SOME EXTREME VALUE RESULTS FOR INDEFINITE HERMITIAN MATRICES II 1

BY
M. Marcus, B. N. Moyls, and R. Westwick
\section*{1. Introduction}

Let H be a Hermitian transformation of unitary n-space U_{n} into itself with eigenvalues $\lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{n}$; and let $E_{r}\left(a_{1}, \cdots, a_{k}\right)$ be the $r^{\text {th }}$ elementary symmetric function of the numbers a_{1}, \cdots, a_{k}. If H is nonnegative Hermitian, and $f\left(x_{1}, \cdots, x_{k}\right)=E_{r}\left[\left(H x_{1}, x_{1}\right), \cdots,\left(H x_{k}, x_{k}\right)\right], \quad 1 \leqq r \leqq k \leqq n$, it is known [4, pp. 527-8] that

$$
\begin{aligned}
& \max f=\binom{k}{r} k^{-r}\left(\sum_{j=1}^{k} \lambda_{j}\right)^{r} \\
& \min f=E_{r}\left(\lambda_{n-k+1}, \cdots, \lambda_{n}\right)
\end{aligned}
$$

where both max and min are taken over all sets of k orthonormal (o.n.) vectors x_{1}, \cdots, x_{k} in U_{n}. When H is indefinite, the extreme values of f have been found for special cases of r and general k. The case $r=1$ is due to Fan [1]; the cases $r=2, k$ are treated in [3]. In the present report we extend these results to the case of general r (Theorem 3).

For any set of k o.n. vectors x_{1}, \cdots, x_{k}, Fan's theorem requires that

$$
\sum_{j=1}^{k} \lambda_{j} \geqq \sum_{j=1}^{k}\left(H x_{j}, x_{j}\right) \geqq \sum_{j=1}^{k} \lambda_{n-j+1}
$$

Following Horn's notation [2]: if $a_{1} \geqq \cdots \geqq a_{m}$ and $1 \leqq k \leqq m$, let $T^{k}\left(a_{1}, \cdots, a_{m}\right)$ be the set of real k-tuples $\left(b_{1}, \cdots, b_{k}\right)$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{t} a_{j} \geqq \sum_{j=1}^{t} b_{i_{j}} \geqq \sum_{j=1}^{t} a_{m-j+1} \tag{1}
\end{equation*}
$$

for $1 \leqq t \leqq k$ and all sequences i_{1}, \cdots, i_{t} of positive integers satisfying $1 \leqq i_{1}<\cdots<i_{t} \leqq k$. Fan's result implies that

$$
\left(\left(H x_{1}, x_{1}\right), \cdots,\left(H x_{k}, x_{k}\right)\right) \in T^{k}(\lambda)
$$

where $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$.
We seek first the extreme values of $E_{r}(b)$ for $b=\left(b_{1}, \cdots, b_{k}\right) \in T^{k}(\lambda)$. Let β be such an extreme value. Theorem 1 shows that there exists $b \in T^{k}(\lambda)$ such that $E_{r}(b)=\beta$ and such that b is contained in some set $T^{k}\left(\lambda_{i_{1}}, \cdots, \lambda_{i_{k}}\right)$, where $\lambda_{i_{1}}, \cdots, \lambda_{i_{k}}$ are the first s and last $k-s$ of the λ 's, $0 \leqq s \leqq k$. Theorem 2 gives β in terms of the reduced set of $k \lambda$'s. It is then a

[^0]straightforward matter to construct o.n. vectors y_{1}, \cdots, y_{k} for which $E_{r}\left[\left(H y_{1}, y_{1}\right), \cdots,\left(H y_{k}, y_{k}\right)\right]=\beta$.
In Theorem 5 we show that for any $b \in T^{k}(\lambda)$, there exist k o.n. vectors y_{1}, \cdots, y_{k} such that $\left(H y_{j}, y_{j}\right)=b_{j}, j=1, \cdots, k$. Thus any question involving the field values ($H x_{j}, x_{j}$) of o.n. vectors x_{j} can be discussed in terms of the elements of $T^{k}(\lambda)$. While this result does not turn out to be necessary for our discussion of the extreme values of E_{r}, it appears to be of interest in itself. As a corollary we give a formula for the maximum number of o.n. solutions of the equation $(H x, x)=c$.

