be deduced from (ii) or (ii)’] we have
My (f', Es) < M (f', E) < AKn + AM3™,
and from this and (7), and the convexity of M), in log A,
M, = My(f', Es) < Mi My’ < Kin + Ay KM5™,

which proves (iv).
It remains to deduce (iii) from (ii)’. We have, for 6 ¢ H, except in an
& C H,

and since f, f, have opposite signs,

[ 1—fla>2H-6l-c>21H| -

10 That | f|2 = f2 is the only use we make of the hypothesis that f is real in deducing
@ii) from (1).
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and so

[11=f1a>21m -5, since [ |7|dsand [ |7,1d0 <.

Hence"

2|H|<r+Ldofonlf'(o+t)|dt<c+foﬂdtfﬂw'(aw)\dt
<;+fo"dtfm 1 7(8) | do

n
<¢+ <f° dt) {cun + AMS™,

by (iii) (with %8 for §). This establishes (iii), and completes the proof of
Theorem 3.

16. When E is E, , the step at (1) in the proof of Lemma 2 becomes un-
necessary, and the lemma becomes the known result M,(f') < AnM,(f),
Bernstein’s theorem with an extra A. The distinction between E and E; is
thus unnecessary, and the final upshot is that the terms Ms™" disappear
altogether. If now we add a hypothesis:

My(f") = K nMy(f), k a positive constant,

this excludes the alternative (ii) in Theorem 3. We therefore arrive at the
following results: With ¢’s positive absolute constants and ¢, > 2 we have:

(a) With hypotheses Mo, (f) < KMy(f), My(f') = k'*n M,(f), we have,
for large n,

My\(f) < (1 — e)M(f).
(b) Without the hypothesis on M4, we have, for given & and large n, either
(i) Mi(f) < (1 = e)Ma(f),

or else™
(ii) |H | <e

[where H is now the subset of E, in which ff, < 0].

Now the hypothesis Msy(f') = k*nM,(F) is equivalent to the hypothesis f € 5,
of Theorem 3'(I). Hence (a) is Theorem 3'(1) modified as follows. It is
weakened by the hypothesis about M, , weakened by requiring n to be large,
but strengthened in that ¢ is an absolute constant, instead of depending on &
as it does in Theorem 3'(I).

11 Observe that 6 4 ¢ below need not belong to H or even E; ; it belongs obviously,
however, to Es» for large n.
12 Thig is true for all positive a;in I we had & < 1 (though that sufficed).
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The result (b) is parallel to a result at a certain stage in the proof of Theorem
3'(I). As we said above, the two proofs differ considerably. One main
novelty here is the use of (4) §14. We go on now to complete the proof of
what we will call Theorem 3” (1), namely 3’ modified by 7 being large but ¢
an absolute constant. This argument, while different in detail from the
parallel one in I, depends, as that does (and apparently inescapably), on the
identity (3) below. There is incidentally nothing corresponding to this for
an interval E.

16. Suppose ‘“f e F implies that M(f) > (1 — ¢)M(f) for large n” is
false, so that there exist f, e 5 with arbitrarily large n, and satisfying
Mi(f) > (1 — &)Mx(f).

Then, always for such f and large n, we have | H | < {. Since then both H
and its translation by an amount 7 are &’s, and, by Lemma 1 (iii),
J1f1?d6 < ¢, we have on the one hand

(1) [1i-sras<s

On the other hand, for 8 e CH, f and f, have the same sign. Since by Lemma 1
(iv) we have in CH, except for & < CH,

L—¢<[fl, |hl<1+yg,
we have” |f — f,|* < ¢in CH — & . Then

fCH\f—-fquoé f.gy_glfd0+2{[gl‘f‘2d”+fsl‘f"‘zd"} <y,

and
2 = =
(2) onlf~fnldB fCH+fH fw+fs<r.
Nowif f = D Gmcos (m6 + o), we have
3) o [ 17 =51 d0 = | an [ 250" Gmamn™).
If we choose, say, ar = 1, we have framn™ < } ma < i, and so

sin® (3ramn™) = A(3ramn™)?,
and then

oo [ 11—z A2 el > 4,

since f €5, . This contradicts (3) and establishes Theorem 3”(I).

18 Here, of course, the argument turns on f being real.
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17. We proceed now to construct a “reasonable” real function with the
behaviour mentioned in §11. The proof is inevitably rather long, with much
detail that the reader can ignore if he wishes.

TrEOREM 4. Let k = 3 be integral, and s a nonnegative integer. Let
t
o) = 0.0 = [ (o) = = @Y @t ([t] s ),

h(t) = g(t) — 51— [: g(t) dt,

™

so that g and h are trigonometrical polynomials of degree 3k(n — 1) + s, and h has
constant term 0. Let u = n'*, 9 = E(ix). Thenin Rslor3 < 6 £ = — 4]

h(6) = a b + rarlog w4+ 054",
where
1 (k= 3)
0 (k> 3).

ax depends only on k, a; (which depends on s) is given by

1'=1'(lc)={

a = —i(1 4 %) K 4 27 wkf (nB(—N?) — 2712 Z}¥1 77 g
0

+ 2]0“ N{nE(=2) =272 Z}* — p* B(—I\®)] d\ — sBu(k),

where

k

(" + 0 — )™ 4 267" — 4572,

Bi(k) is mot 0, so that a; = O for one of s = 0, 1. We select the appropriate s,
with a, # 0; let ¢ = sgn a;, and f(t) = noh(t). The real and imaginary parts
of f then have each the property of being a real polynomial with zero constant term,
such that

7(6) = a(k, n)u"™ + 0s(1) (0 € Rs),

where a(k, n) ~|ay|/v/2 as n — . My(f) ds of the order u*™*?
and FP =M (RIS g depend only on k and s, and Oy’s in addition on 6.

