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Introduction

The algebraic varieties which occur in this paper are defined over an alge-
braically closed groundfield of arbitrary characteristic. We use the terms
algebraic variety, quasi-projective and projective variety, regular and proper
mappings, coherent sheaves, etc., as defined in [1] and [2].

If f:X ---+ Y is a continuous mapping from a topological space X into a
topological space Y, and F a sheaf of abelian groups over X, the sheaves
Rqf(F) over Y are well defined for all q -> 0; see [3], Section 3.7. (We write
f(F) instead of Rf(F) for the direct image of F.) A spectral sequence is
associated with f and F whose initial term is E’q(F) H( Y, Rqf(F)) and
whose final term is E"(F) Hn(x, F); see [3], Theorem 3.7.3. Conse-
quently, there exists a natural homomorphism n:Hn( Y, f(F) -- Hn(X, F)
for all n ->_ 0, which is a monomorphism for n 1. The main theorem of
this paper states"

THEOREM 1. Let f:X -+ Y be a proper mapping from an irreducible, quasi-
projective variety X onto an algebraic variety Y of the same dimension r. Then,
if F is a coherent sheaf over X, the natural homomorphism

or:Hr(y, f(F) ---+ Hr(X, F)
is an epimorphism.

We observe that, since is X is irreducible and f is onto, Y is irreducible. We
do not know whether the theorem remains correct if we assume only that X
is an irreducible, algebraic variety which is not necessarily quasi-projective.
Many conclusions can be drawn from Theorem 1. For example, if we

assume that the Y in that theorem is normal and the f is birational, f(Ox)
Or Ox and Or denote the sheaves of local rings of, respectively, X and Y.
Theorem 1 then states that vr:Hr(y, Of) --+ Hr(X, Ox) is an epimorphism
which, in the special case that X and Y are projective, was proved by much
more complicated methods on page 94 of [4]. If furthermore r 2 and X is
projective (in which case Y is necessarily complete, and all the cohomology
groups under investigation are finite-dimensional vectorspaces over ]c), the
epimorphism as, together with the monomorphism

al:HI(Y, 0,) HI(X, Ox),
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gives us that x(Y, Or) >- x(X, Ox). (We use here the notation of Section
79 of [1] to denote the Euler-Poincar characteristic of a variety with values
in a sheaf.) If Y is projective, this inequality becomes Theorem 4 of [5].
The author has not been able to squeeze the monotone behavior of the arith-
metic genus for normal, projective varieties of dimension => 3, described on
page 83 of [6], out of this material.
The proof of Theorem 1 is based on three lemmas which we now discuss.
Let f:X Y be a proper mapping from a quasi-projective variety X onto

an algebraic variety Y. We do not assume that X is irreducible or that
X and Y have the same dimension. For each y e Y, f-l(y) is a closed sub-
variety of X, whence it is a quasi-projective variety; we denote its dimension
by dim(f-1 (y)). Since f is onto, dim(f- (y)) >= 0. We will use the follow-
ing notations"

(a) s Minimum (dim(f-(y)) ), where y runs through Y.
(b) For each integer q >- 0, Y is the subset of Y which consists of those

points y e Y for which dim(f-l(y) >_ q.
We observe that s ->_ 0, and that Y Y if q -< p. Of course, for large

enough q, Y . Finally, Y0 Y.

LEMMA 1. Y is a closed subset of Y, for all q >= O.

LEMMA 2. If F is a coherent sheaf over X, Sup (Rf(F)) c Y, for all
q _>- 0. (Sup stands for Support.)

LEMMA 3. dim(X) dim(Y) => s.

In Section 1, we prove Theorem 1 as a formal consequence of these three
lemmas, by the use of spectral sequences. Lemmas 1, 2, and 3 are proved
in, respectively, Sections 3, 4, and 5. In Section 2, we identify proper map-
pings with regular mappings which can be "completed," a result we need for
the proofs of the lemmas.
Lemma 3 will be applied (in Section 1) to the restriction f:f-(Y) Y

of f to f-l(y). Since f-(Y) may very well be reducible, even if Y is
irreducible, it is important that we do not assume that X is irreducible in
Lemma 3. If X is irreducible, the inequality of Lemma 3 may be replaced
by equality, as shown in Section 6. The example of Section 5 (see Remark
5.1) shows that, if X is reducible, dim(X) dim(Y) may be greater than s.

Sections 3, 4, and 5 begin with "topological preliminaries" which require no
algebraic geometry for their reading. These preliminaries have been care-
fully marked off and comprise Propositions 3.1-3.3, 4.1-4.4, and 5.1. They
are dependent on one another, but not on the remainder of the paper.
Matsumura proved Theorem 1 in the special case that f:X ---. Y is bira-

tional; see [13], Proposition 5.1. The proof method of Matsumura’s paper
is similar to the present one" The special case of Lemma 2 where X (and
hence Y) is irreducible, occurs as Proposition 4.3 in [13].
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The key to the present generalization of Matsumura’s work lies in the
"topological preliminaries," mentioned above, and Lemma 3.

