SOME EXTREME VALUE RESULTS FOR INDEFINITE HERMITIAN
MATRICES II'

BY
M. Magcus, B, N. Movws, anp R. WesTwIck

1. Introduction

Let H be a Hermitian transformation of unitary n-space U, into itself with
eigenvalues \; = N\p = - -+ = N\, ;andlet E{a1, -+, az) be the 7** elementary
symmetric function of the numbers a;, - -+, ar. If H is nonnegative Hermi-
tian, and f(xy, - -+, ) = El(Hz1, 21), -+, Hae, 2)], 1 Sr = k £ n,
it is known [4, pp. 527-8] that

max f = () k7 (225 \)

min f = E,(An—k41, *** 5 M)y
where both max and min are taken over all sets of £ orthonormal (0.n.) vectors
X1, ,axin U,. When H is indefinite, the extreme values of f have been
found for special cases of r and general k. The case r = 1 is due to Fan [1];
the cases 7 = 2, k are treated in [3]. In the present report we extend these

results to the case of general r (Theorem 3).
For any set of k& o.n. vectors z;, - -- , 2 , Fan’s theorem requires that

DN 2 i (Hayy 5) 2 D it Mg -

Following Horn’s notation [2]: if a; = -+ = am and 1 £ k < m, let
T*(ay, -+ , am) be the set of real k-tuples (by, - - - , bi) satisfying
) D10 2 D i bi; = > Qi1

for 1 £ ¢t = k and all sequences ¢, ---, ¢ of positive integers satisfying
154 <.+ <14 =k Fan’s result implies that

((Hxl ) CIJ1), ] (ka 1 xk)) € TkO\),

where A = (A1, - -+, An).

We seek first the extreme values of E,.(b) for b = (by, ---, by) e T"(\).
Let 8 be such an extreme value. Theorem 1 shows that there exists b ¢ T(A)
such that E,(b) = 8 and such that b is contained in some set T°(\s, , =+ - , Aip),
where \i,, ---, A\, are the first s and last £ — s of the N's, 0 £ s = k.
Theorem 2 gives B in terms of the reduced set of & N's. It is then a
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straightforward matter to construct o.. vectors %1, ---, yx for which
Er[(Hyl ) yl); ) (Hyk ) yk)] = B-

In Theorem 5 we show that for any b e T*(A), there exist k o.n. vectors
Y1, , Yi such that (Hy;, y;) = b;j, 7= 1,--+, k. Thus any question
involving the field values (Hz; , z;) of 0.n. vectors z; can be discussed in terms
of the elements of T°(\). While this result does not turn out to be necessary
for our discussion of the extreme values of E, , it appears to be of interest in
itself. As a corollary we give a formula for the maximum number of o.n.
solutions of the equation (Hz, =) = c.

2. Extreme value results

By definition, b e T°(\), where b = (by, -+, bx) and A = (A, *++, A),
M- = A\, if and only if

2) dhahiz Diabi,
and
@) Z:'=1 bii = Z;'nl )

foralll < ¢ < kand all sequences1 £ 43 < --- < ¢; = k. We collect some
elementary facts concerning T"(A) in

Lemva 1. (1) Ifn =k beT*(\) if and only if (2) or (3) holds and
25k = 2 b;.
G) Ifby = - = be, beT*(\) if and only if

) 2z 2 b,
and
®) Do biipr = D et M

forall 1 £t £ k.

(i) Ifby= --- = beandn =k, beT(\) if and only if (4) or (5) holds
and D i N; = D5 b;.

LeMMA 2. Let by, -+ ,bpand N = -+ = N begwen. If (by, -+, bn) €
T™ Ny 5 Am) @nd (Bmgr s+ 5 08) € T "1y = -+ , M), where 1 £ m < k,
then (b, ~++ , b)) € "\, =+ M)

Proof. D jeaN; = Srab; and X Gemirt Nj = D semy1bj, by Lemma
1(1). Hence D juadj = D jeabj. Forl =4 4 < -+ <4, S m <
’is+1 < .- <ité7:t+1= k,

Siaby; = Dodaby At Dbeeaby S Diali AN S Dia.
Hence (by, -, be) e T"(A\1, -+ 5 Ni).