We use a’s for absolute (complex) constants, 8’s for constants depending
only on k (b’s are used consistently in a certain sense; see below).

18. We begin with
LemMA 8. Intherange A,or 0 = N = au [a = /7], let
E =EQ) = E(ayph + aa N + asp™™),

14 This is incidentally a guarantee that the result ar # 0 does not depend on some slip
in the rather elaborate detail !
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where a; , az , a; are absolute constants satisfying either

a > A, ay+ 200, > A, orelse o < —A, @+ 2a0: < —A.
Let

D= % (aph + ae N+ az ' N) = play + 20 N + az ™),

so that"
|D| > Ag, D(0) = a1u + as.
Suppose now that in A the function H(\) satisfies
H=HOM =0@1), H”X)=00h) ((r=123).
Then we have upper bounds as follows.
W [ - {}fg I’I')((‘(’)))} — 0(3M3), 0(M3), 0(My),
where
=+ W, Me=by +he’+u
M;=1 #_2 + 1+ ls)ﬂ_a + L M—4;

(i) fo * (o — NVEH d\ — ,ﬂ"’z)’f—é;’) = 0(uMy), 0(uMy), O(uMy).
In particular
(i) fo (o — NVEH d\ — u?l‘%g)- —0G) if h=lb=l=1

We have also the crude result
ap
(iv) f (aw — NEH d\ = 0(1) if H =0(1), H = 0(u).
0
(i) to (iii) are very powerful. In applications we always have I, < "

and often ly = Il = I3 = 1.
The results (i) follow by straightforward calculation from the identities

» ‘EH]* Y d (H)
foMarozx__TEO—fOE(ﬁ ZY) i
A [ EH E d < { (H)
fo EH dx _75] I:zD dn )] f B iD dx \iD dA;
A [EH EH'T [EH] [EH]"
[ e =[5 - [m] o | ]+ 5

! A
+ (20, + 1) EH dn — 2a2 B _d.(ﬂ) dr
0

)

2D3 22D dX\

H//
+ da; “ZD‘* fE (13D4)

15 This being true for the extreme values X = 0, ap.
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The results (ii) follow from (i) when we observe that the I, for AH/x, I, say,
satisfy

LSAW™4+L), LSAWLu+0h), I=Albuy+1hb).
LeMMma 4.

ok d\
¢ [ wrporTy = 0l

For

ap apl2 d)\ fau d)\
< S .
“fo _“fo (>\+1)Au+“ anz Ap{(ap — N) + 13}
LemMA 5. If a, b are absolute real constants, a # 0,

b Jt E(2bu™\) —

—2
S5 Lyow).

f E(a\* 4 2bp™™\) d\ — f E(a)\?) d\ =
A A
If we write 8 = bu~"/a, the left side is

E(—ad®) f: E{a(\ + 8)*} d\ — /:0 E(aN?) dn
_ fx “Elah + 8% — E@?)] dh + 0™

= —fo E{a(\ + )} dz + 0(u™%)

—E(a\?) [f E(2a\z) dx + O(u~ )] + 0™,

which gives the result desired.

19. Let™ ,
v=9(t) = BG((s(t) — 3 — ()M,  g() = f ¥() dt,

M) = g — o= [ g at.

¥ has zero constant term, and g and & are t.p.(k(n — 1) + s), and h has
zero constant term. We calculate

.2.11_rf_:g(t) dt=2-1—1r{fo”g(0) d0+fowg(—0)d0},

and then g(6) in R;. Since ¢(6) = 05(1) in R;, we must obviously have
h(6) constant to O;(1) there; but it is not obvious that h(6) need be large.
We do not calculate g(—8) itself (its behaviour is not of interest), and we
work with a formula for [§ g(—6) dé [by-passing g(—9) itself].

We begin with ¢(8) and [§ g(6) de.

16 We use ¢ —3} to get rid of the term % in X and X; of Theorem 1.
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Write T = Z 4+ 2E(2ap\ — 2ap"\)Z; , and recall that
= a(\ + 17 + eEQap\ — 205N Z1 + O{(A + 1)} = 0(1),
Z', 7" = O{(\ + 1)73.

