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In this pper we shll study commutative dissocitive loops with operators
from division ring ( loop is clled diassociaive if ny pir of elements
generate subgroup, or ssocitive subloop). Since these loops offer a
generalization of the concept of vector spce, we hve clled them vector
loops. The bsic result, from which everything else follows, is the setting
up of one-to-one correspondence between classes of vector loops nd certain
geometrical systems. This correspondence is generalization of the usual
method of coordintizing Desrguesin proiective plane by triples of
elements from division ring.

This pper constitutes the essence of doctoral dissertation prepared under
the supervision of Professor A. Adrian Albert. The uth0r would like to
express his gratitude to Professor Albert for his continued dvice nd en-
couragement.

1. Basic definitions and terminology

We begin with rigorous definition of vector loop. Let V be loop, D ny
division ring, and suppose that the elements of D induce endomorphisms on
V satisfying the three axioms:

() (ax + y) + (’rx + y) (a + "r)x + ( + )y, for all x, y e V,
a, , ,, e D.

(b) ,x(x) ()x for all x e V, a, eD.
(c) lx x, where 1 is the identity element of D.

Then V will be called a vector loop over the division ring D. As in the asso-
ciative case, we shall cll a subloop of V subspace whenever it is closed under
multiplication by D, and we shall call an element x of V multiple of an
element y of V if there exists a scalar a in D such that x ay. A set {x} of
elements of a vector loop V will be culled a set of representatives of V if every
nonzero element of V is a multiple of one and only one of the x’s. Also if
{x} is any set of elements in V, we shall define the subspace S generated by the
set {x} to be the intersection of the subspaces containing the set (we shall
usually use the symbol (x) to denote the subspace generated by the set
{x} ). Whenever no proper subset of the set {x} generates S, we shall say
that {xi} is a strongly independent (or just independent) set. If an ordered
set {x} of elements of V satisfies the condition that for no finite subset x ,...,
x (arranged in ascending order) of {x} do there exist scalars , .-., an,
not all zero, such that (... ((a x + ax) + aa x) + x) 0, then
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the set x} will be called weakly independent. We now define the upper
dimension of a vector loop to be the maximum number of elements occurring
in a weakly independent set, and the lower dimension to be the minimum
number of elements occurring in a maximal independent set. In those special
cases where the upper and lower dimensions are equal, we shall speak simply
of the dimension.
The other concept that we would like to define in this section concerns the

geometrical systems referred to at the beginning of this paper. Since these
systems include all projective and affine geometries as the most important
special cases, we shall call them simply geometries. More specifically: we
define a geometry of order c to be a set of points, lines, and incidence relations
between them, satisfying the axioms:

(i) Any two distinct points determine precisely one line.
(ii) The cardinality of points on each line is c - 1.

By a subgeometry of a geometry G of order c, we shall mean a subset of the
points and lines of G, under the same incidence relations, which themselves
form a geometry of order c. And finally, a subset of points {p} of G will be
said to generate a subgeometry H of G if H is the intersection of all sub-
geometries containing the set {p}.

2. The connection between vector loops and geometries
Let V be a vector loop over a division ring D of cardinality c. Then any

element of V that is not the identity generates a subspace of dimension one,
and any two such subspaces are either identical or have only the identity in
common. Also, if x and y are two independent elements of V, then the set of
all elements of the form ax y is a two-dimensional vector space (x, y} over
D (by axiom (a)) containing x and y. From vector space theory it is clear
that any two independent elements in (x, y} will generate it, and that (x, y} is a
set-theoretic sum of c - I disjoint one-dimensional subspaces of V.
Now, let G consist of a set of points in one-to-one correspondence with the

one-dimensional subspaces of V, a set of lines in one-to-one correspondence
with the two-dimensional subspaces of V, and the incidence relations that a
given point is on a given line if and only if the subspace corresponding to the
point is contained in the subspace corresponding to the line. Then it is clear
from the above remarks that G is a geometry of order c. Furthermore, the
elements of G corresponding to any subspace of V form a subgeometry of G,
and every subgeometry of G corresponds to a unique subspace of V in this way.
Since this correspondence preserves inclusion relations, G may be regarded as
being the lattice of subspaces of V.

Conversely, given a geometry G of order c and a division ring D of cardi-
nality c, we shall construct a vector loop over D which has a lattice of sub-
spaces isomorphic to G. Consider first the set of pairs (P, a) where P ranges
over the points of G, and a ranges over the elements of D. Identifying all
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pairs of the form (P, 0) where 0 is the zero element of D, we denote the
resulting set by V. The operation of D upon V may now be defined by the
relation f(P, a) (P, a), from which the validity of axioms (b) and (c)
follows immediately. Now, let H be a two-dimensional vector space over D,
and let the set {y.} be a set of representatives of H. Then for each line of G,
we set up a one-to-one correspondence between the set {y.} and the set of
symbols of the form (P, 1) where P ranges over the points of and where 1 is
the identitiy element of D. This induces the correspondence (P, a)- aye,
where y is the representative corresponding to P. We now define addition
between these (P, a)’s to be that induced by the operation of vector addition
between the corresponding elements of H.

If P and PP are distinct points of G, then they lie on exactly one line of G,
so that we have uniquely defined the sum (P, a) (P’, ) for any a,/ in D.
On the other hand, the sum (P, a) -t- (P, t) has been defined once for each line
passing through P; but in each case the definition yields (P, a) -- (P, )
(P, a + t). Hence, addition in V is well-defined. To show that V is a
loop, nd that it satisfies axiom (), it is only necessary to remark that by
construction, any two elements of V can be imbedded in a subsystem which
is two-dimensional vector space over D. Thus, given a geometry of order
c and a division ring D of crdinality c, we have shown how to construct from
them a vector loop over D, and there remains only the question of how this
construction is related to the previous construction of a geometry from a
vector loop.

