EQUIVALENCE OF REPRESENTATIONS UNDER EXTENSIONS
OF LOCAL GROUND RINGS!

BY
I. REINER AND H. ZASSENHAUS

We shall use the following notations: K = algebraic number field, R =
valuation ring in K with maximal ideal P, K’ = finite extension field over
K, R’ = valuation ring of K’ containing R; A = finite-dimensional algebra
over K, @ = R-order in A (that is, @ is a subring of A containing the unity
element of A as well as a K-basis of A, and such that G has a finite R-basis).
We define

A" = K ®x A, G =R ®;G,

so that G’ is an R’-order in the K'-algebra A’. By a G-module we shall mean
a left unital G-module having a finite R-basis. To each G-module M there
corresponds a G’-module M’ defined by

M =R ®x M.

Finally we assume that all G-modules have finite height at P (see Higman
[2]). Thus for each pair M, N of G-modules there exists an integer s = 0
such that

(1) P Ext' (M, N) = 0.

The most interesting case is that in which G = RH is the group ring of a

finite group H; in this case we may choose for s any integer such that the

group order [H:1] lies in P°. (In this connection see also Maranda [4].)
Our aim is to establish the following:

TueorREM. Let M and N be G-modules. Then M' = N’ as G'-modules if
and only if M = N as G-modules.

On the one hand we may regard this result as a generalization of the
Noether-Deuring Theorem [1] which applies when R = K, and indeed the
central idea of their proof is also used here. On the other hand the present
theorem generalizes a result of the first author [5] in which the theorem was
established under various restrictive hypotheses.

In order to prove this theorem it is sufficient to show that M’ = N’ im-
plies M = N, the reverse implication being obvious. Let s satisfy (1), set
t = s 4+ 1, and define

R = R/P, R' = R'/P'R".
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We may then view R as a subring of R’'. Turthermore R’ is a free R-module
with a finite basis, and so R’ is a free R-module with a finite basis. If we set
G =a6/P'q, G =@q/P¢,

we find readily that

G =R ®z0.
Likewise for the G-module M we let

M = M/P'M, M = M'/P'M’,
and we have

(2) M =R ®z M.

Thus M is a G-module, and by extension of the ground ring from R to R’ we
obtain the G’-module M.

Suppose now that M’ =~ N’; then M’ =~ N’ as ’-modules. If k is the
number of elements in an R-basis of R’, it follows from (2) that as G-module
M’ is isomorphic to a direct sum of k copies of M, and likewise N’ is iso-
morphic to a direct sum of & copies of N. Thus

M® ---oeM=N®---®N as G-modules,
where & summands occur on each side. But now let
M=M®® - --®M,, N=N,® - ®N

be the decompositions of M and N into indecomposable G-submodules.
Then we have

(3) (M, ® -+ ®@ M,) = k(N, ® -+ @ Ny).

However G is a ring with minimum condition, and therefore (see Jacobson
[3]) the Krull-Schmidt Theorem is valid for G-modules. From (3) we con-
clude that the { M} are up to isomorphism just a rearrangement of the {Nj,
and thus M =~ N.

To complete the proof we need only observe that M = N implies M =~ N.
a result due originally to Maranda [4] and generalized to the present context
by Higman [2].

It is easy to see that the theorem is still valid under slightly more general
hypotheses. For example K need not be an algebraic number field, so long
as we know that R’ has a finite R-basis and that R’ n K = R. If furthermore
K’ is algebraic over K, the restriction that (K’:K) be finite can be dropped.
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