From Theorem 1, and with its notation, we have in (0, =), after a little
reduction [we can, and often do, absorb, e.g., E(%0) or E(s6) into a ® or @),

(1)

(2) 5

,

g(6) =P1+P2+P3+0(Il._3),

A A
Py = Jl.2q12.070 [f T* dn +fo TH{E(s8) — 1)} d)\],
0

P,

A
T fo THB® + BP(2au))} dX
A A
4 gFtgEz g [ f 170 g\ + f T2/ (E(s6) — 1} d)\],
0 0
A
Py = 4 [ [ T aeEEa) + 0(2)) ay
A
[ THa% + p9(2en) + Bo(sand) + o<z'>}];
1 (" oz [ 172 » }
Zr-fo g(0) dd = = “u /(; {2%' '{ ¥(6) dhp dN
ap
=2y f (ap — N)Ydh;
0
1 4 ’ ’ ' k—3
ero g(8) d§ = Py + Ph + Py + 0(4™),
Pl = .okt [[W( — T
1= M au ) dx
0
ap
+ [ e = NTE@) — 1140
0
Py = p [foa“ (ap — N)T*{B® + BE(2apN)} dA
ap
4 97H ey, f (ap — N)Z' d\
0
+ o k2L f a“ (ap — N)Z'{E(s9) — 1} dx],
0

Py = 4 [ [ " (o = )T (BE(2an) + 0(Z7)] dn

[ G = 0T B8+ BB (e + 50 (sad) + 0(2) al.
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21. We begin by disposing of P; and P;. Abbreviate
E{p(2au\ — 20{;,4—1}\)} to E,. Now
k—2
" = 2"+ > ¢, 22 E,,

p=1

where ¢, = O(1), and similarly for 7. It is easily seen that in Pj, P;
the terms in E(2rau)), both explicit and arising from the expansions of T
and 7", contribute, by Lemma 3, O(x™") to the Jb and [§* concerned.
Further since Z', Z” = O{(A + 1)™%, the terms in O(Z’), O(Z") also con-
tribute O(u™) to these integrals. Thus

A
P, = 0( k—a) + 0(“k—3) 'L 7%, a\,
(1) .
Py = 0™) + 0™ [ (au = N2, dn

Now for p = 1, in particular for p = k — 2,
f Z°0y d\ = meu f 0{(A + 1)} A" dx

= 0(1) zlj | b [6™™\™ = 0(1),
and similarly
A
fo (ap — N)Z72 d\ = 0(u) + 0(1) 3 [ b | 6™\ = 0(u).

From these and (1),
(3) P = 0(s™), Py=0(").

22. Consider now P, and P;. We expand 7" as before as
aZ" + Z Cp VAR Al ) (2pau\ — 2poq4_l)\),
and observe that the sum . contributes O(u™") to the 1n'oegrals o, [o*
concerned, by Lemma 3(i);. Thus we may replace 7% by (27?Z)*" in
P, and P ;

Py = 4 [B fo " 2760 + OB (2apn)} dh

. T { fo 7 an + fo " () — 1) dx}] + 004,
Py = [B j:m (ap — N ZH®y + CE(2apM)} dA

(2) 4 g { fo " (e = N 272 i

+ [" =22 B - 1y dx}] +0GE).
0
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The terms in ®(2au)) in Py and P; may be suppressed, by means of an easy
application of Lemma 3. Next,

A A 0 A
f Z %0 A\ = by ut f WA T S M f Z I g\
0 0 2 0

(3) =arlog(N+ 1)+ 22) b " foa“ ON\"(A + 1)} ax

=a 7log (A + 1) + 0(1);
and

ap
/ (ap — N) 2@, dA
0
(4) ap op
= au [ 200 dh — 3 b " f O"(\ + 1)7%} d)
0 1 0

por 7 log (N 4 1) + O(p).

In P, we have

A N\ m A
f Z"'Z{(E(s8) — 1} d\ = le (—4-::@8’—') w " f INTARIARNN
. 0
)

= = B0 [T+ ™ an = 0,

m

and similarly the corresponding term in Pj is O(x).
Finally

0(1) (9¢R),

A
k—1ryy - Yk — g —
(6) fo 272 d\ = K{Z" — Z}(0)} {—k“nkZ""” L0 (e Ry);

o k—17y! _ —1 k o—k/2 “* —k—1
- [0 (o — N) 22" A\ = — o k0" 2 +f0 ANO{( + 1)
- _ nk k2=l 1121 0(1).
From (1) to (7) we find

0™ (8eR)
8) b= ko—k—1_\ k—2 ' k-3 k3

(=027 mu  Faprlogpup 4+ 0:(u) (8eRs);
(9) Py = (=127 m)u" 7 + a7 log w0 + O,

23. We have now to discuss P; and P;. Let

' '
Py = gk [ f T* d\ + f T {B(4sap™™\) — 1) d)\]
(1) o o

= Py + Py,
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ap
P; = Mk—Z.z—km'Pl [f (aﬂ - )\)Tk d)\
0

2
() + fo W (ap — N)TH{E(4sap™™\) — 1} dk] = Py + Pi,.
We have
(3) T" = 7' + BZi By + ,gcp Z"PZP By, cp = O(1).
Let
H = uZ"7°77 (1=p=k-1).