Given a geometry G of order c and a division ring D of cardinality c, let V
be a loop constructed from it by the method just described, and let G be the
geometry associated with V at the beginning of this section. We would like
to show that G nd G’ are isomorphic (i.e., that there is a one-to-one corre-
spondence between the points and lines preserving incidence). Given any
point P of G, the set of pairs (P, a) with the given point P s first argument
(and a rnging over D) form one-dimensional subspce of V, and thus
determine unique point P’ of G’. This sets up a map from the points of G
to the points of G’ which is clearly one-to-one and onto. Also, if a set of
points of G form a line l, then the pairs (P, a) where P ranges over the points
of l, form a two-dimensionl subspace of V, nd hence determine a line of G’.
But every line of G’ must arise in this manner, since given two points of Gp, the
unique line joining them will rise as the image of the line joining the two
corresponding points of G. Thus, G nd G are isomorphic. We have shown
that, given a division ring D of cardinality c, every geometry of order c arises
as the lttice of subspaces of some vector loop over D, and we have given a
concrete construction for such a loop.

Next, let V be a vector loop over D, G its associated geometry, and V a
vector loop over D constructed from G. We would like to discover how V’
is related to V. Because of the wide ltitude vailable in the setting up of
addition in V’ (we made use of any one-to-one correspondence between the
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set of representatives of H and certain subsets of V’), we can certainly not
expect V and V’ to be isomorphic. However, there is a concept a little more
general than isomorphism which does relate V and V’. Define two vector
loops W and W over the same division ring D to be similar if there is a one-
to-one mapping f of W onto W satisfying the axioms"

(1) f(x) af(x) for any x W, a D.
(2) For every x and y of W, there exist scalars a and of D such that

f(x - y) af(x) + f(y).

It is clear that the relation of being similar is an equivalence relation, and
that similar vector loops have the same geometry associated with them.
To show that V and V’ are similar, let {x} be a set of representatives of V,
and let P be the point of G corresponding to x for each i. Then we may
define a one-to-one map of V onto V’ satisfying (1) by letting f(ax)
(P, a) for each i and every a F. To show that f satisfies axiom (2), we
remark that the point of G corresponding to x y is on the line determined by
the points of G corresponding to x and y, and hence f(x y) is in the two-
dimensional subspace of V’ determined by f(x) and f(y).
We have now finally proved

THEOREM 1. For every division ring D of cardinality c, there is a one-to-one
correspondence between similarity classes of vector loops over D and geometries of
order c. Under this correspondence, the geometry corresponding to a vector loop
is isomorphic to the lattice of subspaces of that loop (points corresponding to
one-dimensional subspaces, lines to two-dimensional subspaces, etc., and inclu-
sion relations being preser.,ed).

Because of the connection between vector loops and geometries given in
Theorem 1, we shall sometimes find it convenient to use the same notation to
denote subspaces of a loop as to denote the subgeometries corresponding to
them. For example, if xl, ..-, xn are elements of a vector loop, (xl, ..., xn}
may denote either the subspace that they generate or the subgeometry corre-
sponding to it.
To make the concept of the similarity of vector loops clearer, we will now

give an example. Let V be the abelian group of order p3 and type (1, 1, 1)
on the generators a, b, c (with operators from the field of p elements). Then
every element of V can be expressed uniquely in the form (ia jb) + kc,
where 0 -< i, j, k _<_ p 1. Consider the subgroup K generated by a and
b c, consisting of the elements (ia jb) - jc, where 0 _-< i, j _-< p -1.
We may define a new operation of addition "@" between the elements of K
by defining

ia ka + mb + mc] [(]ca + mb + mc] @ ia

[(k- i)aWmb] +mc
for m 0, and for i and k arbitrary, and

[(ia + jb) + jc] @ [(]a + mb) + mc]
[(i + k)a + (j - m)b] + (j + m)c
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for j and m either both nonzero or both zero, and for i and k arbitrary. It is
easy to verify that K is commutative and associative under "". We now
extend our definition of "" to all of V by defining the new sum of any two
elements that are not both in K to be the same as the old sum. Under this
new operation V will still be a vector loop, but it will not be associative for
p 2. Since setting a 0 in V under the new operation will still induce a
homomorphism into an abelian group of order p, we have proved the case
n= 3of

THEOREM 2. For p 2, n >= 3, there exists a solvable vector loop over the
field of p elements which has p elements and which is similar to the abelian group
of order p’ and type 1, ., 1 ), but which is not associative.

As suggested by group theory, we shall call a loop solvable if it has a factor
series all of whose elements are abelian groups.
For n > 3, the theorem may be proved by taking the direct sum of the

vector loop of order p3 constructed above and an abelian group of order p
and type (1, ..., 1).

3. Existence theorems
In this section we shall develop some of the consequences of Theorem 1, with

particular emphasis on exhibiting several different types of examples of vector
loops. We begin with the comment that any projective geometry is a geom-
etry under our definition, so that Theorem 1 implies that any projective
plane of prime power or infinite order (which includes all known examples)
will arise from a vector loop of dimension three. Any vector loop derived
from a Desarguesian plane using the division ring which coordinatlzes that
plane, will be similar to an abelian group. However, if we use another division
ring of the same cardinality, or if we use a non-Desarguesian plane with any
division ring of the right cardinality, a new class of vector loops will result.
This "coordinatization" of a projective plane by means of a vector loop looks
as if it might be useful in the study of finite non-Desarguesian projective
planes.

For vector loops derived from projective spaces, it is clear that the upper
and lower dimensions are equal. That these are, in fact, the only finitely
generated vector loops with this property, shows how strong this dimension
property is, and gives a convenient characterization of these loops"

THEOREM 3. A vector loop of dimension n. >= 3 has a projective space of
dimension n 1 as its associated geometry.

