ON THE STRUCTURE OF STOCHASTIC INDEPENDENCE

BY
C. B. BeLit

Introduction and summary

The object of this note is to complete the solution to several problems posed
by S. Banach [5] and by E. Marczewski [12]. These problems concern re-
lations between various conditions related to stochastic independence. The
problems can be summarized as follows.

If {(Y, 9N, , u)} (t e D) is an arbitrary at-least-countable family of prob-
ability o-measure spaces, what are the relations between the four conditions
below?

(Co) The {91} are oc-independent, i.e.,NT A;, > @ whenever § > A, ¢ N,
for all 7 and #; = ¢; for ¢ # j.

(C1) The {9} are stochastically independent with respect to the u., i.e.,
there exists a o-measure u (called the stochastic extension of the u;) ons(U, 91;)
such that u(NT A4;) = JI7 wu(4,;) whenever A, edM,; for 1 £ ¢ < n and
t; ¥ t; when 7 5% j.

(Cy) The {9} are almost o-independent with respect to the {u.}, i.e.,
NT A,, > 0, whenever u;;(A;;) > 0 and @ £ A, e M, for all 7; and £ = ¢;
for ¢ = j.

(C;) The {9} are quasi-o-independent with respect to the {u.:}, i.e.,
NT A,; = @, whenever [[7 ui(4:) = 0, and @ 5 A, e M, for all 7; and
t; # t; for v # j.

From the definitions it is easily seen that (Co) — (Cg) — (C;). Further,
since any set of positive measure is nonempty and each s-measure is con-
tinuous from above, it follows that (C,) — (C;). Finally, Banach [5], Sikorski
[21], Sherman [16] and the author [4], pp. 66-68, have demonstrated that
(Co) = (Cy).

Therefore, in order to complete the solution to the original problem one
must answer the following two questions.

(A) What is the relationship between (C;) and (C,)?

(B) Are any two of the conditions equivalent?

The answers to these and related questions lie in the product s-measure
space (Z, &, v) = X, (Y, M, , u;). Itisseen (Theorem 1) that (C,) is satis-
fied if and only if the {(¥, 9, , u;)} generate a s-measure space which is the
measure o-homomorphic image of (Z, &, »); and (Theorem 2) that it is
possible to construct the desired o-homomorphism whenever (C,) is satisfied.
The fact that no two of the conditions are equivalent is demonstrated by a
set of examples.
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The results can be summarized as follows.
(C;) — (C1) [Theorem 2],
(Cs) -+ (Cy) [Example 5], (Cy) + (Cy) [Example 4],
(Cs) + (Co) [Example 3].

The paper is divided into four sections. Examples of the various types of
independence are presented in Section 1. In Section 2 the terminology,
notation, and preliminaries are introduced. The product representation is
constructed in Section 3; and Section 4 contains the main theorem.

1. Examples of independence

By virtue of their construction, product spaces provide the best examples
of independence. In fact, it can be shown that any space exhibiting in-
dependence is in some way an image of a product space.

Example 1. Let {(Y;, 8;, u)} (¢ € D) be any at-least-countable family of
probability o-measure spaces. (See Section 28). Form the product space,
ie,let Z = X,Y,; B, = X;A,, where

Y, for t#1#
4, = for all B;, €8;, and all £, ¢ §;
B t for ¢ = ¢
S, = {B,| B, 8.} for all te®; and ».(B;) = u/(B,) for all B, 8, and all
ted.

Then (Z, S, v is a well-defined probability s-measure space for all £ ¢ .
Further, it is well known (e.g. [2], pp. 90-92) that there exists a unique prob-
ability o-measure » on & = $(U,S;), the least s-algebra containing all &, ,
with the property that »(N¥ B,) = [T ».(B:) for each o-constituent
ny E,,. of U,®,), i.e., whenever B,, ¢S,, for all 4, and #; = ¢; for 1 > j.
(See Section 2a). Consequently, the {&,} are stochastically independent
with respect to the »,, i.e., satisfy (Cy).

