FUNCTIONALS RELATED TO MIXED VOLUMES

BY
I. FAry

We denote by R" a fixed euclidean space of dimension n. A coset of a
sub-vector-space of R”, of dimension m, will be termed m-flat. @ stands for
the family of all .mpact, convex subsets of R”. An A e @ will be called a
convex body; -, will be termed proper if it has inner points in R". @ is a
locally compact, separable, metric space with the topology introduced by
Minkowski and Blaschke. A real valued, continuous function ¢:C — R
will be called a functional (of convex bodies). We will deal only with ¢’s
having the following properties:

(1) o(tAd) = ¢(A) (L:R"— R";t(x) = x + )
(2) ¢(AUB) + o(AnB) = ¢o(A) +¢(B) (4,B,AuBee):

We choose now a proper convex body U, to be fixed in the rest of this note.
Theorem 1 below could be formulated in terms of Minkowski integral geome-
try [3], [4], the convex body U being either the indicatrix, or the isoperimetrix.
However, in the present note, we do not want to pursue this direction. It
suffices to say, in order to suggest the role of U in the present context, that,
if we substitute the unit ball, B" = {z:x e R", || 2 || = 1}, in place of U in
Theorem 1 below, the statement is a well known and useful theorem of
euclidean geometry.

The mixed volumes [2; p. 40]

(3) ei(4) = Vi(4,U) (t=0,---,n),

considered as functions of the first argument, are particular functionals
having properties (1), (2). If U = B", ¢, ¢1 are proportional to the volume
and surface area, respectively. Furthermore, it is well known [7; p. 221],
that the functionals

(4) Wi(4) = Vi(4, B") (t=0,-,n)

form a basis in the vector space of the functionals ¢, which are additive, in
the sense of (2), and are invariant under isometries, that is to say, such that

(5) ¥(g4) = ¥(4) (9 : R" — R"; g isometry)

holds true for every isometry g.
A weaker form of this statement is the following. A functional ¢ is of the
form

(6) Y(A) = 2loa; Wi(A) (a; e R)
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if and only if (1), (2), and the following condition hold true:
If Wi(A) = Wi(B),© =0, -+, n, then $(4) = ¢(B).

We will generalize this statement in the present note. Specifically, the
proper, convex body U being given, we consider functionals ¢ such that (1),
(2), and the following condition:

() If VA, U) = VB, U),s =0, -+, n, then ¢(4) = ¢(B)
hold true, and we characterize these functionals.

TuaroreMm 1. Let U be a giwen proper convex body. Then the mixed volumes
VA, U),72 =0, ---,n, form a basis in the veclor space of functionals ¢ satis-
fying (1), (2), (7). In other words, if ¢ ts & (continuous) functional of convex
bodies, which is translation tnvariant, additive, and such that (7) holds true, then

(8) o(A) = 2 toa; Vi(4, U) (ai € R)

where the o's are well determined constants. Clearly, all these condilions are
also necessary in order that ¢ be of the form (8).

Proof. We will first state and prove some facts on mixed volumes, which
are needed in the proof of Theorem 1.

Tor every A e @, we have Vo(4, U) = V(A), i.e., the volume of 4, and
V.(A, U) = V(U). Ttisknown, and easy to prove,' that

(9) Ifdm A £ k,then Vi(A,U) =0, ¢=0,---,n—Fk — 1.

Let us denote by | €' | the volume of C' e € in the smallest flat containing C.
Thus | C| = 0, | D| = V(D) amounts to saying that C is empty and D is
proper. Given a direction u, i.e., a unit vector u, we denote by 4. the pro-
jection of A into an (n — 1)-flat perpendicular to w. In fact, we will use the
well determined | 4, | only. Then we have

(10) V(A 4 wlul, U) = eVi(Au, Udp + Vi(4, U),

where p e R, u > 0, [u] denotes the segment joining the origin to u, ¢ is a
constant, and Vi (4. , U,) stands for the +*® mixed volume in the (n — 1)-flat
containing A, and U, . Equation (10) can easily be proved by computing

V(A + ul, U)s
I3

see [6] for a similar result.
The last auxiliary result needed concerns V.(Cy, , U), where C} is a k-dimen-
sional box. Let there be given k linearly independent unit vectors

1 See [5] for complete proofs. ([5] is a Technical Report, which can be obtained from
the University of California, Berkeley, Department of Mathematics.) The present note
is but a short version of [5], which gives detailed proofs as well as some discussion of the
relevant part of the theory of convex bodies.
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U, * -+, U, and k real numbers u; > 0,2 = 1, .-+ | k. If C; denotes the
box spanned by w1 wi, +--, wr ux, or, equivalently, the Minkowski sum
wlug] + - -+ welus], we have

(11) Vi(Ck,U)=0, 7:=0,"‘,’I’L—/(}—-1;
(12> V'n—l(Ck’ U) = Zcil“.il””il ot Mgy (l = O, MY /C).
In (12) we have a full homogeneous polynomial of degree [; moreover,

(13) ¢ >0

for every choice of [ integers, repetitions allowed, from the set {1, -+ | k};

we may agree that the ¢’s are symmetric in the superscripts.

Of course, (11) is just a special case of (9). We prove (12) by an induction
on k, using the decomposition C, = Cry 4+ wluwe] = A + pl in (10). In
this manner the ¢’s can also be computed, but it is enough to know (13) in
the sequel.