Using the remarks at the beginning of this section, we see that Theorem 3
has the following

COROLLARY. There exist vector loops of any finite dimension over any infinite
division ring which are not similar to vector spaces.

We shall begin the proof of Theorem 3 by showing that a vector loop V of
dimension three has a projective plane as its associated geoJuetry G. Since D
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has at least two elements, every line of G has at least three points on it, and it
only remains to prove that any two lines of G intersect. Assume that there
exist two lines of G which do not intersect, and let the two-dimensional sub-
spaces of V corresponding to them be (x, y} and (z, w}. Since V has dimen-
sion three, and since x, y, z are independent, we can write w in the form
(ax - y) .z for some a, , , in D. But then the point corresponding to
the subspace generated by (ax - y) (-,)z w is on both lines, contrary
to hypothesis.

If V has dimension n > 3, we shall reduce the proof of the theorem to the
case already proved. One of the usual sets of axioms for a projective space is
the following"

(1) There exists a unique line joining any two points.
(2) If any quadrilateral A, B, C, D has the property that the lines AB and

CD intersect, then AC and BD intersect.
(3) There exists a quadrilateral.
(4) There are at least three points on every line.

Now, axioms (1) and (3) are already satisfied, and axiom (4) follows as
before, so that we need only prove (2). Let (x}, {y}, (z}, (w} be any four points
of G satisfying the property that (x, y} and (z, w} intersect in a point (t}; then

ax y .z - w for some a,/, ,, , in D. If neither a nor /are zero
(otherwise switch the roles of x and y, or z and w), then the whole configuration
is in (x, z, t}. But (x, z, t} is a projective geometry by the first part of the
proof, so that (x, z} and (y, w} must intersect. It is now trivial to verify that
the dimension is correct, to finish the proof.
Another well-known class of geometrical objects fitting our definition of a

geometry is that of the affine geometries. From Theorem 3 we know that a
vector loop derived from an affine geometry has no dimension, and in 4 we
shall see that a vector loop derived from a finite affine geometry never has
prime power order. But perhaps the most interesting property of this class
of examples is stated in

THEOREM 4. A vector loop with an ane space as its associated geometry, is
simple (i.e., has no normal Subspaces).

Let p(y) be the mapping of V onto itself given by xp(y) x y. Then
if x and x’ are two elements of a vector loop V, we shall call x’ a conjugate of x
if x’ is the image of x under a product of a finite number of mappings of V of
the form p(y)p(z)p-(y -- z) or their inverses. We may now state a lemma
which contains the gist of the proof of Theorem 4.

:LEMMA 1. If V’ is a vector loop with an ane plane G as its associated
geometry, and if x and w are independent elements of V’, then x has a conjugate
not in (x, w}.

Let (y} be any point of G not on the line (x, w}; then the point (x -- y} is
also not on (x, w}. Next, choose a point (z} which is distinct from (y} and
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which has the property that the lines (y, z} and (x, w} are parallel. Then the
line {x y, z} must intersect (x, w}, so that there exists a multiple az of z with
the property that (x + y) - az is in (x, w}. But -(y az) cannot be in
(x, w} since (y, z} is parallel to (x, w}, so that the conjugate

[(x - y) + az] (y + az)
of x is not in (x,
Using this lemma it is now easy to prove Theorem 4. If V is a vector loop

with an affine space as its associated geometry, it is sufficient to prove that
given any two independent elements x and y of V, any normal subspace con-
taining x contains y. We now let V’ be any subspace of V on three generators
which contains x and y. Since the subgeometry corresponding to V’ is an
affine plane, we may apply Lemma 1 (with any w in V independent of x) to
get a conjugate x’ of x which is independent of x and in V’. Using the lemma
again, this time with w x’, yields a second conjugate x" which is in V’ but
not in (x, x’). But then x, x’, x’t must generate all of V’. Thus, a normal
subspace containing x must contain all of V’, and hence also the element y.

Since there exist affine spaces of any infinite order, Theorem 4 has the follow-
ing

COROLLARY. There exist simple vector loops on any number of generators
over any infinite division ring.

A third class of examples of vector loops arises from the two classes already
discussed by applying various combinations of the two operations of taking
direct sums and performing similarity transformations. One of the interest-
ing features of this class of examples is illustrated by

THEOREM 5. Let V and W be nontriial vector loops over a division ring D,
and let their direct sum V W have finite dimension n; then V and W are
vector spaces.

Let xl, x2 ., xi and yl y2 ", yj be maximal length weakly independent
sequences in V and W respectively; then the union of these sequences is a
weakly independent sequence in V @ W, implying that i -t- j -< n. On the
other hand, if xl, x, ..., xk and yl, ..., y are minimal generating sets for
V and W respectively, then the union of these sets generates V @ W, giving
]+m>_-n. But since Ic __< i and m =< j, we must have i + j -<_ n-< ]-m-<
i - j, or i ]c and j m. Therefore, V and W will both have dimensions,
and these dimensions are i and j respectively. Then any weakly independent
sequence of V can be completed to a generating set of i elements, and simi-
larly for W.
Now, assume that the theorem is not true; then we can find three elements

in one of the two summands, say x, x2, x3, in V, which do not associate.
Using the fact that the property of having a dimension is hereditary, we see
that the conjugate x’ x p(x)p(x3)p-(x -t- x3) of x, which is in the
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subspace generated by xl, x, xa, must satisfy the equation

x’ x + (tx + x)

for some a, , % in D. Completing the set xl, x, xa to a generating set
xl, ..., xi of V, and selecting any generating set yl, ..., y. of W, we consider
the set

(x, y), (x, 1), ..., (x, 1), (1, y.), ..., (1, y.)

of n 1 elements of V W. Since V ( W has dimension n, the subspace M
generated by this set cannot be all of V @ W. If we add the element (x, 1)
to the n 1 generators for M given above, we can clearly generate all of
V @ W, so that (x, 1) is not in M. But M contains the element

(x, y)[(x., 1)][(x, 1)]-[(x., 1) + (x, 1)]

p [(x., 1) + (’xa, 1)]p [(x, y)] ((a 1)x, 1).