It is also known that X, B; is empty if and only if one of the B, is empty.
But the o-constituent N7 B,, = X, A, where

Y, if  teD — {ti, b, -}
B,, if t=t, i=1,2 .

Consequently, a o-constituent N B, is empty if and only if one of the B, is
empty. Therefore, the {&,} satisfy conditions (Cy), (Cs), and (Cs).

Ezample 2. Let I be the unit interval. For each n, let I,, be the set of all
points of I whose dyadic expansions contain 1 as the nt® digit. (If a point has
two different expansions, only the terminating one will be considered.) For
each n, the least o-algebra $({I,}) = {I, 0, I, = I,, In = I — I,}. (See
Section 2«.) Define pa(In) = ua(I%) = 1, u(I) = 1, and u.(0) = 0 for all n.
Each p, is, therefore, a probability o-measure, and each (I, 8({I.}), pa) is a
probability o-measure space.

At=
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Now, for any arbitrary sequence {ji, j2, js, -} of 0’s and 1’s,
T = 2 1ja/2" eNT Ii*. Consequently, each NT I is nonempty, and con-
ditions (Cy), (Cy), and (Cs) are satisfied.

Further, it is known (e.g. [3], p. 159) that the Lebesgue measure is the
stochastic extension of the {u.,}. Hence, (C;) is satisfied.

Example 3. Let I and I, be the same as in Example 2; let C* be the set of
all points of I whose dyadic expansions contain an infinity of 0’s; Is = I, n C*
and A.,(4,) = 1 or 0 according as the point 0ed, or not, for all
A, eSUIEY) = {(C*, 0, I%, (ID)°} and all n. Each )\, is, then, a probability
g-measure.

Since NT Is = C*nNT I, = @, the {S({I%})} do not satisfy (Cy). On the
other hand, since the sets of positive measure are exactly those sets which
contain 0, any intersection of sets of positive measure is nonempty. There-
fore, (Cy) and (C;) are satisfied.

Further, if A(4) =1 or 0 according as the point 0 ¢ 4 or not for all
A e8(UT 8({I%})), then X is a probability o-measure, which is the stochastic
extension of the {A,}. (Cy), then, is satisfied.

Example 4. Let I, I,,I%, C* 8({I,}), S({I%}), {ua}, etc. be the same as in
Examples 2 and 3. Let v,(I%) = ».(I%)°) = &, v.(C*) = 1, and »,(0) = 0
for all n. v, is, then, a probability s-measure on $({I%}) for all n.

Since NTIE = C* n NT I, = 0, the least o-algebras {S({Ix})} do not
satisfy (Co), and do not satisfy (C.) with respect to the {»,}.

However, since the {»,} and {u.} coincide with Lebesgue measure on their
respective domains of definition; since each set of UT $({I%}) differs from a set
of UT 8({I.}) by a set of Lebesgue measure zero; and, since the {S({I,})}
satisfy (C;) and (C;) with respect to the {u,}, it can be easily demonstrated
that the {S({Ix})} do satisfy (Cy) and (C;) with respect to the {»,}.

Example 5. Let I, I, , p., etc., be the same as in the preceding examples;
R, the set of rational numbers in the unit interval; R, = I, n R and
pn(Rn A,) = uu(A4,) forall A, €8$({I,}) and all n.

Then $({R.}) = (R, @, R, R%} and p, is a probability s-measure on
S({R,}) for each n.

Now if {j1,j2, - -} is any sequence of 0’s and 1’s such that x = > 7 j,/2"
is an irrational number, then NY Ri* = RnNT I’ = §. Consequently, the
S({R,}) do not satisfy (Co), and do not satisfy (C,) with respect to the {p,}.

Further, if p were a stochastic extension of the {p,}, then p must assign
measure | [T pn(Ri") = 0 to each rational number {3 Ti./2") =NT R
and measure 1 to R which is a countable union of rational numbers. There, of
course, can exist no such probability o-measure, and hence, condition (C,) is
not satisfied.