2. Extreme value results

By definition, $b \in T^{k}(\lambda)$, where $b=\left(b_{1}, \cdots, b_{k}\right)$ and $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$, $\lambda_{1} \geqq \cdots \geqq \lambda_{n}$, if and only if

$$
\begin{equation*}
\sum_{j=1}^{t} \lambda_{j} \geqq \quad \sum_{j=1}^{t} b_{i_{j}}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{t} b_{i_{j}} \geqq \sum_{j=1}^{t} \lambda_{n-j+1} \tag{3}
\end{equation*}
$$

for all $1 \leqq t \leqq k$ and all sequences $1 \leqq i_{1}<\cdots<i_{t} \leqq k$. We collect some elementary facts concerning $T^{k}(\lambda)$ in

Lemma 1. (i) If $n=k, b \in T^{k}(\lambda)$ if and only if (2) or (3) holds and $\sum_{j=1}^{k} \lambda_{j}=\sum_{j=1}^{k} b_{j}$.
(ii) If $b_{1} \geqq \cdots \geqq b_{k}, \quad b \in T^{k}(\lambda)$ if and only if

$$
\begin{equation*}
\sum_{j=1}^{t} \lambda_{j} \geqq \sum_{j=1}^{t} b_{j}, \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{t} b_{k-j+1} \geqq \sum_{j=1}^{t} \lambda_{n-j+1} \tag{5}
\end{equation*}
$$

for all $1 \leqq t \leqq k$.
(iii) If $b_{1} \geqq \cdots \geqq b_{k}$ and $n=k, \quad b \in T^{k}(\lambda)$ if and only if (4) or (5) holds and $\sum_{j=1}^{k} \lambda_{j}=\sum_{j=1}^{k} b_{j}$.
Lemma 2. Let b_{1}, \cdots, b_{k} and $\lambda_{1} \geqq \cdots \geqq \lambda_{k}$ be given. If $\left(b_{1}, \cdots, b_{m}\right) \epsilon$ $T^{m}\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ and $\left(b_{m+1}, \cdots, b_{k}\right) \in T^{k-m}\left(\lambda_{m+1}, \cdots, \lambda_{k}\right)$, where $1 \leqq m<k$, then $\left(b_{1}, \cdots, b_{k}\right) \in T^{k}\left(\lambda_{1}, \cdots, \lambda_{k}\right)$.

Proof. $\sum_{j=1}^{m} \lambda_{j}=\sum_{j=1}^{m} b_{j}$ and $\sum_{j=m+1}^{k} \lambda_{j}=\sum_{j=m+1}^{k} b_{j}$, by Lemma 1(i). Hence $\sum_{j=1}^{k} \lambda_{j}=\sum_{j=1}^{k} b_{j}$. For $1=i_{0} \leqq i_{1}<\cdots<i_{s} \leqq m<$ $i_{s+1}<\cdots<i_{t} \leqq i_{t+1}=k$, $\sum_{j=1}^{t} b_{i_{j}}=\sum_{j=1}^{s} b_{i_{j}}+\sum_{j=s+1}^{t} b_{i_{j}} \leqq \sum_{j=1}^{s} \lambda_{j}+\sum_{j=m+1}^{m+t-s} \lambda_{j} \leqq \sum_{j=1}^{t} \lambda_{j}$. Hence $\left(b_{1}, \cdots, b_{k}\right) \in T^{k}\left(\lambda_{1}, \cdots, \lambda_{k}\right)$.
Theorem 1. Let β be an extreme value of $E_{r}\left(a_{1}, \cdots, a_{k}\right)$ as $\left(a_{1}, \cdots, a_{k}\right)$ ranges over $T^{k}\left(\lambda_{1}, \cdots, \lambda_{n}\right), 1 \leqq r \leqq k \leqq n$. Then there exist

$$
b=\left(b_{1}, \cdots, b_{k}\right) \in T^{k}\left(\lambda_{1}, \cdots, \lambda_{n}\right)
$$

and an integer $s, \quad 0 \leqq s \leqq k,{ }^{2}$ such that $b \in T^{k}\left(\lambda_{1}, \cdots, \lambda_{s}, \lambda_{n-k+s+1}, \cdots, \lambda_{n}\right)$ and $E_{r}(b)=\beta$.