Therefore a 1, and (x -t- x3) is not unity. Say 0.
the slightly modified set

(x, y), (x., yl), (xa, 1), ..., (xi, 1), (1, y.),

Then consider

(1, y.)

of n 1 elements of V W. Arguing as before, we see that the subspace
M’ generated by these n 1 elements cannot contain the element (x., 1).
But since

(x, y)p[(x2, y)]p[(x3, 1)]p-i[(x2, y) - (xa, 1)]

p-[(x, y)]p-[(’xa, 1)] (/x2, 1),

M contains (x, 1). This contradiction proves the theorem.
As this theorem illustrates, the lower dimension of a direct sum is usually

less than the sum of the lower dimensions of the summands. This fact
enables us to create vector loops with many different combinations of upper
and lower dimensions by performing different direct sums. For example, by
taking the direct sum of a nonassociative vector loop of dimension n and a
one-dimensional vector space, we obtain the class of vector loops described
in the following

COROLLARY. For any integer n >- 3 and for any division ring D, there exists
a vector loop over D with lower dimension n and upper dimension n - 1.

4. Finite vector loops
A vector loop will be called finite if it has finitely many elements. Simi-

larly, a geometry will be called finite if it has only a finite number of points.
In this section we shall consider the existence and possible orders of finite
vector loops.

First, let G be a geometry satisfying the axiom

(iii) There exist three lines, each with more than two points on it.
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Then we shall call G nontrivial. The only trivial geometries of order c are
the geometry consisting of a single point and the geometry consisting of a
single line with c + 1 points on it. Given a division ring D of cardinality c,
these correspond respectively to a one-dimensional and a two-dimensional
vector space over D, which we shall call the trivial vector loops over D.

THEOREM 6. An alternative set of axioms for a nontrivial finite geometry of
order n may be obtained by replacing axiom (ii by

(ii’) There exists a nonnegative integer k satisfying the property that, given
any line and point not on it, there are precisely ]c lines through the given
point not intersecting the given line.

If m is the number of points of G, then m n + (Ic + 1)n + 1, and n + 1
divides k(tc 1).

Let G be a nontrivial finite geometry of order n with m points; then it
is easy to see that every point has (m 1)/n lines through it, and that
(m 1)/n (n - 1) of these will not intersect a given line not through the
given point. But since this quantity does not depend on which line and
point we choose, we have satisfied axiom (iip) with ] (m 1)/n (n + 1).
Solving this equation for m gives m n -t- (/ - 1)n 1, and substituting
this into m(m 1)/(n 1)n (which represents the total number of lines
in the geometry) readily yields the condition that n 1 divides k(k 1), by
using the fact that the total number of lines must be an integer.

Conversely, if G satisfies (i), (iiP), and (iii), then take two distinct lines
tl, t which intersect, and by (iii) we can find a point P not on tl or t.. If P
has s lines through it, then s /c of them must intersect tl. Hence, tl has
s k points on it, and similarly t. also has s k points. This shows that any
two intersecting lines have the same number of points. But by (i) any two
lines intersect a common line, and the theorem is proved.
Now, if a vector loop V over GF(q) has elements, then the associated finite

geometry G must have (t 1)/(q 1) points, since each point of G corre-
sponds to q 1 elements of V (not counting the identity element). By
Theorem 6, (t 1) / (q 1 q - (k -t- 1 q -t- 1, giving q3 -t-/c (q2 q).
This gives us a restatement of the second half of Theorem 6 in terms of loops.

THEOREM 7. The order of a finite nontrivial vector loop over GF(q) is of the
form q3 - l(q q) for some nonnegative integer k satisfying the property that
k(k 1) is divisible by q + 1; this number k is the same as the k in axiom (ii’)
for the geometry associated with this loop.

COROLLARY 1. The order of any finite vector loop over GF(q is divisible by q.

Since the order of a vector loop V which is not simple is equal to the order
of the image of V under any (operator) homomorphism times the order of the
kernel of that homomorph, we also have
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COROLLARY 2. If the order of a vector loop V over GF(q) is not divisible by
then V is simple.q,

If/c 0 in a nontrivial finite geometry G, then any two lines must intersect,
and G is a projective plane. If lc 1, the lines not intersecting a given line
do not intersect each other, since otherwise a point of intersection would
have two lines through it not intersecting 1. On the other hand, every point of
G must have a line through it not intersecting 1. Therefore the lines of G
fall into equivalence classes of parallel lines, and G is an affine plane (although
G is a geometry of order n by our definition, it will be an affine plane of order
n q- 1 by the usual definition). If/c >_ 2, then the condition n q- 1 divides
k(/c 1) is no longer automaticallysatisfied, and in fact, it is clear that there
can be only a finite number of different finite geometries with any given
value of

This discussion tells us that a projective plane of order q is always associated
with a vector loop of order q3, and an affine plane of order q + 1 with a vector
loop of order q3 + q2 q. A vector loop over GF(q) of order q - q q
will be simple, as can be seen by Theorem 4 or Corollary 2 of Theorem 7.
Stated formally,

THEOREM 8. There exists a simple vector loop over GF(q) of order qa q2 q
if, and only if, there exists a projective plane of order q + 1.