1. The proof of Theorem

Let f:X -- Y be a proper mapping from a quasi-projective variety X onto
an algebraic variety Y. We do not assume that X is irreducible or that
X and Y have the same dimension. We assume that the three lemmas of the
introduction have been proved.

PROPOSITION 1.1. dim(f-l(Y)) __> q + dim(Y), for all q >= 0 for which

Y.
Proof. Let fq:f-l(yq) -- y be the restriction of f to f-l(y). It follows

from Lemma 1 that f-l(y) is a closed subset of X, and hence, since
f-l(y) , fq is a proper mapping. (See [2], Section 2, Proposition 4.)
Consequently, we may apply Lemma 3 to f, and Proposition 1.1 follows
immediately. Done.
We observe that Proposition 1.1 is obviously false if Y 0.

PROPOSITION 1.2. If F is a coherent sheaf over X, the initial term
E’(F) O for p > dim(Y).

Proof. E’(F) H(Y, Rf(F)), and we conclude from Lemmas 1 and
2 that H(Y, By(F)) H(Y, Rf(F) IY); here, Ry(F) IY denotes
the restriction of Rqf(F) to Y, and we are using Proposition 8 of Section 26
of [1]. We conclude from Theorem 3.6.5 of [3] (even though Rf(F) IY
may not be coherent over Yq) that H’( Yq, Rqf(F) Y) 0 for p > dim(Y).
Done.

PROPOSITION 1.3. If F is a coherent sheaf over X, the initial term E’(F) 0

for p + q > dim(5-1(Y) ).

Proof. If p q > dim(f-l(Y)) and Y , we conclude first from
Proposition 1.1 that p > dim(Y), and then from Proposition 1.2 that
E’(F) O. If Y 0, we conclude from Lemma 2 that E’(F) 0 for
allp >- 0. Done.

Proof of Theorem 1. We assume that the hypotheses of Theorem 1 are
satisfied. Since dim(X) dim(Y), we conclude from Lemma 3 that s 0.
Hence, if q > 0, Y Y whence, since f is onto, f-l(y) X. We conclude
from Lemma 1 that f-l(y) is a closed subvariety of X whence, since X is
irreducible, dim(f-l(Y)) -< r 1. Proposition 1.3 then tells us that
E’(F) Oforp-t- q > r- 1 andq > 0. We now apply the theory of
spectral sequences. The natural homomorphism ar’E’(F) - Er(F) is
the compositum of the two homomorphisms

,0 r,0 /
EE (F) -; E (F) (F)

Here, is always an epimorphism, and, since E’q(F) 0 for p - q r and
q > 0, , is an isomorphism. Hence, a is an epimorphism. Done.
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Remark 1.1. Let the hypotheses of Theorem 1 be satisfied. We showed,
above, that then dim(f-l(Yq) <_- r I for q > 0. Hence, applying Proposi-
tion 1.1 for q 1, we find that dim(Y1) _-< r 2, if Y1 0; if Y 0, this
inequality is trivially correct, as long as r => 1. We observe that, if Y is
normal and f is birational, Y is "the fundamental variety of f on Y." The
inequality, dim(Y) _-< r 2, for the fundamental variety occurs as a corollary
on page 514 of [7], in the special case that X and Y are projective.

2. Proper mappings and completions of mappings

We begin with two preliminary propositions which are needed for the
sequel.

PROPOSITION 2.1. Let f:X Y be a closed mapping from a topological
space X into a topological space Y. Let Y’ be a subspace of Y and denote
f-l(y,) X’. Then, the mapping f X’:X’ -- Y’ is closed. (f does not have
to be continuous.)

Proof. Let A be closed subset of X’; we hve to show that f(A) is
closed in Y’. Hereto, let A X’ n B, where B is closed in X. Then, f(A)
f(X’) n f(B), because X’ f-(Y’). We conclude that f(A) is closed in
f(X’). The fact that f(X’) Y’ n f(X) and that f(X) is closed in Y, shows
that f(X’) is closed in Y’. Hence, f(A) is closed in Y’. Done.

PROPOSITION 2.2. Let f:X -- Y be a proper mapping from an algebraic
variety X into an algebraic variety Y. Let Y’ be a locally closed subvariety of Y,
and denote f-( Y’) X’. Then,

(a) f X’ :X’ Y’ is a proper mapping.
(b) If Y’ is complete, X’ is complete.

Proof. (a) Let Z be an algebraic vriety. We are given that the mapping
f 1: X Z --+ Y Z is closed, and we have to show that the mapping
f’ >( I:X’ Z -+ Y’ X Z is closed, where we denoted fiX’ by f’. This
however follows from Proposition 2.1, since (f < 1)-(Y X Z) X’ )< Z
and (f X 1) (X’ X Z) f’X 1.