On the other hand, one finds that [T p.(B.) > 0 if and only if all but
a finite number of the B, = R; that any finite intersection of nonempty
elements of UT $({R,}) contains at least one set of the form NT Rir; and
that each NT Rir contains the rational number z = D1 ' j,/2" + 1/2™"
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and is, hence, nonempty. From these considerations one can conclude that
the {S({R.})} satisfy (C;) with respect to the {p,}.

2. Terminology, notation, and preliminaries

In the product representation of Section 3 certain known results concerning
algebras, measures and homomorphisms will be used repeatedly. These
results and pertinent definitions are presented in this section.

(o) Algebras and semialgebras. A space, Y, is a nonvoid collection of
objects. @ will denote the empty subset of each space. A collection, 8, of
subsets of Y is called a o-algebra if 8 is closed under countable unions and
complementation. A semialgebra, 3C, of subsets of Y is a class containing Y,
closed under finite intersections, and satisfying the chain condition (w):
whenever M and N are elements of 3C such that M contains NV, there exists a
finite subclass {No, N1, ---, N,} of 3¢ with the property that N = N, C
N,Cc---CN,=MandF;=N;— N,y eifort=1,2, -+ ,m.

To understand the structure of s-algebras and semialgebras it is expedient
to introduce two entities, the constituent and o-constituent, first used by
Marczewski [11].

If & is an arbitrary class of subsets of some space Y, then each set which can
be represented in the form N A% where 4; X, A=Y — A;, Aj = A;,
and j; = Oor 1for7i = 1,2, ---, n, is called a constituent of &; a set which
can be represented in the form NT A% is called a o-constituent of &; and the
A" are called sides of the [o-] constituent.

It is easily proved (e.g. [4], p. 56) that

(i) the class 3¢(xk) of all constituents of X is a semialgebra.

Further, it is known (e.g. [6], pp. 485-486) that

(ii) there exists a least o-algebra $(X) containing X; that each element of
8(&) is a union of o-constituents of & ; and $(X) = S(3C(K)).

Since Section 3 will deal with families of s-algebras, it is worthwhile to put
some of the sets and classes above in a form more adapted to work with
families of s-algebras.

If {9} (te®) is a family of c-algebras of some space, ¥, then because
each s-algebra is closed under complementation and countable unions, it is
possible to represent each constitutent of (U 91,) in the form N1 4;; and each
o-constituent in the form N A,, , where A, € M, and ¢; ¢ H, for all 7, and
t; # tijI'i #]

(Throughout the sequel it will be understood that any set represented in
one of the above forms, ie., N1 A, or NT 4,,, is a constituent or o-con-
stituent, respectively, of the designated union of families of o-algebras.
Further, unless something to the contrary is specified, it will be understood
that § is the index set for the indices #. Italic capitals will denote sets, and
script capitals will denote classes of sets in the sequel.)

As one might ascertain from the statements of conditions (C;) and (Cs),
it will be necessary to employ some special properties of measures in the in-
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vestigation of these conditions. For that reason these measure properties
will be discussed next.

(8) Measures.

A probability e-measure is a real-valued, nonnegative, countably additive set
function defined on a semialgebra of subsets of some space, with the added
properties that the measures of the whole space and the empty set, 0, are
respectively, 1 and 0. A triplet (¥, 8, u) is called a probability c-measure
space, whenever 8 is a g-algebra of subsets of ¥ and p is a probability o-
measure on §.

The measure theorem which is most important to the product representa-
tion is essentially due to von Neumann ([1], p. 94). It is as follows:

(iii) If wis a probability c-measure on a semialgebra 3C, then there exists
a unique probability s-measure g on $(3C) such that z coincides with x on 3C.

This unique extension theorem allows one to work with the semialgebras
and still obtain measure theorems applicable to the generated o-algebras.

Since measures, constituents, etc., have been defined, it is now possible to
restate the independence conditions in terms of these.