Now, a projective plane of order q q- 1 will certainly exist whenever q q- 1
is a power of a prime, and this will occur if and only if q is one of the following"
a prime of the form 2 1, a power of two which is one less than a prime, or
the number 8. Using this, and the theorem of Bruck and Ryser on the non-
existence of projective planes of certain order [Canadian J. Math., vol. 1
(1949), pp. 88-93], we immediately obtain the following

COROLLARY. Vector loops over GF(q) of order q q- q2 q exist for q 2,
3, 4, 7, 8, 31, 127, ..., and such loops do not exist for q 5, 11, 13, 17, 23,
29, 37, -...

From this corollary, it is clear that the question of the existence of a finite
vector loop of a given order is not easy to settle in general, and that it depends
very much upon which finite field is involved. When q q- 1 is a power of a
prime, we can conclude the existence of an infinite class of simple finite vector
loops over GF(q) from Theorem 4, using the n-dimensional affine geometries
(n 2, 3, --.) over GF(q q- 1).
THEOREM 9. Whenever q q- 1 is a power of a prime, there exists a denumer-

able class of simple vector loops over GF q), the order of the (u 2) d one being
E=.I () ((2i n)/i)qi.
The only part of this theorem that has not already been proved is that a

vector loop associated with an affine space of n 1 dimensions will have
the order given here. The calculation is straightforward and hence will be
omitted.
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Since the coefficient of q in this summation is ()(2 n)/n 2 n, the
summation will be divisible by q if and only if n 2 (mod q). On the one
hand, this means that most of these loops could have been proved simple by
using Corollary 2 of Theorem 7; on the other hand, we get the following result.

COROLLARY. There exist simple vector loops over GF(q) divisible by q, and
with the property thai all similar loops are also simple.

There are two other consequences of the last section that should be men-
tioned here. First of all, since finite proiective spaces of dimension greater
than or equal to three are Desarguesian, and hence unique, we can strengthen
Theorem 3 in the special case of finite vector loops.

THEOREM 10. A vector loop over GF(p") of order pmn (n > 3), i8 similar to
the abelian group of type (1, ..., 1) and order pmn if and only if it cannot be.
generated over GF(p") by less than n elements. This assertion is valid for
n 3 if and only if it is true that there exists no non-Desarguesian plane of
order pro.
Using Theorem 5, we immediately get the following

COROLLARY. For n >= 4 and for all q 2 there exist vector loops over GF(q)
of order qn which are not similar to abelian groups.

5. Simple vector loops of order qn
The examples of finite simple vector loops that have been given so far have

existed only over certain finite fields, and have had orders only divisible by a
low power of q. Furthermore, these examples have had the property that the
whole similarity class was simple. In this section we shall construct a class
of simple vector loops which exist over all finite fields of odd order, and which
are similar to vector spaces.

THEOnEM 11. Given any finite field GF(q) of odd order, and any integer
n >- 3, there exists a simple vector loop over GF(q) of order q which is similar
to an n-dimensional vector space over GF(q ).

To construct this vector loop, we shall start with an (n 1)-dimensional
projective space G over F GF(q), and construct .a vector loop from it by
the method used in the proof of Theorem 1. We may represent the points of
G as that subset of n-tuples of elements from F with the property that the
first nonzero element occurring is 1. If p is the prime which divides q, let 0
be any ordering of the elements of F which puts the elements of the prime
subfield of F first, and which puts them in the order 0, 1, ..., p 1. Then
0 induces an order 0 on the points of G by using the lexicographical ordering
on the n-tuples which represent them.

Next, let H be a two-dimensional vector space over F, and let b and c be
two independent elements of H. Then the element c and the set of elements
of the form b + ac (a F), together form a set of representatives of H over F.
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We order this set of representatives in any way which places the elements b, c,
b c, b 2c, b (p 1)c first, and in this order. Having ordered the
points of G and having selected an ordered set of representatives of H over F,
we may construct the desired vector loop V over F by the method used in the
proof of Theorem 1 by requiring that the one-to-one correspondence between
the points on a line of G and the set of representatives of H must always be
the unique order-preserving correspondence between these two sets.
To prove that V is simple over F, let V’ be the subspace of V corresponding

to the hyperplane of G whose points are represented by n-tuples starting with
zero. Let us consider first the case n 3, p > 3. We shall show first that
every element in V’ except one is conjugate to another element in V’ not a
multiple of it.

Let x,, y, z be the representatives in V corresponding to the points (0, 1, a),
(1, 0, 1), (1, 0, 2) of G respectively, and let us compute the value of the
conjugate x,p(y)p(z)p-l(y z) of x. Since (0, 1, a) and (1, 0, 1) are, the
first two points on the line of G which they determine, x, and y must corre-
spond to b and c in H under the definition of addition in the subspace (x,, y}.
And since b c is the third representative of H, x, - y must be the repre-
sentative of the third point of this line, or (1, 1, a - 1). Similarly, we see
that (x, -t- y) z is the representative of the point (1, 2, 2a), using the calcu-
lation (b - c) c b + 2c in H. To find y z, we observe that

(b+ c) + (b + 2c) 2b+ 3c 2(b + ]c),

so that y -t- z is twice the representative of the point (1, 0, ). In the same
way, we compute that x (y z) is the representative of the point
(1, 2, 2 + z), and (x,- y) + z and x + (y + z) will be equal if they
represent the same point, or if 2 - 2a. Therefore, choosing/ a ,
we have x, p(y)p(z)p-l(y + z) x.
Now, if V is not simple, it contains a two-dimensional normal subspace W

which has a nonzero element x in common with V’, since any two subspaces
of dimension two intersect nontrivially. And if x does not correspond to the
point (0, 0, 1), the calculation in the last paragraph shows that W contains a
second element of V’ not a multiple of x, implying that W V’. Hence, the
proof of simplicity for the case n 3, p > 3 will be complete if we show that
there is no proper normal subspace containing the representative of the point
(0, 0, 1).
Let x, u, w be the representatives in V of the points (0, 0, 1), (1, 0, 0), and