(b) We continue the notation of (a). We are given that the projection
p" Y’ X Z --+ Z is a closed mapping, and we have to show that the projection
q: X’ X Z -- Z is a closed mapping. Since q p(f’ X 1), this follows immedi-
ately from the proof of (a). Done.
We now come to the main part of this section.

DEFINITION 2.1. Let f:X Y be a regular mapping from an algebraic
variety X into an algebraic variety Y. We say that f can be completed if the
following conditions are satisfied:

(a) X is a locally closed subvariety of a complete variety X* and Y is a
locally closed subvariety of a complete variety Y*.

(b) There exists a regular (and hence proper) mapping g: X* -- Y*.



670 :ERNST SNAPPER

(c g IX f and g-l( Y) X. In that case, we call g" X*-- Y* a com-
pletion of f.
We call an algebraic variety quasi-complete, if it is a locally closed sub-

variety of a complete variety. The question, whether every algebraic
variety is quasi-complete, is unsolved.

PROPOSITION 2.3. Let f: X --+ Y be a regular mapping from a quasi-complete
variety X into a quasi-complete variety Y. Then, f can be completed if and only
if f is proper. If f is proper and X and Y are quasi-projective, there exists a
completion g" X* -- Y* of f such that X* and Y* are projective varieties.

Proof. Suppose that f can be completed, and let g" X* -- Y* be a comple-
tion of f. According to Proposition 2.2 (a), g g-l(y), g-l(y) -- y is then a
proper mapping. Since g-(Y) X and g X f, this shows that f is then
proper. Conversely, assume that f is proper. Let X (respectively Y) be a
locally closed subvariety of a complete variety . (respectively ). We
denote the graph of f: X --* Y by G, and the closure of G in X by .
Since f is proper, G is closed in Y,i.e.,G n ( Y). We have
the commutative diagram"

G >XXY- ;Y.

Here, i, , and the vertical arrows are inclusion mappings, while and
are projections. In order to show that f can be completed, we replace X by G
as usual, and prove that : -- I? is a completion of i" G - Y. All we
have to check on is condition (c) of Definition 2.1, i.e., that IG i and
that ()-(Y) G. The first equality is equivalent to saying that the
above diagram is commutative. The second equality follows from the fact
that ()-(Y) n ( X Y) and the above remark that G n (. X Y).
Finally, if X and Y are quasi-projective, we may choose projective varieties
for . and I% in which case ( is necessarily projective. Done.

3. The proof of Lemma
We begin with some topological preliminaries.

PROPOSITION 3.1. Let f: X --> Y be a continuous, closed mapping from a
topological space X into a topological space Y. Let y Y. Then, the set
{f-(U) U is an open neighborhood of y} is a fundamental system of neighbor-
hoods off- y

Proof. Let V be an open subset of X which contains f-i(y). We have
to find an open neighborhood U of y such that f-(U) c V. We denote
Y f(X V) U and prove that this U has the required properties.
Since f is closed, U is open in Y. Furthermore, f-(y) V means
that yef(X V), i.e that y eU. Finally, if xe (U),f(x) U, i.e.,
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f(x) #f(X V). This shows that x X V, i.e., that x e V. Hence,
f-I(u) cV. Done.

If X is a topological space, the largest integer n, such that there exists a
properly descending sequence F0 F1 Fn of closed, irreducible sub-
spaces of X, is called the combinatorial dimension of X. See [8], pages 21-23,
for irreducible spaces; every irreducible space is nonempty by definition.
All dimensions of topological spaces which occur in this paper are combinatorial
dimensions. We denote the dimension of a topological space X by dim(X).
Of course, dim(X) may be infinite. If X , dim(X) -1. If X is an
algebraic variety, dim(X) is equal to its dimension as an algebraic variety.

DEFINITION 3.1. A topological space X is called a D-space, if the following
condition is satisfied. Every closed, finite-dimensional subspace W. of X pos-
sesses an open neighborhood U with the property that, if Z U and Z is closed in
X, then dim(Z) =< dim(W).

We chose the letter D, because it is the first letter of Dimension. Projective
varieties are examples of D-spaces. (See Proposition 3.4.)

PROPOSITION 3.2. A closed subspace of a D-space is a D-space.

Proof. Let X be a D-space, and Y a closed subspace of X. If W is a
closed, finite-dimensional subspace of Y (and hence of X), W possesses an
open neighborhood U relative to X which has, relative to X, the property
formulated in Definition 3.1. Then, Y n U is an open neighborhood of W
relative to Y which has, relative to Y, the property formulated in Definition
3.1. Done.