His 0(uZZ;) = Ofu(X + 1)\ + 1) = 0(1), and H’ is a fortior: O(1).
Since H(0) = O(x*™) = 0(1), we have [; = 1in Lemma 3, and

* _{HO) H(0) P

by Lemma 3(i); . Similarly, by Lemma 3(ii), ,
au
f (ap — NHE, d\ = 0(1).
o

It follows that

k—1

'y
B Y ¢, f ZPZPE, AN = 0(4),
p=1 0

(4)

k—1

ap
BT o [ (an — NZIZEE, k= 07).
p=1 0

Next, Lemma 3(i); and (ii)s, with H = Z% ,andsoly = I, = I = 1, give

by k k
k _ E.Zi(\) — Zi(0) —2
fo 2B, i\ = 2o TS+ 06

0(s") (6¢R),
= 04725 + 0Gi™) ={ W) (0eR)

0s(u™) (6 ¢Ry).
Similarly for [§* (au — N)Z} Exd\. From (1), (3), and (4), and since

A op )
f ZFd\ = f + 0s(u%) = f + 0:(u7%)
o o o
in Rs , we have

0™ (8¢R),

5 P - k—1'2—k/2+l 1/2 ° Zk d)\ —
(5) " = [ O

0
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Similarly
(6) Py = g2 fo Y (ap — NZF dn + 00,

In (6) we have

foa” AZ* dN = fow AZE dn + 0(1) fi N = f: AZE A\ 4+ 0™,
and so

(1) Pl = g (2——k/21r1/2./0' Vi d)\> + Mk—-z(_z—klz+l‘£ Vi d)\) + 004,

In P;;, again, we may replace T* by Z*, and we have easily (after earlier
work)

) -\ M
Py, = pFl.grhia e f Z (4?;%') WTAZE
0 1 !

© 0™ (0€¢R),
Py — 4 <i2_’°/2+21r8 f 7k d}\) _ { (u k‘s) (6eR)
o 0s(p") (0 €Rs).

Similarly
Pl — 4 (i2_k/2+l1rs f 7t dx)
0

0 M —m  aQp
= pue 3, e T [ 2 a4 0 = 0G4,
1 m. 0
Collecting, we have

0W™) (0¢R),

P e T+ arlog pe T 4 05 (6 € Ry),

,

g(6) = {
élq—rf 9(0) d6 = cxo " + e 47 + iz 7 log w0 + O
o
(8) o = 2N f“ Vs dx,
0

00
a = —7'2 4 s B mcar f Vs ax,
o

— 1 — 1
Cr2 = 3Ck1, Qrg = 01 .

This disposes of g(8) and (1/2x) f 0 g(6) do; we now take up the more
complicated g(—0) and (1/27) L’,’ g(—8) de.



26 J. E. LITTLEWOOD

24. The abbreviation T has now served its purpose, and we may, without
confusion, now abbreviate by (what corresponds in g(—6) to the old T')

(1) T = nE(—N + 2au\) — 27 Z + 9B, Z}.

We will now also abbreviate E{ —p(2au\ — 20" \)} to E, (the new form
appropriate to —8). We have at once, for 6 ¢ R,

A

2)  —g(—0) = 20" f T*E(s9) d\ + 0(4"") = O(u* ™).
0

We have also, from Theorem 1(iii), (iv) [§5],

511;[. o(—8) 8 = @y + Qs + Q@ + 0G5,

au
(41 —Zuk—zf (o — N)T* dn,
o

() @

It

— 2k ? f a" (ap — N)TH(B®, + BPEL + 1(27)*Z'E(s8)) d\
0
= Q21 + Q22 + st y
ap
Q = u fo (ap — NIT"(BZ” + BCE(—N\" + 2au'\) + BCE1 Z1)

+ T*(B® + BPE: + BOE: + BZ' + B{Z'}")] d\.

We begin with Q;. We may in the first place suppress [with error O(u" )
always understood] the terms in Z’, Z”, since Z’, Z” are each Of{(\ + ™.

We may next suppress the terms of 7%, 7", expanded by the trinomial
theorem, which are of the second or higher degree in Z and Z, , since such
terms are O{(A + 1)™3, O{(A + 1)™*(\; + 1)7Y, or O{(\ + 1)7%, which,
integrated from 0 to au, give O(1). Thus, writing E* for E(—\ + 2ap™'\),
and E} for (E*)", we have

Qs = fo (ap — NBEXL(GE* + a®E, Z1)

(4) + BEi:(aZ + aFE: Z,)PE* + BEr_o(® + CE; + ®F,)

+ E} 4(BZ + BE1 Z:)(® + ®E; + ®Ey)] d\ + 0(4%).

All terms in Z, inside the square bracket are of the form HE = Z; ®K,
with H and E satisfying the conditions of Lemma 3(ii);, and since
Z:(0) = O(u™), they contribute O(u*™) = O(4**) to @;. There then re-
main in the square bracket only terms of types

E(—uN + vy "\)® and E(—uN + oy \)0Z, with 4 = 1.

For these we integrate by parts on the E’s in (4), and their contribution to
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Qs is easily seen to be O(u**). Thus
(5) Qs = 0(4"™).
25. Consider now Q,. We have first
Qu = ku"® fo a" (ap — N)CEL(D. cpor Ey Z°E, Z1) d\,  cpr = O(1).