Proof. Let $b \in T^{k}(\lambda)$ such that $E_{r}(b)=\beta$. If $r=1$, each b_{j} must appear in at least one equality (2) or (3); otherwise $E_{1}(b)$ could be increased or decreased by altering b_{j}, while keeping b in $T^{k}(\lambda)$. If $1<r \leqq k$,

$$
\begin{equation*}
E_{r}(b)=b_{1} E_{r-1}\left(b_{2}, \cdots, b_{k}\right)+E_{r}\left(b_{2}, \cdots, b_{k}\right) \tag{6}
\end{equation*}
$$

If b_{1} does not appear in an equality (2) or (3), $E_{r}(b)=\beta$ implies that $E_{r-1}\left(b_{2}, \cdots, b_{k}\right)=0$, and $E_{r}(b)$ is independent of b_{1}. We can alter b_{1} so as to bring about an equality involving b_{1}, while keeping b in $T^{k}(\lambda)$. Since this process does not disturb existing equalities, we can repeat it until the b_{j} 's are exhausted. We may thus assume that each b_{j} is involved in an equality (2) or (3).

Assume now that $b_{1} \geqq \cdots \geqq b_{k}$. We shall show that each b_{j} appearing in an equality (2) also appears in an equality (4). Suppose to the contrary that $b_{i_{l}}$ is the largest b_{j} which is not in an equality (4), while $\sum_{j=1}^{t} b_{i_{j}}=\sum_{j=1}^{t} \lambda_{j}$, $1 \leqq l \leqq t, 1 \leqq i_{1}<\cdots<i_{t} \leqq k$. Then $\sum_{j=1}^{t} \lambda_{j} \geqq \sum_{j=1}^{t} b_{j} \geqq \sum_{j=1}^{t} b_{i_{j}}=$ $\sum_{j=1}^{t} \lambda_{j}$; hence $i_{l}>t$. Since $\sum_{j=1}^{t} b_{j}=\sum_{j=1}^{t} b_{i_{j}}$ and $b_{1} \geqq \cdots \geqq b_{t} \geqq$ $b_{i_{l}} \geqq \cdots \geqq b_{i_{t}}$, it follows that $b_{l}=\cdots=b_{t}=\cdots b_{i_{t}} \geqq \lambda_{t}$, and $\sum_{j=1}^{i t} b_{j} \geqq \sum_{j=1}^{t} \lambda_{j}+\left(i_{t}-t\right) \lambda_{t} \geqq \sum_{j=1}^{i_{t}} \lambda_{j}$. Hence $b_{i_{l}}$ is contained in the equality $\sum_{j=1}^{i_{t}} b_{j}=\sum_{j=1}^{i t} \lambda_{j}$, a contradiction. A similar argument shows that each b_{j} appearing in an equality (3) also appears in an equality (5).

If $\sum_{j=1}^{k} b_{j}=\sum_{j=1}^{k} \lambda_{j}$, then $b \in T^{k}\left(\lambda_{1}, \cdots, \lambda_{k}\right)$, by Lemma 1. Similarly, if $\sum_{j=1}^{k} b_{j}=\sum_{j=1}^{k} \lambda_{n-j+1}, b \in T^{k}\left(\lambda_{n-k+1}, \cdots, \lambda_{n}\right)$. Otherwise let $s, 1 \leqq$ $s \leqq k-1$, be the least integer such that b_{s+1} is not in an equality (4). Then

$$
\begin{equation*}
\sum_{j=1}^{s} b_{j}=\sum_{j=1}^{s} \lambda_{j} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=q}^{k} b_{j}=\sum_{j=n-k+q}^{n} \lambda_{j} \tag{8}
\end{equation*}
$$

for some $q \leqq s+1$, since b_{s+1} must be contained in an equality (5). By Lemma $1,\left(b_{1}, \cdots, b_{s}\right) \in T^{s}\left(\lambda_{1}, \cdots, \lambda_{s}\right)$ and

$$
\left(b_{q}, \cdots, b_{k}\right) \in T^{k-q+1}\left(\lambda_{n-k+q}, \cdots, \lambda_{n}\right)
$$