PROPOSITION 3.3. Let f: X ----> Y be a continuous, closed mapping from a
D-space X into a T-space Y. For each integer q >= -1, let

Y Y Y e Y and dim(f- Y >= q}.

Then, Y is closed in Y, for all q >= -1.

Proof. Let q >- -1 be an integer, and let y belong to the closure
of Y in Y. We have to show that then dim(f-l(y)) >_- q. Suppose that
dim(f-1 (y)) < q. Since Y is a Tl-space, f-1 (y) is closed in X, whence, since
X is a D-space, ff(y) possesses an open neighborhood U which satisfies the
condition of Definition 3.1. We conclude from Proposition 3.1 that y pos-
sesses an open neighborhood V such that f-I(V) c U. There exists some
z e V n Y. Clearly, f-(z) is a subset of U which is closed in X, and hence
dim(f-(z)) =< dim(f-l(y)) < q. This contradicts the assumption that
z e Yq. Done.

This finishes the topological preliminaries, and we now apply them to
algebraic geometry.

PROPOSITION 3.4. A projective variety is a D-space.

Proof. We see from Proposition 3.2 that all we have to show is that a pro-
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jective space P is a D-space. Let dim(P) n, and let W be a closed sub-
space of P. We have to show that W possesses an open neighborhood U
which satisfies the condition of Definition 3.1. If W P, choose U P.
If W P, dim(W) < n, and there exists an (n-dim(W)-l)-dimensional
hyperplane H in P, such that W n H 0. In order to show that the open
neighborhood U P H of W has the required property, select Z U,
where Z is closed in P. Then, Z n H 0, whence dim(Z) dim(H) < n.
(See [9], Chapter II, Section 7.) This means precisely that dim(Z) -<
dim(W). Done.
Remarl 3.1. Although we do not need it for this paper, it is interesting to

observe that Proposition 3.4 can be sharpened as follows: Every locally
closed subspace W of a projective variety X possesses an open neighborhood U
with the properly that, if Z U and Z is closed in X, then dim(Z) =< dim(W).
This follows immediately from Proposition 3.4, together with the fact that,
if W is locally closed in a projective variety X, then dim(W) dim(W),
where W denotes the closure of W in X.

Proof of Lemma 1. Let f: X -- Y be a proper mapping from a quasi-pro-
jective variety X into an algebriac variety Y. Let Y, for q _-> --1, have the
same meaning as in Proposition 3.3. We have to show that Y is a closed
subset of Y, for all q _-> -1. (Hence, for Lemma 1, it is not necessary that f
is onto.)

Case 1. X is projective. X is then a D-space (see Proposition 3.4), Y is a
T1-space, and f is continuous and closed. Hence, Lemma 1 then follows
from Proposition 3.3.

Case 2. X and Y are quasi-projective. Let g" X* -- Y* be a completion of
f, where X* and Y* are projective; the existence of g is guaranteed by Proposi-
tion 2.3. It follows from Definition 2.1 that f-l(y) g-(y), for all y e Y.
Hence, Y Y* a Y, where Y* YlYe Y* and dim(g-l(y)) => q}. We
conclude from Case 1 that Y* is closed in Y*, whence Y is closed in Y.

Case 3. X is quasi-projective, and Y is an arbitrary algebraic variety. Let
Y YI u... u Yn, where each Y is an open, affine subvariety of Y.
We denote f-(Yi) Xi and f lX fi. We conclude from Proposition
2.2 (a) that f’X Y is a proper mapping, for i 1, ..., n. Since
X and Y are both quasi-projective, we conclude from Case 2 that

V(i)the set lYlY e Y and dim(f[(y)) >= q} is closed in Y. Since
) Y a Yi, it follows that Y is closed in Y. Done.q

We have not been able to prove Lemma 1 under the weaker assumption
that X is an arbitrary algebraic variety.

4. The proof of Lemma 2
We begin with some topological preliminaries.
A topological space is called a Zariski space if its open subsets satisfy the

ascending chain condition. (See [8], page 23, where the term "Noetherian
space" is used, instead.) Zariski spaces are not necessarily finite-dimen-
sionM. (See [3], page 171.)
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We say that a collection of open subsets of a topological space X is
finitary if the following condition is satisfied- For everb finite subset Y of X,
the neighborhoods of Y which belong to form a fundamental system of neighbor-
hoods of Y. Observe that is necessarily a base for the open sets of X.

PROPOSITION 4.1. Let X be a To-space, and a finitary collection of open
subsets of X. Let W be a finite-dimensional, Zarislci subspace of X; we denote
dim(W) c. Then, if U is an open neighborhood of W, there exists
Bi Bc+l e , such that W c BI t t Bc+ U.

