ON THE NUMBER OF NILPOTENT MATRICES WITH COEFFICIENTS IN A FINITE FIELD

BY Murray Gerstenhaber

Fine and Herstein have demonstrated [1] that the number of nilpotent $n \times n$ matices with coefficients in the finite field of q elements, GF(q), is q^{n^2-n} . The present (self-contained) note gives an alternate proof, suggested by algebraic geometry, and not involving sums over partitions of n. Using a lemma of [1], Reiner [2] has determined the number of matrices over GF(q) having a given characteristic polynomial. This result is here obtained directly from the Fine-Herstein theorem.

1. Proof of the Fine-Herstein theorem

Throughout, N_k will denote the $k \times k$ matrix having zeros everywhere but on the first diagonal above the principal one and unity everywhere there. If k = n, we write simply N. Given a nilpotent $n \times n$ matrix A, we shall denote by L(A) the linear space of all matrices Y such that NY = YA, and by α the union of the spaces L(A) for all nilpotent A. The matrices in α will be called admissible. One sees that $L(T^{-1}AT) = L(A)T$, whence Y is admissible if and only if YT is admissible for any nonsingular T.

We determine now a necessary and sufficient condition that $Y \in \mathfrak{C}$. Given Y, let v be a row vector such that vY = 0. If $Y \in \mathfrak{C}$, then vNY = vYA for some A, so (vN)Y = 0, i.e., the null space of Y is preserved by N. Let $v = (v_1, \dots, v_n)$. Then $vN = (0, v_1, \dots, v_{n-1})$. This implies that if the rank of Y is r, then the last n - r rows of Y are zero (and the first r, therefore, are independent). Conversely, suppose Y has this property. Then for some nonsingular T, YT = E is the direct sum of the $r \times r$ identity matrix I_r and the $(n - r) \times (n - r)$ zero matrix O_{n-r} . Now E is admissible, for $NE = N_r \oplus O_{n-r}$ is nilpotent and NE = E(NE). Therefore $Y = ET^{-1}$ is admissible. The necessary and sufficient condition that $Y \in \mathfrak{C}$ is therefore

If rank Y = r, then the last n - r rows of Y vanish.

We see next that dim L(A) = n for all nilpotent A. Observe that NY = YA implies $N^kY = YA^k$ for all k. Let e_i denote the row vector having one in the ith place and zeros elsewhere. Then $e_1 Y$ (i.e., the first row of Y) may be prescribed arbitrarily, but $e_k Y$ is then determined for all k by the relation $e_k Y = e_1 N^{k-1}Y = e_1 YA^{k-1}$.

Given $Y \in \Omega$, let there be assigned to it a multiplicity m(Y) equal to the number of distinct nilpotent matrices A such that NY = YA. If O is the zero matrix, then m(O) is just the number of all nilpotent matrices, which we

Received May 18, 1960; received in revised form October 6, 1960.

wish to determine. We shall denote this quantity by u. Consider the correspondence f which assigns to a nilpotent A the set of all elements of L(A). This f is, by our previous result, exactly q^n -valued for every nilpotent A, and if $Y \in \mathfrak{A}$, then m(Y) is just the number of elements in $f^{-1}(Y)$. Therefore $\sum m(Y) = q^n u$, the sum being taken over all $Y \in \mathfrak{A}$. Since m(O) = u, we may write $\sum' m(Y) = (q^n - 1)u$, where in \sum' the zero matrix is omitted. Now m(Y) and m(YT) are identical for any nonsingular T. If Y has rank r, then we have seen that the last n-r rows of Y vanish, and for suitable T we have $YT = E = I_r \oplus O_{n-r}$. Therefore m depends only on the rank of Y, so we may define m(r) = m(E) = m(Y) for any $Y \in \mathfrak{A}$ with rank Y = r. Let $\alpha(r)$ denote the number of elements of \mathfrak{A} with rank r; this is just the number of matrices whose first r rows are independent and last n-r rows vanish. Then