Now E,-E3} E, is an E of the type of Lemma 3, and ®Z°Z] is an H with
H,H = 0(1). By Lemma 3(iv) (the weakest form)
(1) Q= = O(4"™).

Next,

ap
= —3(2m) ot f (au — N)(nE* — 277Z)*7'Z'B(s9) d\
2) ° -
+ 4y f (ap — N)Z'cyp BY Z°E, Z; E(s9) d\.
rzl Jo

In the second term the E, E% E(s0) behave as in Qs (where there was a u™*
to spare), and Lemma 3 gives easily O(4*™*). Thus

ap
gy = —3(2m) et ? f (ap — N) 2 cn En E(s0)ZZ" dN + 04",
0
where Y is the binomial expansion of (nE* — 2727)*F(s6). In this we

can replace Ei, E(s6) by E(—m\), since in the difference in the two inte-
grals, which is

f - (ap — NE(—mN)ZF "™ Z'[E{—(2m + 4s)au™ N} — 1] dA,
0

we can expand the square bracket as

D {—(2m + 4s)az}’ N

1 r!

’

and integrate by parts on the N>£(—mA’), when we easily find the contribu-
tion to Qu; to be O(u*™®). Next, the part integrand

—\(nE* — 27221 Z'E(s6)
in the first term of (2) is of the form
—N" B E(s8) + O(NZZ'"),

the integral [§ of each of these is convergent (integrate by parts on
MEf_; E(s6) in the first—the second is O{ (A 4+ 1)), and f&‘" isg+ o(w™).
Thus the said part integral in (2) contributes O(u*™*) to Q. We thus ar-
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rive at
@ = =) e " @B(=N) — 27217 dn 4+ 004,
In this the integral taken to « converges like
[[1z1= [Totn+ vy o,
and finally

(8) @+ Qu = —2""xky"" fo (mE(=N) — 2722)'77 an 4+ 0(u"™%).

26. In the remaining term @ of @, write
Y =B —27"Z, W= -n2"E 7,
sothat T = Y + W. Then

ap
Qu = —2ku*"" f (op — N)Y* '@, d\
0
(1) ap %
+ 3 f (ap — Ny ZPE, B*Z'®y dM.
rzlJo

The second term is O(x*™) by the argument used for Q. Expanding
Y* ™ in the first (and absorbing the E(p2au™"A) in E* into ®), we have
[with ¢, = O(1) as always]

ap k—1
me = —Qkﬂk_3 f (a# - 7\) 20 Cp E ( _p)\z) ( _2—1/2)k-—1—ka-1—p0,0 dn
0 p=
+ 0(4*%)

(2) < ap
) = —Zkuk—sf (ap — N)ZF7'®, dA
0

ap
+ ok f (ap — N) () dn + 0.
0 pz1
We substitute ® = 2.3 bmu ™\™. The first term in (2), becomes
ap
(3) 2kl S b ™ f (ap — MN"Z @\,
i o

Since
o{x+ 17} (k= 3),
ofx+ 1D (k> 3),

the term m = 1 in (3) contributes u* *ray log u + O(4*™®); and the terms
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m > 1 are easily seen to contribute x**0(1) > |bm| = O(4*®). Collect-
ing, we obtain

(4) Qo = op 7 log p- 7 4+ 0.
From (5) §24, (1), (3) §25, (2), (3) §26, and the present (4), we find
%r fo g(—o6) do

(5) = Qi — 27Vt f (nB(—)) — 2722)""'7/ g\ + R,
0

R = ai7log u-u° + 0.
27. We have from (3) §24,

ap
Q= —2u° f (ap — N)Y*E(s6) dn
0
" k- L]
+ WS o [ (au = NZTPE, B E(a9) N
pzl 0

ap
+E S e [ (o — NE, ZZUBE() d\ + 0GH).

»,azl

In the third term let H = Z? Z% ™", E = E, EY E(s0). Since ZZ; = O(u™),
H and E satisfy the conditions of Lemma 3(iii), so that the term, which be-
comes

BT [ (aw = NE O,
is of the form
w2 (o AOLZOU L 0G4 = 4= 3 067
+ 0 ™) = 0(u").

Thus
Q1 = Qu + Qu,
Qu = —24"" fo " (am — N) (E(— N+ 2au™) — 2772 an,
v Qu=—24"" foan (ap —N) (E(=N" + 20p70) — 27°Z)"
L -{E(4sap™\) —1} dA.

28. We write (for an expression whose powers will now occur frequently)
(1) J = qE(—=\}) — 277,
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Writing ¢ = o', t = N\ — ¢, and for the moment Z for Z(t) ete., we have
Qu = —24° f_ :H (au —t+¢) B(—=8) (1 446" -2z -2 7'¢
—27 77 & 1+ 0())* at
= —24? f_ :H (ap — t) [J¥ + kJ* " {ieB(—1*) —27%2" ¢ — 273277 ¢
+ 3 k(b — 1) I H(Z)" ] de
—2u e f_ :H (J* = kI 27 2 &) dt + 0.