Proof. A Zariski space which is 0-dimensional and a T0-space consists of
a finite number of points. Hence, if c 0, Proposition 4.1 follows imme-
diately from the definition of "finitary." Let c > 0, and let U be an open
neighborhood of W; we proceed by induction on c. W has only a finite
number of irreducible components, say W1, ..’, Ws. We choose a point
xi e Wi, for i 1, s, and select Bi e , such that {x, xs} B c U.
Since dim(W B) < c, there exists (by induction on c) B2, Bc+l e ,
such that W B1 B2 J... t Bc+ U. It follows that

W B t t Bc+ U.
Done.

Let F be a sheaf of abelian groups over a topological space X as base
space. We say that a collection / of subsets of X is F-acyclic if the fol-
lowing condition is satisfied" If A, An e , where 1 <= n < , then
Hq(AI n An, F) O, for q > O. This condition occurs in Corollary
4 on page 176 of [3].

Consider now a subset W of our topological space X. The direct limit,
lim Hq( U, F), where U runs through the directed set of open neighborhoods

of W, is well defined for all q _-> 0. We denote this group by Hg(W, F).
Needless to say that Hg(W, F) and Hq(w, F) should not be confused.

PROPOSITION 4.2. Let X be a To-space, and F a sheaf of abelian groups
over X as base space. Let be a finitary collection of open subsets of X, which
is F-acyclic. Then, for every finite-dimensional, Zaristci subspace W of X,
Hg(W, F) O for q > dim(W).

Proof. Denote dim(W) c, and let U be an open neighborhood of W.
We will show that there exists an open neighborhood V of W, such that
V U and Hq(v, F) O, for q > c; Proposition 4.2 is, of course, an imme-
diate corollary of this. Hereto, select B, ,B+ e, such that
W B1 t t Bc+ U; this can be done, according to Proposition 4.1.
We denote B u t B+I V, and all there remains to be proved is that
Hq(V,F) O, forq > c. The setsB1, ...,Bc+lformacovering of V,
and it is trivial that Hq(, F) O, for q > c. We conclude from [3], Corol-
lary 1, page 175, that Hq(, F) Hq(v, F), for all q => 0. Done.

PROPOSITION 4.3. Let f: X -- Y be a continuous, closed mapping from a
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topological space X into a topological space Y. Let F be a sheaf of abelian
groups over X as base space, and let y Y. Then, (Rqf(F) ) Hg(f-l(y), F),
for all q >>- O.

Proof. (Rqf(F)) lim Hq(f-l(U) F) where U runs through the open

neighborhoods of y. Hence, Proposition 4.3 is an immediate corollary of
Proposition 3.1 and the definition of H(f-l(y), F). Done.
The following proposition interrelates the support of Rqf(F) with the set

Yq {YlY Y and dim(f-l(y)) -> q}, where q >_- 0.

:PROPOSITION 4.4. Let f: X ---> Y be a continuous, closed mapping from a To-
space X into a topological space Y, and let F be a sheaf of abelian groups over X as
base space. We assume furthermore that X is a Zariski space and possesses a
finitary collection of opensubsets, which is F-acyclic. Then, Sup(Rqf(F) C Yq
for all q >= O.

Proof. Let q => 0, and let y e Y be such that dim(f-l(y)) < q. We have
to show that then (Rqf(F)) 0. We conclude from Proposition 4.3 that
(Rqf(F) ) Hg(f-(y), F), and from Proposition 4.2 that Hg(f-(y), F) O.
Done.

This finishes the topological preliminaries, and we now apply them to
algebraic geometry.

Proof of Lemma 2. Let X be an algebraic variety, and F a coherent sheaf
over X. The collection of open, affine subvarieties of X is F-acyclic as
follows from [1], Proposition 1, page 234, and Corollary 1, page 239. This
collection ! is definitely not finitary, if X is an arbitrary algebraic variety
as follows from [10], Theorem 3. (The points P and PP, which occur in that
theorem, are not contained in any open, affine subvariety of the surface V of
that theorem.) It is well known, however, and also follows easily from [1],
Lemma 1, page 244, that ! is finitary if X is quasi-projective. Hence, the
following proposition is an immediate corollary of Proposition 4.4.

PROPOSITION 4.5. Let f: X -- Y be a continuous, closed mapping from a
quasi-projective variety X into a topological space Y, and let F be a coherent sheaf
over X. Then, Sup(Rqf(F) Yq, for q >- O.

Since proper mappings are continuous and closed, Lemma 2 has now of
course been proved. We see that the assumption that Y is algebraic (or that
f is onto) is irrelevant for that lemma.

Remar] 4.1. Let the conditions of Proposition 4.5 be satisfied, and sup-
pose furthermore that f-(y) consists of a finite number of points, for all
y e Y. We conclude from Proposition 4.5 that then Rqf(F) 0, for q > 0
and, consequently, that Hq(x, F) - Ha(y, f(F)), for all q _-> 0. This
situation occurs, for instance, in the following two cases.