TuroreM 1. Let 8 be an extreme value of E.(ay, -+, ax) as (@1, +++ , ax)
ranges over T"(Ay, +++ ,A\n), 1 S 7 = k < n. Then there exist

b= (bly""bk)eTkO‘l)"">‘n)
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and an integer s, 0 = s = I, such thatb e T*(\t, =+, Nay Mnktstl, *** 5 An)
and E.(b) = B.

Proof. Let b e T°(\) such that E.(b) = 8. If r = 1, each b; must appear
in at least one equality (2) or (3); otherwise E1(b) could be increased or de-
creased by altering b; , while keeping b in T*(\). If1 < r < k,

(6) Er(b) = b ET—I(b2 » T bk) + Er(b2 y T bk)~

If b, does not appear in an equality (2) or (3), E.(b) = 8 implies that
E. by, -+ ,b) = 0,and E,(b) is independent of b; . We can alter by so as to
bring about an equality involving b, , while keeping b in T*(\). Since this
process does not disturb existing equalities, we can repeat it until the b,’s are
exhausted. We may thus assume that each b, is involved in an equality (2)
or (3).

Assume now that by = --- = b;,. We shall show that each b; appearing in
an equality (2) also appears in an equality (4). Suppose to the contrary that
b,, is the largest b; which is not in an equality (4), while D j— by; = DY
1SIS41S4 < - <4, =k Then D ioN; = Djmab; = D g by =

D ioiXj; hence ¢ > £ Since D _jib; = D ja b; and by = --- = b, =
b”2~~->b”,1t follows that b, = -+ = b, = -+ b;, = N¢, and
Z by = Z,_l N+ G — DA = Z,=,1 Hence b;, is contained in the
equahty St b; E,_l i, a contradlctlon A similar argument shows

that each b; appearing in an equality (3) also appears in an equality (5).
If D 5ib; = D 5 Nj, thenbeT*(\:, --+, \i), by Lemma 1. Similarly,

if Z?=1 bj = Z?=] )\n_]’_H_ s be Tk()\n_k.H IR )\n) Otherwise let S, 1=

s = k — 1, be the least integer such that b, is not in an equality (4). Then

(7 Db = 2ia1)g,

and

(8) ZLQ b; = Z;‘=n——k+q Aj,

for some ¢ = s + 1, since b,y must be contained in an equality (5). By
Lemma 1, (by, -+, b)) e T°(A\1, - -+, ;) and

(s =+ 5 0e) € T Nacia s *+ 0 Aa)-

Ifg=s Z] = b Zj—q A2 ;L_}:i—:w = Za—q i- Hence ZJs'=q b;
Z}‘;’ifiﬂ A subtractlng from (8), we get > i1 bi = D fm b1 Nj
Thus (g1, -+ be) € T"  utgsga, *** , M), and by Lemma 2,

bGTk()\],, ce ,)\s,)\n—k+s+1; et )A")'
This completes the proof of the theorem.

Ifb = (by, -+, be) e T"(\¢, -+, ), ® > k, it is not necessarily true that
beT* (N, , -+ ,\g) for some selection of k N’s, even if E,(b) is an extreme value

2If s = 0 (or k), the initial (or terminal) segment is missing.
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on T*(\). It is not hard to show, however, that b e T*(\;, , - -+ , A +1) for
some selection of the first sand last £ + 1 — s N\’s. One can also find real
numbers byyy, -+, b, such that (by, -+, by) e T"(\1, +++ 5 Aa).

THEOREM 2. For 1 = r = k the exireme values of E.(ar,---,ar) as
(a1, -+, ax) ranges over T*(uy, - -+ , ) are of the form
(9a) E (b, -+ -, ba)y
where
(gb) bki+1=...=bki+l=“kj+l+--.+ﬂkj+1’ j=0,1’...’q_1,
kivn — k;

and the k; are integers satisfying 0 = ko < ky < - < kg = k.