It is easily seen that the terms of the first integrand in & contribute O(u*™*)
to Q11 , and that the second integral also does this, so that

ap—e
Qu = —Zuk_2[ (ap —t) (J* — 272 e 2/ KJ*) dt + O(W*7%).
Writing momentarily x(t) for the integrand and replacing, as we may,
ap—e ap
[T xwa vy [T x® det elx(0) - x(ew))

— 3 X' (0) — x'(aw)} + O(&%),
we find, on reduction (noting that J(0) = 0) and a return to A as variable
of integration,

ap
Qu = —24* f (ap —N) (JF =272 eZ' kT dh + 0(W" )
0
@ © ap
1/2 k-1 k _ k k—2 k
iy (fo J* dx L”de)+2y fo AT*

+ KOM2 o “k—z ( j‘"’ P J"_l dn — j'oo)
0 ap,
172 2 k—3 ok y rk—1 k—3
— k2 a f NZ' T AN 4 O (T0).
0
In this we have [%, Z’J* " d\ = O(u™), and
ap ap ap
[z aan = [ 2z B—(k— 1N ax+ [ 00z2) an,
0 0 0

of which the second is [§* O{(A\ 4+ 1) d\ = O(1), and the first is easily
shown to be O(1) by integrating by parts on NE. Hence

Qu — (_ﬂ_llz P f JE AN+ 272 f T d)\)
o o
(2) =81+ 8+ 0,

© au
8y = A f AN, Sy = 24 fo M .
ap
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(3) J* = 9*B(=kN’) — 272" kE{—(k — 1)\}Z
+ BE{—(k — 2)M}Z* + O{(x + )73,

Now [2.E{—(k — 2)NZ*d\ = O(x™%), by partial summation on the E.
Hence, from (3)

_ye w1 ok E("'k)\z):r ® E(— k\") )
@y T ([P e 25

= —in’ B(=3km)k" 4" + 0(u"™) = =ik 4" 4+ 0" ).
For S, we have
ap )
Sy = 29° u*? f AE(—KN) d\ + 2477 f ANJT* = 1 E(—=E\%)) dx
0
(5) "
— 27 [N — ot B(=RN))
ap
In the last term the integrand is
BAZE(—(k — LN} + BZ°E{—(k — 2)N} + O{(\ + 1)7T;

the integrals (from ou to «) of the first two are O(x™"') by integration by
parts on their AE’s, and that of the last is O(u?).
The first term in S; is

[ E(—N)T]™ k-1 e
21715 ,LLk 2[ (_2k&):|0 — —’Lﬂkk lﬂk 2.
From this and (2), (4), (5), we have
Qu = g 1+ W2 (2‘3’2 wk f JTVZ AN — ik — it kT
(6) .
£ 2 [ M BB @) 4 0
0

29. From (1) of §27 we have, writing ¢’ = 2sau " (and ¢ = ap™" as be-
fore)

Q12 = Ul + U2'|' Ua,

U, = —24*° fo W(ap, —Nn" B(—kNY) (E{(2ke + 2&)\} — E{2keN}) d),

U2= _21/2k k—2 ak o — Ic——lE _ k_]. 2Z
0 ufowmn (—(k— 1N}

(El{2(k— 1)e + 2¢'IN] — E{2(k — 1)e)}) da,

Us = 4 Ez Cr foau (ap — NE{—(k — p)\'}2*

(E[{2(k —p)e + 2¢'I\] — E[2(k — p)eN]) dA.
In the general term of U; write 2(k — p)e 4 2¢' = Iy w2k —p)e = hap Y,
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and E = E{—(k — p)\*}. Then the term is
ap 0 ™o \Nm
Cp uk~2j; (ap — N\) EZ* (Z ————————(hl %) (he 7) w )\m) dA.

m=1 m !
We split this into the two parts corresponding to au and —X\, and except when
p = k, integrate by parts on apEA™ and —NE\™ respectively; it is easily seen
(since Z% = O{(\ + 1)7%) that the result is O(x*™). The term p = k is

w0 [ w0010 17 (5 0= 0T e

m=1 m!
and since & = 3 this is easily found to be O(4*™®). Hence
(2) Us = 0(u"7).

30. Consider now U,. We have

© ap
Us= —2% ™ 3 [ (an = NB(=(k = DN Zum ™ N7,

_ ()" = (i)™
m!

For m = 2 the mtt term of E is
m E)\m—l au o 11y
ap
+ (m —1)8 f EN"Z dx)
_ —-m E)\m mrzy m—lryy
The integrated terms vanish at A = 0 and Z(\) is O(u"l) at A = au; also
Z' = Of{(x + 1)7%; and it easily follows that the total is O(ump™"), so

that D m_s contributes 4" D7 O(um) = O(4*™®) to Us. Thus, abbreviat-
ing B{— (k — 1)\ to E

= (b= ha)i fa“ZEd "fwzwd s
W"‘(l— 2)20:0 ANdAN — Ndn) + 0P

— dsed (a [___2_(192____1-)2 z]:" + s f EZ' dx)
— 4saip™ ([?éf_tﬁ Z:L“

+ 2(71_“—1»[0” Z'EN d\ 4 2(k =5 f ZEd)\)

= 4si (a 3D+ 067 + g [ B2 06

— 4saip”'{O(1) + 0(1) + 0(1)},

1) U, = M’“‘z[—sz“"z 7 P ( 27 4 f —(k — 1N} 2 dx)]
+ 0(*™).
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31. It remains to estimate U;. We have first

U, = Uy + Uy,
ap
Un = —gta2 fo [B{—k\® 4 (2ke + 2¢/)\)
(1)
— E{—k\ 4 2ke)}] d),

Uz

ap
2ty fo [E{—k\ + (2ke + 26")\} — E{—kN? + 2ken}]n dh.