(1, 1, 0) respectively. Using the same method as above, we compute easily
that (x + u) -t- w y + w is the representative of the point (1, 2, p 1),
and that u + w is the representative of (1, 2, 0). Then

x(u),(w),-l(u + w) [(x + u) + vo],-(u + vo)

is seen to be the representative of the point (1, 2, p 2). Similarly, letting
v be the representative of (1, 2, 0), we have that (x - u) + v y + v is the
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representative of (1, 3, (p 1)/2), and that u -[- v is the representative of
(1, 3, 0). Hence, xp(u)p(v)p-l(u - v) is the representative of
1, 3, (p 3)/2). But x and the two conjugates of it exhibited here generate

all of V, finishing the proof for the case n 3, p > 3.
For the case n 3, p 3, let x,, y, z be the representatives in V of the

points (0, 1, a), (1, 0, 0), (1, 0, 1) respectively. Then we may compute in
the same manner as above that x, p(y)p(z)p-i(y -- z) is the representative of
the point (1, 1, a 1). Also, letting x, u, v be the representatives of
(0, 1, ), (1, 2, 0), (1, 2, 1) respectively, we get that x p(u)p(v)p-(u - v) is
twice the representative of (1, 1, - 1). Taking f --a, it is clear that
any normal subloop containing x, also contains x. Finally, if s, t, w, y are
the representatives of the points (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0) respec-
tively, we compute that tp(w)p(y)p-(w + y) s. We have shown that if
any point of V is in a normal subspace W of V, then some other point of V’
not a multiple of it is also in W. Hence, V’ is the only two-dimensional sub-
space which could be normal. However, we have also shown above that x,
has a conjugate not in V’, so it is not normal either, finishing this case.

If n > 3, we may assume by induction that V’ is simple. Letting W be
any proper normal subspace of V, we have that W n V’ is normal in V’, and
hence that W is either equal to V’ or is a one-dimensional subspace not in-
cluded in V’. In the latter case, let U be the three-dimensional subspace
generated by W and by the one-dimensional subspaces corresponding to the
first two points of G. Then U is isomorphic to the vector loop proved simple
by the first part of the proof (since the two geometries are order isomorphic),
contrary to the fact that W is a normal subspace of U. On the other hand,
if V’ is normal in V, then let U be the three-dimensional subspace generated
by the one-dimensional subspaces corresponding to the first two points of G
and the last point of G. Again U is isomorphic to the vector loop proved
simple by the first part of the proof, and again we have a contradiction, since
V’ n U is a proper normal subspace of U.

6. Totally symmetric loops and alternating quasigroups
A totally symmetric loop has been defined by Bruck [2] as a loop whose ele-

ments satisfy the axioms (1) ab ha, and (2) ab. a b. It is clear from (2)
that all elements except the identity are of order two, and from both axioms
that any two elements generate a subloop isomorphic to the (Klein) four
group. This loop is then a vector loop over the field of two elements. Con-
versely, a vector loop over GF(2) satisfies (1) and (2), so the two notions are
equivalent. These systems also turn out to be equivalent to a special case of
the "tactical configurations" considered by Carmichael [4], and fifty years
before him these systems were considered by several more people under the
name of "the schoolgirl problem". These investigators supply many examples
and constructions, but unfortunately, none of their constructions seem to
generalize to vector loops over fields other than GF(2). However, the type
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of approach used by these investigators has suggested to us a construction for
vector loops over GF(3) which makes use of objects which we have chosen to
call alternating quasigroups.

Let us define an alternating quasigroup to be a quasigroup Q satisfying the
two axioms: (i) ab. a b, for all a, b in Q, and (ii) a. ab ba, for all a, b in Q.
An alternating quasigroup is idempotent, since a a.a a(a.a) (.a
using only (ii), and a. a a by (i). Also, (i) tells us that if ab c, then
ca b and bc a. Given two elements a, b in an alternating quasigroup,
let c ab and d ba, and then we can easily verify the following multiplica-
tion table for a, b, c, d from axioms (i) and (ii):

ab cd

a c d b

d b a c

b d c a

c a b d

Conversely, if a quasigroup satisfies the property that every two elements
generate a subquasigroup of four elements isomorphic to the above one, then
it is easy to verify that axioms (i) and (ii) are satisfied. Alternating quasi-
groups are related to the geometries of order three by

THEOREM 12. The subquasigroup structure of an alternating quasigroup
determines a geometry of order three with a number of points equal to the order of
the quasigroup. Conversely, given a geometry of order three, an alternating
quasigroup can be constructed with this given geometry as the geometry deter-
mined by its subquasigroup structure.

Given an alternating quasigroup with elements al, a2, ..., ai, ...,
define a geometry on an equal number of points P1, P, by the condition
that Pi, P., Pk, P form a line if and only if ai, a., ak, aM form a subquasi-
group. It is clear from this definition and the properties of alternating
quasigroups that we have mentioned, that any two points will determine a
unique line, so that we have indeed a geometry of order three.

Conversely, in passing from the geometry to an alternating quasigroup, we
let four elements form a subquasigroup whenever the corresponding four
points of the geometry form a line, and the products in this subquasigroup are
defined in either of the two ways which make it isomorphic to the multiplica-
tion table given above. (It will be noticed that this argument bears a certain
resemblance to the proof of Theorem 1.) The justification for introducing
alternating quasigroups here lies in the following theorem, the proof of which
is immediate.
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THEOREM 13. The direct product of two alternating quasigroups is also an
alternating quasigroup.

COROLLARY. If there exist two geometries of order three with n and m points
respectively, then there exists a geometry of order three with nm points.