Let there be given {w,, ---, w} and {v;, ---, v}, two sets of £ linearly
independent vectors each. Given p = (ur, -, w) and v = (v, -+, »),
we denote by Cp and D; the boxes spanned by {uwiwi, -+, wu} and
{viwr, -, v s}, respectively. We define a map F: Ri, — Rf by

I‘w(p,) = (V"—1<Cka U)y ) Vn—-k(Ck, (]))
= (&, -+, &);

the map G: RY — R}, with the same Rf, is defined similarly, using Dy in
place of C,. It is not difficult to prove then, that there are numbers
wi > 0,0, > 0,7 =1, ---, k, such that F(u) = G(») holds true. This
statement can be proved by an induction on k, using (12), (13), and the fact
that by an appropriate choice of u; > 0, »; > 0, the functional determinants
of the maps F, G are = 0.

Reformulating this result in terms of mixed volumes, we have the follow-
ing. Given two sets of k independent vectors cach, there are k-dimensional
boxes C}, , Dy, spanned by proportional vectors, and such that

(14) Vi(Cy, U) = Vi(Dx, U), =0, ,n,

holds true.
We come now to the proof proper of Theorem 1. Given ¢, satisfying the
conditions of the theorem, we will define functionals

(15) Vi(A) = o(A) — D it Vi(A, U) (a; e R)

by induction on k. Our construction will be such that (1), (2), (7) hold
true; furthermore ¥, will be such that

(16) If dim A < k, then ¢x(A) = 0.
By the last condition, ¥, will be identically zero; thus we will have (8).
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We set a, = ¢(x0)/V(U), where z, is a fixed point of R"; here we use the
hypothesis that U is a proper convex body; thus V(U) s 0. Then
Yo(A) = ¢(A) — @(x,); thus ¥y is zero for every point z e R”, because ¢ is
translation invariant. This function also has the other required properties.

We suppose now that y¥,_; has been defined and satisfies (1), (2), (7), (15),
(16). Let L be a given k-flat in R". We consider the restriction of ¥5_; to
the family of convex bodies contained in L. This restriction is then simply
additive, i.e.,

Yier(Au B) = §pa(A) + $a(B) (4, BC L, AuBee),

if dim (A nB) =k — 1,in view of (2) and (16). Irom this, and from the
other properties of ¥,._; follows easily [7] that

(17) Yea(A) = BVi(4) (A CL;BeR),

where V, is the volume in the k-flat L.  Now, the mixed volume V, (4, U),
as a function of A C L, has also the properties (1), (2), (16) for k — 1 in
place of k; thus

(18) Vii(A, U) = yVi(A) (A cC L;vyeR).
From (17) and (18) follows:
(19) IfA CL Wa(A) = ans Vai(4, U),

with a well determined constant a,_x .
Let M be another, given k-flat in R”. There exists then another constant
an—x , such that

(20) If A © M, then y11(A) = an_ Vair(A, U)
holds true. We will prove now that, in fact, the two constants are equal:
(21) Cnk = Otni »

We choose boxes C, € L and D, € M, whose k-volumes are nonzero, and
such that (14) holds true. Then, by hypothesis (7), we have ¥_1(Ci) =
Yi1(Dy), and, by (19), this implies (21). As now in (19) the constant
a,—y 1s independent of the k-flat L, we can formulate our result as follows:

(22) If dim A £ k, then Y1 1(A) = an_ Var(A, U),
where a,_3 is a constant. We now define ¢, by
Yi(A) = Ya(A) — ans Vai(4, U),

using this constant a,—, . Then ¥, has properties (1), (2), (7), (15), (16)
which completes the induction step. As we remarked at the beginning of the
proof, this implies the statement of Theorem 1.

The mixed volumes (3), and thus, in general, the functionals (8), are not
invariant under rotations. As to the average value of V,(g4, U), as a func-
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tion of the element g of the orthogonal group O, , we have the following
result.

Tueorem 2. We consider convex bodies in a given euclidean space R".
There are constants e’y v, 4,7 = 0, -+, n, such that, if dA is the kinematic
density of the convex body A (z.e., the volume element in the rotation group O.,),
then

n

(23) [Vt vyaa = 3 awicarwyw)

where W ; denotes the functional defined in (4).

Proof. We fix an integer », 0 = » < n, and set
(24) J) = [ V.4, 0) aa.

Then f(U) is continuous in U and has properties (1), (2), (5); thus, for a
given, fixed 4, we have

(25) ) = im0 a(AYW,(U).

Simple transformations of the integral (24) and uniqueness of the representa-
tion of an additive and isometry-invariant functional in terms of (4) gives
for the coefficients a;(4) in (25) that a;(g4) = a;(4), g:R" — R", ¢ isome-
try, and

ai(AuB) + a;(AnB) = a;(Ad) + ai(B) (A, B, Au Be@)

hold true. Hence, using again [7; p. 221], we have:
ai(A) = 270 aWi(U).

This completes the proof of (23). §
Remark. 1 was unable to compute effectively the constants o;’, but I con-
jecture that this should be possible, by evaluating the integrals

[ (e, e acy,

where C,, denotes an m-dimensional box. So far as I know, it is possible
that the ai”s are all zero, except for the diagonal ones.

The result formulated below follows immediately from the two previous
theorems.

TarEOorREM 3. Let ¢ be a (continuous) functional of convexr bodies which is
translation tnvariant, additive, and which satisfies (7) ; thus ¢ is as in Theorem 1.
If dA denotes the kinematic density of the convex body A, we have

f¢(A) dA = Y BW.(A)W,(U)

where the 8 are constants determined by ¢.
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