Now the square bracket in Uy and Uy is

B{—k(\ — &)1 4+ 0™} — B{—k(A — &1 + 0™},

where & =¢+ &k

Hence

Un _ _ (" Z [ YE(=0 dx + 07
S~ \L, T L) B+ Ol

- ( [ - [ :) E(—I) d\ + 0(™)
= [+ o0y an - [ 7 Bi=kaw+ 0 de 4+ 067

= (a1 — &) + 0(u™) — [:81 E(—ka®u®)(1 — 2kopti) dt + O(u™%),

which reduces to
e K1 4+ E(—3nkn) + wi + mis) + O(u70).

Since E(—3inkn) = E(—1ixk) = n*, we have

(2) Un = —p@"2osak™1 + o° + ni(s + &)} + O(u*™).
Uy is similar. 'We have
Uia

ot = [+ o0 a

— E(—1xkn) [_51 (1 — 2kapti)(ap + ¢t) dt + O(p™),

which reduces to

U = sk 7{1 + 3mi(s + ©)} + O™,
With (1) and (2) this gives
Uy = —s* ok + 0(6"7).
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32. From this, (1) §30, (1) and (2) §29, we have

Qu = —su* [z*“%’“'*w _k <n2_1/2 + f E{—(k — 1)\}2" dx)
0

kE—1
(1)
+ wk"] + 0.
We need to evaluate the integral in this. Since Z’ = —vy + 2\iZ, we have
I = f B{—(k — 1)}’ d\
0
==y [ Bl=G= DN an+ [ B{=(k — N2 Z dn
0 0
= _—loml2iy _ y=l2 EZ ]w 1 ®
27 — 1) +[%k_Do+k_1£1MdN
k—2_ o207 (\—L/2 2-1/217 _ 2_1/277 1 1y\U2

Substituting from this in (1), and collecting from the result, (6) §28, and
(5) §26, we obtain a result of the form

2) %fo g(—0) db = cisp" " + aa " 4 ax 7 log pu " 4 O()

(with explicit cxz and ays).
We recall now from (8) §23,
(3)  9(8) = e+ auu T+ arrlog (A + 1)4F + 0T,
1 m

(4) 21 Jo g(e) df = Ck2 ”k—l + 157 ”k-2 —l—- a; T log ”.ﬂk—s + 0(“1‘,_3)’

— 1
Cra = 5Ck1 .

From (2), (3), (4)
5) o) = g(0) = o- [ g(0) o — - [ g(~0) do

=t tap P tarlog(N+ 1)+ an T log T g (|

with ¢; = cie — Cra, G = @z — Gz — iz, and on reduction a; has the form
stated in Theorem 4.

For further reference we recall the values

Cro = bom = w2 f Z* dx,

0

) )

o= =7 [ J*
0
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33. We next prove that ¢z = 0, or ¢x2 = ¢z . This would follow at once
from Mx(h) = O(u*™?), a result stated for the equivalent f in Theorem 4.

But we are unable to prove this result except indirectly via ¢, = 0.
k(n—1)

Let g(t) = D, ame™ sothat h = D ame™. Then
0 1

;mam = —ie (), Y = {a(t) — 3} — (B,

M St lanl <4 [ Vo) " dt = 0™,
since |¢ | < Ap. Further, ¢ is majorized by (1 —e™)™, so that
(2) am = O(m*™).
It follows that
1 (" 2 &h 2 A e —2 2 2
2—[ [RPdt = 2 lanl"2001) 2w 4+ (ew)™ 2 m* | am|
T J—1 1 wp

< 0{(ew)™ ™} + Of(ww) ™).
If we choose w = u'/®*™, this gives
3) Mi(h) = O(*¥) = o(u™).

Now if ¢; % 0, we have | k| > A(k)u* " in (i, 2r), which is incompatible
with (3).

34. We recall [from (3) of §23 and (2) §24] that, for 6 ¢ R,

A
(1) 9(8) = Mk_l'2l_k’27r”2f ZFax + o™,
0

(2) g(—0) = —p 27" fo T E(s8) d\ + 0(u"%);

and by arguments parallel to those for (1/2x) [§ g(—6) d6 [but much simpler,
since (i) the latter has an extra integral sign, (ii) we need only error O(u*™%)
instead of the much more exacting O(u**)] we can replace (2) by

2N
(2)/ g(—0) = _“k—1.211/2[) Jk dA + 0(}/0—2).