(v) Independence conditions. If {Y, 9,, w,} is an arbitrary at-least-
countable family of probability s-measure spaces, the new statements are as
follows:

(C1) (Stochastic Independence) There exists a probability ¢-measure x on
s(Uam,) such that u(N7 A,) = JIT mu(4s) for each constituent N1 A,; of
Uoar,).

(Cs) (Almost o-independence) FEach o-constituent of (Udt,) with all
sides of positive measure is nonempty.

The next step is to phrase these conditions in terms of properties of the
product space which will be constructed. However, before the construction
can be effected, two types of transformations need to be introduced.

(8) Homomorphisms. A g-homomorphism of a class X of subsets of Z onto
a class £ of subsets of Y is defined to be a transformation, ¢, of & onto £ such
that ¢ can be extended to a countably multiplicative complementative trans-
formation, @, of $(X) onto $(£).

It is easily proved (e.g. [6], p. 487) that

(iv) each o-homomorphism ¢, of a s-algebra $(X) of subsets of Z onto a
o-algebra $(£) of subsets of ¥, is countably additive and subtractive; and,
further, ¢(Z) = Y and ¢(@) = @. Also, ¢(8(IM)) = $(p(9M)) for all subclasses
M of K.

Besides this it has essentially been shown by Sikorski [17], [20] and the
author [6] that

(v) a transformation ¢ of X onto £ is a ¢-homomorphism of X onto £ if
and only if, for every o-constituent NT A% of %, NT [p(4)])* = B whenever
NT A = 0.

This result can be extended to the case of a family of s-homomorphisms.
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When it is extended, it takes on the following form which will be employed in
Section 3.

(vi) If ¢; is a o-homomorphism of s-algebra 9N, of subsets of Z onto
o-algebra 91, of subsets of ¥ for all f ¢ , then the {¢;} have a common ex-
tension ¢ which is a ¢-homomorphism of $(UIR;) onto $(UMN,) if and only if,
for each o-constituent NT 4, of (UNL,),NT ¢, (A,,) = @ wheneverNT 4,, = 0.
The extension ¢ is unique in either case.

(iv)—(vi) concern only the preservation of the algebraic properties. In
view of the measure aspect of the problem, one must consider homomorphisms
which preserve measure.

(¢) Measure homomorphisms. A transformation ¢ is a measure o-
homomorphism of (Z, &, v) onto (Y, 8, u) if ¢ is a o-homomorphism of & onto
$ and if »(A) = u(e(4)) for all A ¢S,

In view of (iii), ¢ will be a measure s-homomorphism if it preserves measure
on an appropriate semialgebra, i.e.,

(vii) a o-homomorphism ¢ of & onto $ is a measure ¢-homomorphism of
(Z, &, u) onto (Y, 8, u) if »(4A) = u(e(A)) for all A ¢ H, where H is a semi-
algebra which generates €, i.e., $(9) = .

With these definitions and theorems it is now possible to effect the desired
product representation.

3. Product representation

Let {(Y, 0, u)} (teP) be any at-least-countable family of probability
o-measure spaces with the same space Y. TForm the product space, i.e., let
Z = X.Y. Z can be considered the union of all H-sequences of points of V.

The cylinder sets of Z are those product sets of the form B,, = X A, where

Y for ¢ s ¢
At = .
Bto € mto fOI' = to

If, now, for each £ € O, M, = {B,| B, e M} ; »,(B)) = w(B.) and ¢,(B;) = B,
for all B, e M, , then one can conclude that Lemma 1 below is valid.

LevMma 1. I, 2s a o-algebra of subsets of Z; v, 1s a probability s-measure on
M, ; ¢: 75 a measure a-homomorphism of (Z, M, , v,) onto (Y, M., p.) for all

ted.

The {IR,} are called the cylinder o-algebras; and © = §(UIM,) is the product
a-algebra.