$$(q^{n}-1)u = \sum' m(Y) = \sum_{r=1}^{n} \alpha(r)m(r).$$

We compute $\alpha(r)$ by observing that the first row of any $Y \in \mathfrak{A}$ of rank $r (\geq 1)$ is anything but zero, for which vector there are $q^n - 1$ possibilities, and that for $k \leq r$ the k^{th} row may be any vector not in the space spanned by the first k-1 rows, for which vector there are therefore $q^n - q^{k-1}$ possibilities. The last n-r rows are determined, being all zero. It follows that

$$\alpha(r) = (q^{n} - 1)(q^{n} - q) \cdots (q^{n} - q^{r-1}).$$

To compute m(r) = m(E), observe that NE = EA for some A if and only if A is of the form

$$\begin{pmatrix} N_r & O \\ P & Q \end{pmatrix}$$

where P and Q are matrices of dimensions $r \times (n-r)$ and $(n-r) \times (n-r)$, respectively. Therefore m(r) is the number of nilpotent matrices of this form. Such a matrix is nilpotent if and only if Q is nilpotent. Denoting by u(k) the number of nilpotent $k \times k$ matrices with coefficients in GF(q), let us make the inductive assumption that $u(k) = q^{k^2-k}$ for k < n. It follows that

$$m(r) = q^{r(n-r)}q^{(n-r)^2-(n-r)} = q^{(n-r)(n-1)}$$
 for $1 \le r \le n$.

Writing the terms in $\sum_{r=1}^{n} \alpha(r)m(r)$ in reverse order, starting with the term for r=n, we now have

$$\begin{split} \sum_{r=1}^{n} \alpha(r) m(r) &= (q^{n} - 1)(q^{n} - q) \cdots (q^{n} - q^{n-3})(q^{n} - q^{n-2})(q^{n} - q^{n-1}) \\ &+ (q^{n} - 1)(q^{n} - q) \cdots (q^{n} - q^{n-3})(q^{n} - q^{n-2})q^{n-1} \\ &+ (q^{n} - 1)(q^{n} - q) \cdots (q^{n} - q^{n-3})q^{2(n-1)} \\ &+ \cdots \\ &+ (q^{n} - 1)q^{(n-1)^{2}}. \end{split}$$

The sum of the first term and the second is

$$(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{n-2})q^{n},$$

the sum of this and the third is

$$(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{n-3})q^{2n},$$

and continuing so, one finds the sum of all to be $(q^n - 1)q^{(n-1)n}$. Therefore

$$(q^{n}-1)q^{(n-1)n}=(q^{n}-1)u,$$

i.e., $u = q^{n^2-n}$, completing the induction and the proof.

2. Determination of the number of matrices over GF(q) with given characteristic polynomial

We determine first the number of $md \times md$ matrices over GF(q) satisfying an equation $f(x)^m = 0$, where f is an irreducible polynomial of degree d. The set of all $r \times r$ matrices with coefficients in GF(q) will be denoted by $GF(q)_r$, and the number of nonsingular ones by

$$\beta(q, r) = (q^r - 1)(q^r - q) \cdots (q^r - q^{r-1}).$$

Let σ be a fixed representation of $GF(q^d)$ in $GF(q)_d$, $\sigma^{(m)}$ the naturally induced representation of $GF(q^d)_m$ in $GF(q)_{md}$, and λ a fixed root of f(x). Set $\sigma(\lambda) = M$. An element of $GF(q)_d$ is in the image of σ if and only if it commutes with M; likewise, an element of $GF(q^d)_m$ is in the image of $\sigma^{(m)}$ if and only if it commutes with $\sigma^{(m)}(\lambda I_m) = M \otimes I_m$. If $R \in GF(q^d)_m$ has coefficients in GF(q), then $\sigma^{(m)}(R) = I_d \otimes R$. In particular, this is the case if R is a nilpotent matrix in Jordan normal form, i.e., a direct sum of matrices of the form N_k . For such an R, the Jordan normal form of $\sigma^{(m)}(\lambda I_m + R)$ is, writing λ for λI_m , $(\lambda_1 + R) \oplus \cdots \oplus (\lambda_d + R)$, where λ_1 , \cdots , λ_d are the zeros of f(x) (distinct since GF(q) is perfect). On the other hand, if A is any matrix in $GF(q)_{md}$ satisfying $f(x)^m = 0$, then the Jordan normal form of A is also of the form $(\lambda_1 + R) \oplus \cdots \oplus (\lambda_d + R)$, where R is some nilpotent matrix in Jordan normal form, the nilpotent part associated with each proper value λ_i being the same since $\lambda_i \to \lambda_j$ induces an automorphism of $GF(q^d)$ over GF(q). A fortiori, every A in $GF(q)_{md}$ satisfying $f(x)^m = 0$ is similar to $\sigma^{(m)}(\lambda + P)$ for some nilpotent P in $GF(q^d)_m$, and on the other hand it is clear that matrices of the latter form all satisfy $f(x)^m = 0$. If C is a nonsingular matrix in $GF(q)_{md}$ and P, P' nilpotent matrices in $GF(q^d)_m$ such that