Now
——21 f g(t) dt = (ca + )™ + 0,
W =1

where

(3) o = —mi'? f JYdN, cn = 27 f 7 dn.
0 0
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From (1) and (3), and (2)’ and (3) respectively we get, for 6 ¢ R,

[ h(6) = x4, L “Zan + o(u*™),
(4) .
h(—0) = 444 L JEdn 4+ 0(4).

Since [¥ Z*d\ = O{(A + 1)7*7"}, and

/: J*dn = 0Q1) f B(—k\?) d)

+ 0(1) f:E{—(k — DN}Zdx + 0(1) f:lZ\sz

=0{(x+ 1)},
it follows from (4) that

f_ |hPdt < w4, fo O+ D2dx = 0(F,

as desired.

Since (as we observed above) ¢(8) is Os(1) in Rs, we must similarly have
h(6) constant to error O;(1) in Rs .

It is easily seen that the coefficient 8;(k) of sis not 0; the proof of Theorem
4 is accordingly completed.

36. The relation ¢, = 0, i.e.,

(1) [ " (B(=\) — 2721 + (2772)%) ah = o,

establishes an identity connecting the various integrals [§ E(—pA*)Z*™? dA
occurring in the expansion of the left side of (1); in particular, when k is
even, this is of the form
) k—1 0
f Zan =3¢, f E(—pN)Z5? dh + 322
o o

p=1

expressing the left side in terms of integrals with lower powers of Z (but of
course with factors E).

The case k = 2 does not provide an example of the desired kind: it does,
however, provide us with a curiosity. We shall find that the three definite
integrals

fow U dy, [o.., V2 dh, f: UV,

can be evaluated in finite terms.

By arguments similar to those used in the proof of Theorem 4, but naturally
a good deal simpler, we arrive at the following result. 6 = = is not singular
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for t
w®) = [ S a
and we have for 6 of B (not merely R;)
g(6) = 7% fox Z* dx,

(2) g( 0) — 1/2 '/:‘ {iE(—2>\2) _ 21/21)ZE(—)\2) + _12_Z2} d)\

+ O(log n).

Since ¢(8) is a t.p., we have g(x) = g(—=), and since the two [} concerned
in (2) are fo + O(u™") when X = M(w) = au, (2) yields the identity"’

fo Zd\ = —2 fo (B(—20\Y) — 2"%ZE(—\?) + 377} dA
which reduces, on substituting for [§ E(—2\*) d), to
(3) f (V44U dh = —(1 + 9)30" + (1 + 1) f: ZE(—N\") dx.
It is not difficult to evaluate the integral on the right. We have
[ " ZE(—N) dh = 4 [ i (E(—2)3) [ B dx) i

(4) =y ( fo " E(—20) d>\>< fo " B dx)
— fo ) (E(-—2)\2) fo " B dx) dx

The integral in the second term on the right is

@

lim (E{(—2 + i)} f) E(z%) dx)dx

e»0 Jo

= liméjo‘ | E{(—2 + ie)t}t _”2{ f E(y)y™? dy}]
= limi f” -E{(—Z + ie)t}t‘”zfo (; (—W)'— y dy)] dt

—11m4f E{(—2+z‘e>t}(2 o +1))

= lim > Z W:L_m:_—l_) m! (22 + 8)_"‘-—1 % Z

= —¥v2log (V2 + 1).
17 This is, as might be expected, the identity (1) with &k = 2.

21/2( 2—-1/ 2) 2m+1
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From this, (3), and (4), we find
- [ 17 =0 + 207} = —(3v/r + 17 log (V2 + 1)

+ 27 log (/2 + 1),

which gives

f:(U2——V2)d>\ and fo“ UV an.

(It is possible to give a direct proof of (5).) We need a third identity, and
we proceed to give a direct proof that

fo (U + V%) d\ = 2(2n)"2
We have
d 2 2 2 2 *
< VY = =29V, U 4 VEP=2y | Vax
LWV =y, UV = [ Vay

[b (U4 V?) d\ = 2y j:n d)\j:o V(z) de = 2y j: 2V (z) dz

X 0
= lim 27[ 2V(x) dx = 2 limf mf cos (8 — &) dt da.
0 z

X->00

Now

foxxfwcos(of—tz) di do = foxx(fx+fw)cos (a* — &) dtde
—fdtfxcos(x—t)dx+f (Sm(x_X)+O{Xlé})dx
=f0 —s1ntdt+0< )+0< )

f (U 4+ V%) d = f sin £ dt = 2(27)"2,
0 0

So

When k = 3 it is possible to evaluate ay in finite terms.

I observe finally that there is one real identity available for any even index
k = 2k, namely

(R(E(—%mr — ir) f (V=0 + 22UV} d)\) = 0.
0
For k = 2 we have in particular

f (U* + V* — 6U°V?) d\ = -4f (U® — VHUV dr
0 0
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This arises from the transformation

f Z4dN = 3B (5r)
0

‘/lflfl u’v du dv dw
0o Jo Jo (1 4+ u + w + wow)(1 + u? + ud? + wdw?)?’
which has an analogous form for general &k = 2«.
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