It is well-known (e.g. Example 1; and [2], pp. 90-92) that there exists a
product probability o-measure » on & = $(UIMN,); and that the os-constituents
with nonempty sides are nonempty. Consequently,

Lemma 2. The {IMM;} are o-independent; and are almost o-independent,
stochastically independent, and quasi-c-independent with respect to the {v.};
i.e., they satisfy conditions (Co)—(Cs).
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Since the {IN;} are s-independent o-algebras, the {o,} satisfy the hypotheses
of (vi), and the following lemma holds.

Lemma 3. There exists a unique a-homomorphism ¢ of & = S(UIM,) onto
= $(UIM,) with the property o(NT A;;) = NT ¢i,(A.,) for each o-constituent
n ;o Zt,‘ Of (U ,s.Int).

Since it is known (Lemma 2) that the {,} are stochastically independent
with respect to the {».}, one is led to suspect that the same situation will hold
for the {9M,} and the {u.}, if ¢ is a measure ¢-homomorphism of (Z, &, »)
onto (Y, 8, u) for some measure u. The necessity and sufficiency of this
condition are established below.

TuaeoreM 1. (C,) holds if and only if (a) there exists a probability o-measure
p on 8 such that ¢ s a measure a-homomorphism of (Z, &, v) onto (¥, 8, u).

Proof. (a) — (C,). Let u be the probability s-measure on § satisfying

(a). If now, N7 A, is an arbitrary constituent of (U9NI,), then
o(NTA,) =NT A,

and p(NT 4) = ple(N? gli)) = V(n{‘zte) = H;‘ Vli(gii) = II;‘ pe; (As;).
Therefore, p is the desired stochastic extension of the {u.} and (C;) holds.

(C) — (a). If (Cy) holds, let u be the stochastic extension of the {u.}.
u is a probability s-measure on 8. In view of (vii) it will be sufficient to prove
that up and » coincide on a semialgebra which generates &. From (i), (ii),
and the definition of &, one can conclude that the class $ of all constituents of
(UM,) is such a semialgebra.

But for an arbitrary element N} 4,; of §, u(e(N7 4, ) = u(NT @i (AL) =

p(NF A = TIF we(4y) = IL vi;(A,,) = v»(0T A,;). Consequently,
(a) holds.

4. The main theorem

The main result can now be established in terms of ¢. It will be shown that
whenever (Cs) holds, it is possible to construct a probability o-measure u on
the semialgebra 3¢ of all constituents of (UM,) such that u(e(4)) = »(4) for
all 4 ¢ §, the semialgebra of all constituents of (UM%,); and that (C;) then
follows from (vii) and Theorem 1.

The following three lemmas will be needed.

LemMA 4. If the {90} satisfy (Cs) with respect to the {u.}; and if NT A,; and
N?T By, are twoo-constituents of (UM,) suchthatNT A,; < NT By, and ps;(A44,)>0
for all i, then p,,(A; n BY,) = 0 for all 4, i.e., wi;(Ar;) = pe;(Ay; 0 By,) for all 4.

Proof. From the hypotheses it is seen that for an arbitrary integer
k, NT (A, n Bj,) =@ and, hence, at least one of {u,(4:)} (¢ k) or
pe(Ay, 0 BY,) is zero.  But since the u,(A;) are nonzero, then

be(Ay 0 B(t)k) = 0.
Since k& was chosen arbitrarily, the conclusion follows.
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Lemma 5. If the {9} satisfy (Cz) with respect to the {u:} and if, further,
NT A, and NT B,, are o-constituents of (UN,) such that NT A;; = NT By; and
pe;(Ay) > 0 for all <, then wp,(A:;) = pe;(By) for all ¢ and, consequently,
I_Iol° Mti(Ati) = HT’ /“ti(Bti>'

Proof. From Lemma 4 one can conclude that u.; (4 n B!,) = 0 and, hence
wi;(Ay) = p, (A, 0 By) for all 7. But 4, n B,, © B,, and, hence,
pe;(Bi) = we (A, n By) = p(4;;) > 0 for all <. On applying Lemma 4
with the roles of the {B,} and {4} interchanged, one finds that
ue;(By; n AY,) = 0 and, therefore, u,, (4, n B;,) = p;;(By;) for all . The
second part of the conclusion follows immediately from the first part.