This process essentially gives us a way of multiplying two geometries of
order three to get another one. Let us take a quick look at the orders less
than 1000 for which we have vector loops over GF(3): we have first the
projective space series with orders 27, 81,243, and 729; then the affine space
series (by Theorem 9) with orders 33, 129, and 513; and finally, using Theo-
rems 12 and 13, five more with orders 105, 321,339, 417, and 969. The last
five loops will all be simple, since none of these numbers is divisible by 9.
The construction that we have given for q 3 apparently cannot be ex-

tended to any other odd prime powers. The intuitive reason that it works
here is that there exists an idempotent quasigroup of four elements with the
property that its automorphism group is doubly transitive, and this does not
seem to happen for quasigroups of order q - 1 for odd q > 3.

7. Free vector loops and geometries
In this section we shall develop the concept of a free geometry, and show

how it may be used to get at the properties of free vector loops.
Let us define a half-geometry of order c to be a set of points and lines with

the properties that every pair of points is joined by at most one line, and that
no line contains more than c + 1 points. It is certainly not clear under what
circumstances a finitely generated half-geometry may be completed to a
geometry of finite upper dimension and the same order. On the other hand,
any half-geometry that is not already a geometry has a completion to a
geometry of the same order with infinite upper dimension, using what we shall
call the free completion. To define the concept of free completion, consider the
following two operations on a half-geometry"

(1) To each line with less than c 1 points add a sucient number of new
points so that it will have exactly c 1 points.

(2) For each pair of points not connected by a line add a new line with just
these two points on it.

Now, if the processes (1) and (2) are applied alternately a denumerable num-
ber of times to a half-geometry G, then we shall call the resulting set of points
and lines the free completion G* of G. It is easy to show that G* is a geometry
generated by any set generating G. If we begin with the half-geometry con-
sisting of m points, we shall call the free completion of this the free geometry
of order c on m generators.
Using free completions we may construct examples of geometries (and

hence vector loops) of a rather different nature than those already exhibited.
To illustrate this, we prove
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THEOREM 14. For any order c and for any cardinal n, there exist countably
many nonisomorphic geometries on n generators with infinite upper dimensions.

Let us define a triangle in a half-geometry G to be system consisting of three
noncollinear points of G (called the vertices), the three lines connecting these
points (called the sides), and the c 1 points on each of these three lines.
A triangle will be called restricted in G if there .is a line in G containing a point
from each side of the triangle, but not containing any of the vertices. Since
the application of either (1) or (2) to G will not change an unrestricted
triangle into a restricted triangle or vice versa, the total number of restricted
triangles in G is the same as the number in its free completion G*. On the
other hand, if G is not itself a geometry and if it has only a finite number of
restricted triangles, we may apply (1), (2), and (1) to G, and then find a
triangle which has the property that no two points on different sides are con-
nected by a line. Selecting a point on each side of this triangle and adding a
line through these three points, we have restricted this triangle, and shown
that G may be imbedded in a half-geometry with a larger (but still finite)
number of restricted triangles. Hence, we may construct an infinite sequence
of half-geometries, each on n generators, and each with more restricted trian-
gles than the previous one. Since the number of restricted triangles in a
geometry is clearly invariant under isomorphism, the free completions of the
half-geometries of this sequence will be nonisomorphic. The fact that these
geometries will all have infinite upper dimensions follows immediately from

THEOREM 15. If G* is a geometry which is the free completion of a half-
geometry G G*, then G* contains subgeometries isomorphic to the free geometry
on n generators for any integer n >= 3.

In the construction of G* from G, each application of the processes (1) and
(2) adds at least one more point or line respectively to the figure (with the
possible exception of the first application of (1)). Hence, at some stage of
this construction, a half-geometry G1 occurs which has at least n + 2 points
QI, ..., Qn+2 and which contains a line with only two points on it, say
Q+ and Qn+2. Then let P be a point added to by the application of (1),
and let l, l be the n lines PQ, PQn added by the next application
of (2). Selecting for each i 1, n a point Pi which is added to the
line li by the next application of (1), we claim that the subgeometry H of G*
generated by P, P is isomorphic to the free geometry F on n genera-
tors. But the half-geometry consisting of PI, Pn is isomorphic to the
set of generators of F, and this may be extended a step at a time to an iso-
morphism between H and F provided that, whenever we wish to extend the
isomorphism to a line of H, only two points of that line will already be as-
signed images under the isomorphism. This condition will always be satis-
fied, however, by extending the isomorphism to the points and lines of H in
the order that they are introduced in the construction of G*, since no point
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or line of H is present at an earlier stage in the construction of G* than the
Pis.
We prove next

THEOREM 16. The free geometry on n generators cannot be generated by
fewer than n generators.

If this geometry has order c, then each line has c 1 points on it, c 1
of which are added to the geometry after the line is added, and the other two
points of which were in the geometry before the line was added. Every point
except the generators is then a later point on precisely one line and an earlier
point on all other lines that it is on (added later or earlier than the line, that
is). Given any set of N points which generate the geometry, if one of the
points of this set is not an earlier point on the line joining it to some point
generated by the other points of the set, then we can replace this point by an
earlier point on this line, and the modified set of points still generates the
geometry. Continuing this process, we must reach eventually a set of
N _-< N generators with the property that each generator is an earlier point
on any line connecting it to a point generated by the other generators of this
set. We call a set of generators with this last property a normal set of genera-
tors.
To show that N => n, it is sufficient to show that a normal set of generators

must include the original n generators. And to show this, it is sufficient to
show that starting with a normal set of generators, the new points added at
each stage are the later points on the new lines ("later" and "earlier" shall
always refer to the original generation, and "new" and "old" shall refer to
the generation by the normal set under investigation). Suppose that the
new points added on a new line at some stage of generation by a normal set of
generators are not all later points; then let us consider the first such case.
Let Q and R be the old points on such a line, let P be an earlier point on the
line Q, R), and let Q be the old point which is not an earlier point. If Q
were not an element of the normal set of generators, then it would be a later
point on two lines (since P is the first violation of the rule of newer points
being later ones), which is impossible, so Q is one of the normal set of genera-
tors. If R were generated by the normal set without Q, then the whole
normal set would not be normal by definition, so R depends on Q. Therefore
R is also a later point on the line QR, and taking it instead of Q in the argu-
ment above shows that R is an element of the normal set of generators. But
then we can modify our set of generators by replacing Q by the earlier element
P, and our set of generators is not normal. This contradiction proves the
theorem.