(a) Y is an irreducible, projective variety, and f: X - Y is the usual,
birational correspondence from a derived, normal model X of Y, onto Y.
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See [7], Theorem 7, page 511. As an example f(O:), where O is the sheaf
of local rings of X, is now "the sheaf of the integral closures of the local rings
of Y." Hence, the sheaf of local rings 0r of Y is a subsheaf of f(O), and
the support of the quotient-sheaf f(O:)/O, is the conductor variety A of Y.
Denoting dim(Y) r, we know that dim(A) < r, whence the exact sequence
0 -- 0, --> f(O:) --+ f(O:)/O. ---> 0 gives rise to the exact sequence
U Y, 0.) --> H ( Y, f(O:) --+ O. Consequently, we conclude from the
isomorphism H(Y, f(O:)) Hr(x, 0:), that there exists an epimorphism
Hr(y, 0,) --> Hr(x, 0:). Further conclusions can of course be drawn if
dim(A) < r-- 1.

(b) X and Y are irreducible, projective varieties of the same dimension,
f: X -. Y is a regular, rational mapping from X onto Y, and "f- has no
fundamental points on Y." See [11], page 6.

5. The proof of Lemma 3
We begin with some topological preliminaries.
Let f" X -- Y be a continuous, closed mapping from a finite-dimensional

Zariski space X onto .a finite-dimensional space Y. (Since a continuous image
of a Zariski space is a Zariski space, Y is necessarily a Zariski space.) We
put s Minimum(dim(f-(y)) ), where y runs through Y.

I)ROPOSTON 5.1. If X is a D-space and Y is a T-space,

dim(X) dim(Y) _-> s.

Proof. Denote dim(Y) t. If 0, Proposition 5.1 follows from the
fact that the dimension of a topological space is greater than or equal to that
of any of its subspaces. We may hence make the induction hypothesis that
Proposition 5.1 has been proved for dim(Y) 0, 1, ..., 1 and that
t>_l.

Case (a). X is irreducible. Let Fo F F be a properly de-
scending chain of closed, irreducible subspaces of Y. Clearly, dim(F)

1, and we consider the mapping f f-(F)" f-(F) -+ F. This mapping
is still continuous, closed, and onto, and we conclude from Proposition 3.2
thatf-(F) is a D-space. Hence, we may infer from the induction hypothesis
that dim(f-(F)) => 1 + s here, s Minimum(dim(f-(y)) ), where
y runs through F. The fact that F Y and that f: X-- Y is an epimor-
phism, shows thut f-(F) X. Consequently, since X is irreducible and
f-(F1) is a closed subset of X, dim(f-(F)) _-< dim(X) 1, which proves
that dim(X) 1 __> 1 s. It is obvious that s __> s, and we are done
with Case (a).

Case (b). Y is irreducible. Let X X u u Xn be the decomposition
of X into irreducible components. Then Y f(X) u... u f(X,), and
hence, since Y is irreducible and f is closed, Y f(X) for at least one i,
1 __< i _-< n. We assume that the enumeration was such that f(X)
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f(Xm) Yandf(Xm+) # Yfori 1, ...,n m. It may of course
happen that m n.
We denote the mapping f lX" X -- Y by f and the

Minimum(dim(f (y))), where y runs through Y, by s for i 1, m.
We conclude from Proposition 3.2 that X is a D-space, whence Case (a)
may be applied to f. It follows that dim(X) -> + s, for i 1, m.
Since dim(X) => dim(X), we will be done as soon as we have shown that
s Maximum(s1, s).

Hereto, we denote Z {y Y e Y and dim(/-l(y)) s} and Z /Y Y e Y
and dlm(f (y)) s} for i 1, ...,m. Since Z is the complement of
the set Y,+I Yl Y e Y and dim(f-l(y)) >__ s 1}, we conclude from Propo-
sition 3.3 that Z is an open subset of Y. The same proposition may also be
applied to the mappingsf, whence Zi is an open subset of Y for i 1, m.
It is obvious that Z, Z, Zm are all nonempty. The fact that f is closed
and Y is irreducible implies that f X,+ u u f Xn Y, and we denote
the open, nonempty complement of f(Xm+) U uf(X) by V. (If m n,
we put V Y.)

Since Y is irreducible, we can select a point y V n Z n Z n n Zm.
We conclude from y e V that f-l(y) c X u u X, and hence that
f-1(y) U Ui=(f-(y) n X) = (y). Each f7 (y) is closed in f-l(y)
whence dim(f-(y) Maximum(dim(f/(y) ), where i 1, m.
The fact that y e Z shows that dim(f-l(y) s; the fact that y e Z shows that
dlm(/ff (y)) si, and we are done with Case (b).