LemMa 6. If the {9} satisfy (Cs) with respect to the {u.}; of NT A, and
NT B,, are a-constituents of (UM,) such that NT A,; = NT By, ; and if J is a
nonempty set of natural numbers such that p,,(Ay;) = 0for< e J and pe,(Ay;) > 0
Jor i e J, then 1T pe(Ar) = TIT we(Buy).

Proof. For each keJ, NT (B, n A},) = 0. Therefore, at least one of
{pe;(Bi)} Ged) or {uy(By, n A%)} (keJ) is zero. But for all ke,
pe(Biy, 0 A%,) = ui,(By), since u,(4,) = 0. Therefore, at least one of the
{ue;(By)} (@ = 1,2, - - ) is zero, and, hence H? e (Ae) = T ue(By) = 0.

It is now possible to define the desired stochastic extension and prove the
theorem.

Tueorem 2. (C,) — (Cy), t.e., almost s-independence tmplies stochastic
independence.

Proof. In view of Theorem 1, the definition of a measure e-homomorphism,
and (vii), it will be sufficient to prove that whenever (C.) holds, there exists
a probability measure u on the semialgebra, 3¢, of all constituents of (Ut,)
with the property that ue and » coincide on the semialgebra $ of all con-
stituents of (UIMN,).

For each element NT A, of 3C define the set function u as follows:
(0T Ay) = T ope(A).

Without loss of generality one may assume that any two different repre-
sentations of the same element of 3C are in the forms NT 4, and N{ By, .
In this case (NT A, nNpuY) = (N{B;; nN%.1 Y), and Lemmas 5 and 6
guarantee that

u(ﬂ’fb Ati) = ;n,uti(At,;)' H:H 1= Hr;. Nt;(Ata)' H:LH I-‘ti(Y)
= Hln Mti(Bti)’ H’:"«-}‘ll“ti(y) = Hln Nt.;(Bt;) = ﬂ(m‘ Bti)

where {fni1, tasz, -++} is any collection of the #’s of § other than
{ti, 82, <<+, ta}. Therefore, u is well-defined on 3C.

Now, for any arbitrary element N7 A,; of 3¢, u(e(N{ 4;,)) = w(N{ A;,) =
117 we4,) = IIF v (Ay) = »(NT A,). Therefore up and » coincide
on 9.
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Further, since ¢($) = 3¢, and » is nonnegative and real-valued on 9, then
u is nonnegative and real-valued on 3¢. Also, u(Y) = u(e(Z2)) = v(Z) = 1,
and u(@) = u(e®@)) = »®) = 0.

Therefore, in order to demonstrate that u is a probability o-measure it will
be sufficient to show that u is countably additive on 3¢. This demonstration
will complete the proof of the theorem.

Let {A4;} be an arbitrary countable collection of mutually disjoint elements
of 3¢, whose union is also an element of 5¢. Let {4} be a collection of ele-
ments of § such that ¢(4;) = A, for all . Then for each pair of natural
numbers k and j such that k # j, A4, n 4; = 0, and »(d; n 4;) =
po(Ax n 41‘) = u(drn 4;) = @) = 0, and, hence »(UT 4;) = 27 »(4d;) =
20 ule(d)) = 200 u(4)).

However, UT A; is not necessarily an element of §, and, hence, ue is not
necessarily defined on UY 4;. But,UT 4; ¢ S and up has a unique extension
fe which is a probability ¢-measure on & and which coincides with » on &.
Therefore u(UT 4,) = u(eUT 4.) = aleUT 4,) = »(UT 4) = DT v(d) =
37 ule(d)) = X.F w(4,) and p is countably additive on 3¢. This com-
pletes the proof.

The solution to the original problem can be summarized as follows: No two of
the conditions are equivalent; and (Co) — (Cy) — (Cy) — (Cs).
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