Consider now a homomorphism f of a vector loop V onto a second vector
loop V (it is assumed that V and W are over the same field, and that f is an

The author would like to thank J. W. Pratt for his suggestions on the proof of this
theorem.
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operator homomorphism). If G and G’ are the respective geometries of V
and Vr, and if H is the subgeometry of G corresponding to the kernel K of f,
then f induces a map f* of the points of G not in H onto the points of Gr.
Clearly the lines of G with one point in H go into points of G’, and those with
no points in H go into lines of G’. This motivates us to define a homomorphism
f* of a geometry G into a geometry G’ to be a map of some of the points and
lines of G onto the points and lines of G satisfying the following conditions
for any pair of points p, q of G"

(1) If p and q have distinct images in G’, then the line joining them goes into
the line joining their images.

(2) If p and q have the same image in G’, or if p has an image and q does not,
then the line joining them has the same image as p.

(3) If neither p nor q has an image in G’, then neither does the line joining
them.

It follows easily from this definition that the subset of elements of G having
no image under f* is a subgeometry of G called the kernel of f*, and that f* is
an isomorphism if and only if its kernel is void. We have seen that every
homomorphism between two vector loops induces a corresponding homo-
morphism between the corresponding geometries, but the converse of this is
easily seen to be false.

THEOREM 17. Every geometry is a homomorph of the free geometry with the
same number of generators, and any homomorphism of a geometry of n <
generators onto the free geometry on n generators must be an isomorphism.

Let G be any geometry, and let F be the free geometry on the same number
of generators. We shall set up the homomorphism in a denumerable number
of stages corresponding to the stages used in constructing F. At the first
stage in the construction of F, we had just the generators, so we start here by
mapping the generators of F onto the generators of G in some manner. Now
at the (2j) h stage in the construction of F we added the lines between points
of the (2j 1)at stage of F which were not already connected by lines, and so
the (2j) th stage of construction of the homomorphism shall be devoted to
finding images of this set of lines. But conditions (1), (2), and (3) prescribe
exactly what the images of these lines must be. Similarly, if {p} is the set of
points of F introduced on a line at the (2j 1) stage in the construction
of F, then its image is determined at the (2j W 1)at stage as follows: If has
a line of G as its image, then the points {P/are mapped in a one-to-one manner
onto the points of this line excluding the images of the two points of whose
images are already known; if has a point as an image, the points {p} are each
assigned the same image as l, except that one point is given no image if both
the old points of have images; and, if has no image, then the points {P/
are assigned no image. It is evident that this construction will yield a
homomorphism.
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To show the second half of the theorem, we need only comment that if we
look at a homomorphism onto a free geometry broken down into stages as
above, the number of points in the image and in the inverse image will be the
same at each stage, and will be finite. Hence, there can be no kernel.
We are now ready to show that there is a well-defined concept of a free

vector loop satisfying the usual properties that the word "free" implies. We
begin by defining the free vector loop X on n generators (where n can be any
cardinal) over the division ring D of cardinality c to be any vector loop over D
corresponding to the free geometry on n generators. The fact that this
vector loop is unique up to isomorphism, as well as the implications of the
word "free", are established by the next theorem.

THEOREM 18. Every vector loop over a division ring D is the homomorphic
image of the free vector loop over D on the same number of generators, and any
vector loop similar to a free vector loop is isomorphic to it.

If V is an arbitrary vector loop, X the free vector loop on the same number
of generators, and if G and F are their respective geometries, then we have
already established the existence of a homomorphism of F onto G, which we
shall try to cover with a homomorphism from X onto V. We begin by send-
ing the generators of X onto the generators of V, and then, after constructing
each stage of the homomorphism f* of F onto G, we extend the partially con-
structed homomorphism of X onto V to cover it. The details of this process
are straightforward except for one important point--of the many ways of
mapping the new points of a line in the (2j - 1)st stage of the construction
of f* in Theorem 17, we may choose now only that unique way which can be
covered (since we can restrict our attention to each line of G independently,
this is really just a statement about constructing homomorphisms of two-
dimensional vector spaces). This point reflects the fact that the homo-
morphism f of X onto V is completely determined once the images of the
generators of X have been determined, while the homomorphism f* of F onto
G is certainly not determined by the images of the generators of F.
Now let X be a free vector loop with generators/x}, and let X be similar

to X. Then the set of elements {y} in X’ corresponding to the el’ements
/x} of X under the similarity transformation generate Xt. Using the first
half of Theorem 18, we conclude the existence of a homomorphism f of X
onto X’ such that f(x) y. If f* is the induced homomorphism of the
associated geometry G onto itself, then f* is the identity on the generators of
G (which correspond to the x’s), and hence the subgeometry generated by
any finite set of these generators is mapped into itself by f*. But if P is a
point in the kernel of f*, then it is in a subgeometry on a finite number of the
generators of G and is in the kernel of f* restricted to this subgeometry, con-
tradicting the second half of Theorem 17. Thus, f* is an isomorphism,
implying that X and X are isomorphic, and finishing the proof.

Using Theorems 15 and 16, we also have the following
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COnOLLARY. If X, and X are the free vector loops over a division ring D
on m and n generators respectively, where m and n are distinct positive integers,
then X and X, are not isomorphic, but either one is isomorphic to a subspace
of the other.
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