If $q \leqq s, \sum_{j=q}^{s} b_{j} \geqq \sum_{j=q}^{s} \lambda_{j} \geqq \sum_{j=n-k+q}^{n-\mathrm{k}+\mathrm{s}} \lambda_{j} \geqq \sum_{j=q}^{s} b_{j}$. Hence $\sum_{j=q}^{s} b_{j}=$ $\sum_{j=n-k+q}^{n=k} \lambda_{j} ;$ subtracting from (8), we get $\sum_{j=s+1}^{k} b_{j}=\sum_{j=n-k+s+1}^{n} \lambda_{j}$. Thus $\left(b_{s+1}, \cdots, b_{k}\right) \in T^{k-s}\left(\lambda_{n-k+s+1}, \cdots, \lambda_{n}\right)$, and by Lemma 2 ,

$$
b \in T^{k}\left(\lambda_{1}, \cdots, \lambda_{s}, \lambda_{n-k+s+1}, \cdots, \lambda_{n}\right)
$$

This completes the proof of the theorem.
If $b=\left(b_{1}, \cdots, b_{k}\right) \in T^{k}\left(\lambda_{1}, \cdots, \lambda_{n}\right), n>k$, it is not necessarily true that $b \in T^{k}\left(\lambda_{i_{1}}, \cdots, \lambda_{i_{k}}\right)$ for some selection of $k \lambda$'s, even if $E_{r}(b)$ is an extreme value
${ }^{2}$ If $s=0$ (or k), the initial (or terminal) segment is missing.
on $T^{k}(\lambda)$. It is not hard to show, however, that $b \in T^{k}\left(\lambda_{i_{1}}, \cdots, \lambda_{i_{k+1}}\right)$ for some selection of the first s and last $k+1-s \quad \lambda$'s. One can also find real numbers b_{k+1}, \cdots, b_{n} such that $\left(b_{1}, \cdots, b_{n}\right) \in T^{n}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$.

Theorem 2. For $1 \leqq r \leqq k$ the extreme values of $E_{r}\left(a_{1}, \cdots, a_{k}\right)$ as $\left(a_{1}, \cdots, a_{k}\right)$ ranges over $T^{k}\left(\mu_{1}, \cdots, \mu_{k}\right)$ are of the form

$$
\begin{equation*}
E_{r}\left(b_{1}, \cdots, b_{k}\right) \tag{9a}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k_{j}+1}=\cdots=b_{k_{j+1}}=\frac{\mu_{k_{j}+1}+\cdots+\mu_{k_{j+1}}}{k_{j+1}-k_{j}}, \quad j=0,1, \cdots, q-1 \tag{9b}
\end{equation*}
$$

and the k_{j} are integers satisfying $0=k_{0}<k_{1}<\cdots<k_{q}=k$.
Proof. Let β be an extreme value of E_{r} over $T^{k}(\mu)$, where $\mu=\left(\mu_{1}, \cdots, \mu_{k}\right)$. Let B be the set of all $b=\left(b_{1}, \cdots, b_{k}\right)$ such that $E_{r}(b)=\beta$. Let S_{t} be the set of all $b \in T^{k}(\mu)$ such that $b_{1} \geqq \cdots \geqq b_{k}$ and $\sum_{j=1}^{t} b_{j}=\sum_{j=1}^{t} \mu_{j}, 1 \leqq t \leqq k$. If $b \in S_{t}, 1 \leqq t<k$, then $\left(b_{1}, \cdots, b_{t}\right) \in T^{t}\left(\mu_{1}, \cdots, \mu_{t}\right)$ and $\left(b_{t+1}, \cdots, b_{k}\right) \in$ $T^{k-t}\left(\mu_{t+1}, \cdots, \mu_{k}\right)$. It will be convenient to define $S_{0}=S_{k}$.

We shall show that if $b \in S_{\rho} \cap S_{\tau} \cap B=7,0 \leqq \rho<\tau \leqq k$, and if $b_{\rho+1}>b_{\tau}$, then for some $s, \quad \rho<s<\tau$, there exists $b^{\prime} \in \mathcal{J} \cap S_{s}$. Set

$$
\begin{equation*}
d=\min _{\rho<s<\tau}\left\{\sum_{j=\rho+1}^{s}\left(\mu_{j}-b_{j}\right)\right\}=\sum_{j=\rho+1}^{s_{0}}\left(\mu_{j}-b_{j}\right), \quad \rho<s_{0}<\tau \tag{10}
\end{equation*}
$$