$$\label{eq:continuous_state} \textit{C}^{-1}\sigma^{^{(m)}}(\lambda \,+\, \textit{P})\textit{C} \,=\, \sigma^{^{(m)}}(\lambda \,+\, \textit{P}'),$$

then in fact C commutes with $\sigma^{(m)}(\lambda)$, for

$$(\lambda + P)^{q^{md}} = (\lambda + P')^{q^{md}} = \lambda.$$

Therefore C is in the image of $\sigma^{(m)}$, and conjugation by C carries the set of all matrices $\sigma^{(m)}(\lambda + P)$, P nilpotent, onto itself. The number of such C is the

number of nonsingular matrices in $GF(q^d)_m$, namely, $\beta(q^d, m)$. There being $\beta(q, md)$ nonsingular matrices in $GF(q)_{md}$, and, by the Fine-Herstein theorem, $(q^d)^{m^2-m}$ nilpotent matrices P in $GF(q^d)_m$, it follows that the number of solutions of $f(x)^m = 0$ in $GF(q)_{md}$ is $(q^d)^{m^2-m}\beta(q, md)/\beta(q^d, m)$.

Finally, let A be an element of $GF(q)_n$ whose characteristic polynomial is $f = f_1^{m_1} \cdots f_k^{m_k}$, where the f_i are distinct irreducible polynomials of degree d_i over GF(q), and necessarily $\sum m_i d_i = n$. Then A is similar to a direct sum $A_1 \oplus \cdots \oplus A_k$, where the characteristic polynomial of A_i is $f_i^{m_i}$. Every such direct sum has characteristic polynomial f, and if two such are similar, then the matrix C effecting the similarity must itself be a direct sum $C = C_1 \oplus \cdots \oplus C_k$, where the dimensions of C_i are $m_i d_i \times m_i d_i$. Letting t_i denote the number of elements of $GF(q)_{m_i d_i}$ satisfying $f_i^{m_i} = 0$, it follows that the number t of elements of $GF(q)_n$ whose characteristic polynomial is f must be $\prod t_i \cdot \beta(q, n) / \prod \beta(q, m_i d_i)$. Substituting for t_i its value from the preceding paragraph, one has (after cancellations)

$$t = \prod (q^{d_i})^{m_i^2 - m} \cdot \beta(q, n) / \prod \beta(q^{d_i}, m_i).$$

If one sets $F(q, r) = q^{-r^2}\beta(q, r) = (1 - q^{-1})(1 - q^{-2}) \cdots (1 - q^{-r})$, then one may also write, observing that $\sum m_i d_i = n$,

$$t = q^{n^2-n}F(q,n)/\prod F(q^{d_i},m_i).$$

REFERENCES

- N. J. FINE AND I. N. HERSTEIN, The probability that a matrix be nilpotent, Illinois J. Math., vol. 2 (1958), pp. 499-504.
- I. Reiner, On the number of matrices with given characteristic polynomial, Illinois J. Math., vol. 5 (1961), pp. 324-329.

University of Pennsylvania Philadelphia, Pennsylvania