Case (c). Y is reducible. Let G be an irreducible component of dimension
of Y. We denote the mapping f f-l(G) f-l(G)-- G by g and the

Minimum( -1dm(g (y))), where y runs through G, by So. Proposition 3.2
shows that f-I(G) is a D-space, whence we conclude from Case (b) that
dim(f-(G) >= .-F So. Clearly, g-(y) f-(y) for all y G, and hence
So >_- s. It is obvious that dim(f-l(G)) __< dim(X), and hence we are done.

This finishes the topological preliminaries, and we now apply them to
algebraic geometry.

Proof of Lemma 3. Let f: X -- Y be a proper mapping from an algebraic
variety X onto n lgebric variety Y. Let s Minimum(dim(f-l(y) ),
where y runs through Y. Lemmu 3 is contained in the following proposition.
We see that the assumption that X is quasi-projective is irrelevant for that
lemma.

PROPOSITION 5.2. dim(X) dim(Y) _>- s.

Proof. Case ). X and Y are both quasi-projective. According to Propo-
sition 2.3, there exists a completion g" X* --> Y* of f, where X* and Y* are
projective varieties. We denote the closure of X in X* (respectively of
Y in Y*) by . (respectively 1). Since g is a closed mapping and f is an
epimorphism, g(.) l, and we denote g l.: . --+ 1 by h. Evidently,
h is ulso completion of f, while nd I? are projective varieties.
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Since h is an epimorphism and - is a D-space (see Proposition 3.4), we
may apply Proposition 5.1 to h, which gives dim(.) => dim(l) + ; here,

Minimum(dim(h-l(y) where y runs through . We conclude from
dim()) dim(X)and dim(]) dim(Y)that dim(X) => dim(Y) + .
We now proceed in two steps.

Step (a.1). Y is irreducible. We shall show that then s. Since
h is a completion of fi h-l(y) f-l(y) for all y e Y. Hence, all we have
to show is that dim(h-l(y)) for some y e Y. Hereto, let

Z IYlYe and dim(h-l(y)) }.

We may apply Proposition 3.3 to h, whenceZ is an open subset of Y. (Namely,
Z is the complement of the set/Y Y e 1 and dim(h-l(y) >- -t- 1}.) Hence,
Z and Y are open, nonempty subsets of the necessarily irreducible space Y,
whenceZ n Y 0. Done with Step (a.1).

Step (a.2). Y is reducible. Let W be an irreducible component of Y, such
that dim(W) dim(Y). The result of Step (a.1) may be applied to the
mapping flf-l(W) f-l(W) -- W, whence dim(f-l(W)) _-> dim(Y) + s’;
here, s’ Minimum(dim(f-l(y) where y runs through W. Since
dim(f-1(W)) <- dim(X) and s’ >= s, we are done with Case (a).

Case (b). X is quasi-projective and Y is an arbitrary algebraic variety.
Let W be an irreducible component of Y, such that dim(W) dim(Y).
Let V be an open, affine subvariety of W. Then, dim(V) dim(Y), and
we conclude from Proposition 2.2 that the mapping f If-l(V) f-l(V) ---, V
is proper. Case (a) may hence be applied to this mapping, whence
dim(f-l(V)) __> dim(Y) + s’; here, s’= Minimum(dim(f-l(y)))where y
runs through V. It is obvious that dim(f-l(v) =< dim(X) and that s’ -> s;
done with Case (b).

Case (c). X and Y are arbitrary algebraic varieties. Let V be a quasi-
projective variety of the same dimension as X, and g" V -- X a proper mapping
from V onto X. The existence of V and g is assured by the Chow Lemma; see
[12], page 123. We may apply Case (b) to the mapping fg" V Y, and we
conclude that dim(X) => dim(Y) + s’; here, s’ Minimum(dim((fg) -1 (y))
where y runs through Y. All there remains to be shown is that s’ >__ s.

Hereto, select z e Y such that dim((fg)-l(z)) s’. Since (fg)-l(z)
g-l(f-l(z)), and since Case (b) may be applied to the mapping
g,. g-1 (f-1 (z)) f-1 (z), where g’ is the restriction of g to g-1 (f-1 (z)), we can
certainly assert that dim((fg)-l(z)) >- dim(f-l(z)). It is trivial that
dim(f-l(z)) _>- s, and we are done.
Remark 5.1. We shall see in the next section that, if X is irreducible and

quasi-proiective, dim(X) dim(Y) s.
If X is reducible, it may very well happen that dim(X) dim(Y) > s,

even when X and Y are projective varieties and Y is irreducible. For example,
let X X1 u X2 where X1 is an irreducible, projective variety of dimension 1,
X. is an irreducible, projective variety of dimension 2, and X1 n X. 0.
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We choose Y X1 and define f: X -- Y as follows" On X1, f is the identity
mapping, and f maps all of X2 on a point of X. Then dim(X) 2,
dim(Y) 1, s 0, and hence dim(X) dim(Y) > s.