Proof. Let 8 be an extreme value of B, over T"(u), where u = (uz , « - - , ).
Let B be the set of all b = (by, - - -, bx) such that E.(b) = 8. Let S; be the
setof all b e T"(u) such that b, = -+ = brand D _juibj = D iea i, 1 St k.
IfbeS,,1 =t <k then (by, - ,b) eT (s, -+, me)and (ber, -+, be) €
T *(uesr, -+, u). It will be convenient to define Sy = S;. .

We shall show thatifb e S,n S, nB =3,0=p <7 =Fk,and if b,4y > b:,
then for some s, p < s < 7, there exists b’ e n S,. Set

(10) d = min { i (i — ba’)} E (u; — b)), p< &< T

p<s<T \j=pt+1 J=p+1
Since b eS,,d = 3% (u; — b;) = 0. Setbypq = bps + & bi =b — ¢
andb—bforj;ép+erhenf0rlel<d pFH1lE4 < <p =T,y
p < T— p We have Zy—lb = ZJ-—I boti + €| S Z]==1 Bo+is DY (10):

while 377,41 0; Za—p+1 b; = Z —pi1pi; hence (Dpi1, -, br)e
Ty,._p(“'ﬁ+1 v ”’f) But (bl s oty by) €T (ur, -+vy wp) if p # 0 and
(biga, ooy br) €T " (trgn, -+, ) if 7 5% k. By Lemma 2, b’ ¢ Tk(p,) for
le| = d.

The next step is to show that b’ ¢ B for |¢| = d. Whenr = 1, E,(b') =
E.(b) =B Whenr =2 E.() = E.(b) + (b — bpsa — €) &. Slnce b1 >
b., beB, and b’ ¢ T"(u) for |e] = d, it follows that d = 0, and b’ = b e B.
When r > 2,

Er(bl) = Er(b) -+ 3(br h bp+1 - S)Er—2(bl7 ) ¢p+17 ) yr: ) bk)7

where §; indicates that b; is deleted. Again, since b,1 > b, and b e B, it
follows that B, o(by, ««, Bpy1, *++, Bry -+, b)) = 0 and E.(b') = E.(b).
Thus b e B for | ¢ | < d.

Set e = d. Since b, = p, = ppy1 = bpyr + d = b,12, and similarly b,; =
b —d = by, by = -+ = b,. Hence by (10) b’ €3 n sso.

For any beT*(u) such that E,(0) = 8 and by = -+ = by, we have
beSon S;nB. Ifbl—bk,thenb ——(,u,1—|~ +/.I,k)/kf0rj ',k
Otherwise, by the preceding discussion, there exists 5,0 < s < k, a,nd b’ such
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that " ¢ Son S, n S, n B. We may continue this refining process until we
obtain some b e Sz, n .- n S, nB, 0 =1k <k <--- <ky=k,such that
bijyr = o0 = bupy = (g + o0+ prjy)/ ks — k) forj = 0, -,
q— 1.

TarorEM 3. Let H be a Hermitian transformation on unitary n-space U,
with eigerwalues \y = -+ Z An. Forl Sr =k = nse
f(xl ’ "y xk) = Er[(le ) xl)) Tt (ka ) xk)]'

The maximum and minimum values of f, as x1, - -+ , &x range over all sets of k
o.n. vectors in U, , have the form

(93') Er(bl Y bk):

where

(gb) bk'+1="'=bk'+1=“ki+1+“.+”ki+1’ 7=0,1,---,¢—1;
d d kiyn — k;

the k; are integers sabisfying 0 = ko < k1 < -++ < kg =k, and pr, --- , ux are
the first s and last k — s of the N’s for some 3,0 = s £ k.

Proof. By Fan’s Theorem, ((Hzy, z1), --+, (Haw, ax)) e T*(\). Hence
the extreme values of f are bounded by the extreme values of E, on T*(\).
The latter are given by Theorems 1 and 2. The typical value (9) is taken on
by f for the o.n. vectors

kiy1 07("_"5)
J
Vo= D ey, @ =h+ 1
v=kj+1 '\/kj+1 — k; ’
forj =0, ---, q — 1, where 0, is a primitive (k;; — k;)™ root of unity, and
uy, -+, Uy are o.n. eigenvectors of H corresponding to uy, + -, ux , respec-

tively.