Since $b \in S_{\rho}, d=\sum_{j=1}^{s_{0}}\left(\mu_{j}-b_{j}\right) \geqq 0$. Set $b_{\rho+1}^{\prime}=b_{\rho+1}+\varepsilon, \quad b_{\tau}^{\prime}=b_{\tau}-\varepsilon$, and $b_{j}^{\prime}=b_{j}$ for $j \neq \rho+1, \tau$. Then, for $|\varepsilon| \leqq d, \quad \rho+1 \leqq i_{1}<\cdots<i_{p} \leqq \tau$, $p<\tau-\rho$, we have $\sum_{j=1}^{p} b_{i_{j}}^{\prime} \leqq \sum_{j=1}^{p} b_{\rho+j}+|\varepsilon| \leqq \sum_{j=1}^{p} \mu_{\rho+j}$, by (10), while $\sum_{j=\rho+1}^{\tau} b_{j}^{\prime}=\sum_{j=\rho+1}^{\tau} b_{j}=\sum_{j=\rho+1}^{\tau} \mu_{j} ;$ hence $\left(b_{\rho+1}^{\prime}, \cdots, b_{\tau}^{\prime}\right) \epsilon$ $T^{\tau-\rho}\left(\mu_{\rho+1}, \cdots, \mu_{\tau}\right)$. But $\left(b_{1}^{\prime}, \cdots, b_{\rho}^{\prime}\right) \in T^{\rho}\left(\mu_{1}, \cdots, \mu_{\rho}\right)$ if $\rho \neq 0$, and $\left(b_{\tau+1}^{\prime}, \cdots, b_{k}^{\prime}\right) \in T^{k-\tau}\left(\mu_{\tau+1}, \cdots, \mu_{k}\right)$ if $\tau \neq k$. By Lemma 2, $b^{\prime} \in T^{k}(\mu)$ for $|\varepsilon| \leqq d$.

The next step is to show that $b^{\prime} \in B$ for $|\varepsilon| \leqq d$. When $r=1, E_{r}\left(b^{\prime}\right)=$ $E_{r}(b)=\beta$. When $r=2, E_{r}\left(b^{\prime}\right)=E_{r}(b)+\left(b_{\tau}-b_{\rho+1}-\varepsilon\right) \varepsilon$. Since $b_{\rho+1}>$ $b_{\tau}, b \in B$, and $b^{\prime} \in T^{k}(\mu)$ for $|\varepsilon| \leqq d$, it follows that $d=0$, and $b^{\prime}=b \in B$. When $r>2$,
$E_{r}\left(b^{\prime}\right)=E_{r}(b)+\varepsilon\left(b_{\tau}-b_{\rho+1}-\varepsilon\right) E_{r-2}\left(b_{1}, \cdots, \not{ }_{\rho+1}, \cdots, \not{ }_{\tau}, \cdots, b_{k}\right)$, where ϕ_{j} indicates that b_{j} is deleted. Again, since $b_{\rho+1}>b_{r}$ and $b \in B$, it follows that $E_{r-2}\left(b_{1}, \cdots, \not \phi_{\rho+1}, \cdots, \not \phi_{\tau}, \cdots, b_{k}\right)=0$ and $E_{r}\left(b^{\prime}\right)=E_{r}(b)$. Thus $b^{\prime} \in B$ for $|\varepsilon| \leqq d$.

Set $\varepsilon=d$. Since $b_{\rho} \geqq \mu_{\rho} \geqq \mu_{\rho+1} \geqq b_{\rho+1}+d \geqq b_{\rho+2}$, and similarly $b_{\tau-1} \geqq$ $b_{\tau}-d \geqq b_{\tau+1}, b_{1}^{\prime} \geqq \cdots \geqq b_{k}^{\prime}$. Hence by (10) $b^{\prime} \in 丁 \mathfrak{J} \cap S_{s_{0}}$.