5. The equality, dim(X) dim(Y) s

Let f: X -- Y be a proper mapping from an algebraic variety X onto an
algebraic variety Y. Let s Minimum(dim(f-(y)) ), where y runs through
Y. It is the purpose of this section to prove

PROPOSITION 6.1. If X is quasi-projective and irreducible,

dim(X) dim(Y) s.

In order to do this, we first prove the "dimension theorem" (see [9], page
38) in the following form.
An open, nonempty subset U of an algebraic variety X with sheaf of local

rings 0x is itself an algebraic variety with sheaf of local rings Oxl U. We
say that "X is locally an affine space," if every point of X is contained in an
open subset which is biregularly isomorphic with an affine space. Examples
of such varieties are affine spaces, projective spaces, and products of varieties
which are themselves locally affine spaces.

THE DIMENSION THEOREM. Let X be an irreducible, algebraic variety which
is locally an ane space. Let V and W be closed, irreducible subsets of X, and
C an irreducible component of V n W. (Irreducible spaces are nonempty by
definition; see [8], page 21.) Then, dim(C) => dim(V) + dim(W) dim(X).

Proof. Select x e C and an open neighborhood U of x which is biregularly
isomorphic with an affine space. Since V n W a U is an open subset of
V a W, we conclude from [8], page 22, (2.1.6), that C a U is an irreducible
component of V a W n U. We may apply the dimension theorem for affine
spaces (see [9], page 38, the Corollary) to the closed, irreducible subsets
V U and WaU of U, from which it follows that dim(CaU) >=
dim(V n U) dim(W a U) dim(U). Evidently, dim(C n U) dim(C),
dim(V U) dim(V), dim(W a U) dim(W), and dim(U) dim(X).
Done.

Proof of Proposition 6.1. We denote dim(X) r, dim(Y) and con-
clude from Proposition 5.2 that r >- s. All there remains to be shown is
thatr- t-< s.

Case (a). Y is an ane space. X is a locally closed subvariety of an
n-dimensional projective space P, and the graph G of f: X -- Y is a closed
subvariety of P X Y (since f is proper). We replace f by i, where
i" G --. P X Y is the inclusion mapping and " P Y -- Y is the natural pro-
jection. We select y e Y and have to show that r =< dim( (i)-l(y) ).
Since f is onto, (i)-l(y) , and we can select an irreducible component C
of (ri)-(y). We will show that dim(C) -> r t, which is more than is
required.



MONOTONE BEHAVIOR OF COHOMOLOGY GROUPS 679

Hereto, we observe that P Y is locally an affine space, that (i)-l(y)
G n (P X y) and apply the Dimension Theorem to the closed, irreducible
subsets G and P X y of P Y. It follows that

dim(C) __> dim(G) + n- (n + t) r- t.
Done.

Case (b). Y is an ane variety. Y is necessarily irreducible, and we may
apply the Noether normalization theorem. In geometric form this theorem
states that there exists a proper mapping g" Y -- S from Y onto an affine
space S of the same dimension t, such that g-(z) consists of a finite number
of points, for all z e S. We denote s’ Minimum(dim((gf)-l(z))), where
z runs through S, and apply Case (a) to the proper mapping gf: X -- S. We
conclude that r <-_ s’, whence all there remains to be shown is that s’ s.
It is obvious that s < s’ and we now show that s’ < s

Let Y,+I {YlY Yanddim(f-(Y)) _>- s - 1}. Evidently, Y,+ Y,
and we conclude from Lemma 1 that Y+I is closed in Y, whence
dim(Ys+i) t. If Ys+i , we apply Proposition 5.2 to the proper mapping
g Y,+ Ys+ - g(Y+), which shows that dim(g(Y,+) < t, and hence that
g(Ys+i) S; if Ys+ 0, it is trivial that g(Ys+l) S. We can consequently
select a point z e S such that z cg(Y+), i.e., such that g-(z) Y+I .

g-1This means that for all y e (z), dim(f-(y) s. Since g-(z) consists
of a finite number of points, it follows that dim(f-(g-l(z))) s, and hence
that s’ <_ s. Done.

Case (c). Y is any (necessarily irreducible) algebraic variety. Select
an open, affine subvariety U of Y, and consider the mapping

f lf-(U)’f-l(u) U.

This mapping is proper, according to Proposition 2.2, and we may apply
Case (b) to it. Hence, if m Minimum(dim(f-(y))) where y runs
through U, then dim(f-(U) dim(U) _-< m. Since dim(f-(U) r and
dim(U) t, all there remains to be shown is that m s.

For this purpose, all we have to prove is that there exists a point y e U
such that dim(f-(y)) s. Let Y,+I have the same meaning as under (b).
We conclude, as under (b), that the complement Z of Ys+ is an open, non-
empty subset of Y, whence U Z ). For all y e U a Z, dim(f-(y) s.
Done.
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