3. An existence theorem for orthonormal vectors

In Theorem 3 it was a relatively simple matter to pick out o.n. vectors
Y1, -+, Yx such that (Hy;, y;) = b; when the b;’s had the special form (9).
One may ask whether it is always possible to find such vectors for any b ¢ T* (),
where u = (w1, *+-, um) 18 a selection of the eigenvalues of the Hermitian
matrix H. The answer, given in Theorem 5, is a consequence of the more
general

TuroreM 4. Let H be a Hermitian transformation on unitary n-space U, .
Let 2y, ;Zm, 1 =m=mn, be m on. vectors in U, , ordered so that
(Hzj, ;) = hj = hjp1, 1 S j=m — 1. Let L(zy, -+, Tm) denote the
subspace spanned by @1, -+, Tm. If Oy, -+, bi) e T(hy, -+, hu), then
there exist o.m. vectors Y1, +++ , Yx i L@y, +++ , Tw) such that (Hy;, y;) = b;,
j=1,--,k
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Proof. Ifm =k =1, y, = x;. Assume the theorem true when there
arem — 1a’s. Since by = by = hnm , there exists an integer s such that b, =
by = k1. Hence there exist on. vectors yy, i € L(z,, %.41) such that
(Hy:,y1) = bi. Furthermore, (Hy; , 4¥) = ho + hoys — by, sinceif 2, -+ ,
Zn—2 I8 an o.n. basis for the complement of L(x,, %:41) in U, ,

(Hys, y1) + (Hyf ’ y;k) tr H — ZJ oy (Hzj, zj5)
= (Hxs, %s) + (Ho1, Toga) = b + hoya .
We shall show that (bs, -- -, by) lies in
T Yhyy oo, hs-x, he + heya — b1, hegz, oo ) hw).

Note first that hey = hs = b + hopa — b1 2 Rops = hoyn. Set by = b;,
J=2,---,k Ift S s — 1, then Zz—l b,, < Diaihiby hypothes1s If
s —1<t=k— 1, then b, + ZJ=1 b,, < Dt hj; hence D iy b,, =
S hi + (b + hs+1 — by) + -+ + hya. Thus condition (2) holds; (3)
is verified similarly.

By the induction hypothesis, there exist o.n. vectors y;, ---, ¥ in
L(x17 e 7x8—1)y;k,x8+27 e 7xm) SUChthat(Hyfyyi) = b.’f’j =2, ?k-
The vectors y1, - -+, yx are o.n. in Lz, - - - , »). This completes the proof
of the theorem.

TureoreEM 5. Let H be a Hermatian transformation on U, , and let u; = - - -
= pm, 1 = m = n, be a subset of the eigenvalues of H. If (by, -+« , bi) €
T(uy, -+, um), then there exist o.n. vectors y, .-+ ,yx tn U, such that
(Hyjayf) = bi) j= 1’ coe 7k'

Proof. In Theorem 4,let z;, - -- , x» be 0.n. eigenvectors corresponding to
MLy "y Bmoe

CoroLLARY 1. Let H be a Hermitian transformation with eigenvalues
M= -2 M. Leal,, 1=k = n,denote the closed interval

[(Z;;l >‘j) /"77 (Z?ml )‘n—f+l)/k]1

and let xx be the characteristic funciion of I, . Let M(c) be the largest number of
o.n. solutions of the equation (Hz, z) = ¢. Then M(c) = a1 xi(c).

Proof.’ Let I, be the real line, and let I, be the null set. Suppose that
cely,celopn. Since I; 2 I;yforj =0,---,n, Dixslc) =¢ On
the other hand, since ceI,, D.jmtXj = f6 = D jmihn_jpforl S ¢ < g.
Hence (c, -+ - , ¢) e T?'(\), and by Theorem 5 there exist ¢ 0.n. vectors y; such
that (Hy;,y;) = ¢, j =1,---,q. Sincecelyn, (¢ ,¢)¢T""(\),and
the existence of ¢ + 1 o.n. ¢’s is denied by Fan’s theorem. Hence M(c) = q.

Remark. Theorem 5 above may also be obtained from Theorem 4 of [2]
and our remarks preceding Theorem 2.

3 For another proof of this result cf. [5].
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