For any $b \in T^{k}(\mu)$ such that $E_{r}(b)=\beta$ and $b_{1} \geqq \cdots \geqq b_{k}$, we have $b \in S_{0} \cap S_{k} \cap B$. If $b_{1}=b_{k}$, then $b_{j}=\left(\mu_{1}+\cdots+\mu_{k}\right) / k$ for $j=1, \cdots, k$. Otherwise, by the preceding discussion, there exists $s, 0<s<k$, and b^{\prime} such
that $b^{\prime} \in S_{0} \cap S_{s} \cap S_{k} \cap B$. We may continue this refining process until we obtain some $b \in S_{k_{0}} \cap \cdots \cap S_{k_{q}} \cap B, \quad 0=k_{0}<k_{1}<\cdots<k_{q}=k$, such that $b_{k_{j}+1}=\cdots=b_{k_{j+1}}=\left(\mu_{k_{j}+1}+\cdots+\mu_{k_{j+1}}\right) /\left(k_{j+1}-k_{j}\right)$ for $j=0, \cdots$, $q-1$.

Theorem 3. Let H be a Hermitian transformation on unitary n-space U_{n} with eigenvalues $\lambda_{1} \geqq \cdots \geqq \lambda_{n}$. For $1 \leqq r \leqq k \leqq n$ set

$$
f\left(x_{1}, \cdots, x_{k}\right)=E_{r}\left[\left(H x_{1}, x_{1}\right), \cdots,\left(H x_{k}, x_{k}\right)\right] .
$$

The maximum and minimum values of f, as x_{1}, \cdots, x_{k} range over all sets of k o.n. vectors in U_{n}, have the form

$$
\begin{equation*}
E_{r}\left(b_{1}, \cdots, b_{k}\right) \tag{9a}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k_{j}+1}=\cdots=b_{k_{j+1}}=\frac{\mu_{k_{j}+1}+\cdots+\mu_{k_{j+1}}}{k_{j+1}-k_{j}}, \quad j=0,1, \cdots, q-1 \tag{9b}
\end{equation*}
$$

the k_{j} are integers satisfying $0=k_{0}<k_{1}<\cdots<k_{q}=k$, and μ_{1}, \cdots, μ_{k} are the first s and last $k-s$ of the λ 's for some $s, 0 \leqq s \leqq k$.

Proof. By Fan's Theorem, $\left(\left(H x_{1}, x_{1}\right), \cdots,\left(H x_{k}, x_{k}\right)\right) \in T^{k}(\lambda)$. Hence the extreme values of f are bounded by the extreme values of E_{r} on $T^{k}(\lambda)$. The latter are given by Theorems 1 and 2. The typical value (9) is taken on by f for the o.n. vectors

$$
y_{\alpha}=\sum_{\gamma=k_{j}+1}^{k_{j+1}} \frac{\theta_{j}^{\gamma\left(\alpha-k_{j}\right)}}{\sqrt{k_{j+1}-k_{j}}} u_{\gamma}, \quad \alpha=k_{j}+1, \cdots, k_{j+1}
$$

for $j=0, \cdots, q-1$, where θ_{j} is a primitive $\left(k_{j+1}-k_{j}\right)^{\text {th }}$ root of unity, and u_{1}, \cdots, u_{k} are o.n. eigenvectors of H corresponding to μ_{1}, \cdots, μ_{k}, respectively.

3. An existence theorem for orthonormal vectors

In Theorem 3 it was a relatively simple matter to pick out o.n. vectors y_{1}, \cdots, y_{k} such that $\left(H y_{j}, y_{j}\right)=b_{j}$ when the b_{j} 's had the special form (9). One may ask whether it is always possible to find such vectors for any $b \in T^{k}(\mu)$, where $\mu=\left(\mu_{1}, \cdots, \mu_{m}\right)$ is a selection of the eigenvalues of the Hermitian matrix H. The answer, given in Theorem 5, is a consequence of the more general

Theorem 4. Let H be a Hermitian transformation on unitary n-space U_{n}. Let $x_{1}, \cdots, x_{m}, \quad 1 \leqq m \leqq n$, be m o.n. vectors in U_{n}, ordered so that $\left(H x_{j}, x_{j}\right)=h_{j} \geqq h_{j+1}, \quad 1 \leqq j \leqq m-1$. Let $L\left(x_{1}, \cdots, x_{m}\right)$ denote the subspace spanned by x_{1}, \cdots, x_{m}. If $\left(b_{1}, \cdots, b_{k}\right) \in T^{k}\left(h_{1}, \cdots, h_{m}\right)$, then there exist o.n. vectors y_{1}, \cdots, y_{k} in $L\left(x_{1}, \cdots, x_{m}\right)$ such that $\left(H y_{j}, y_{j}\right)=b_{j}$, $j=1, \cdots, k$.

Proof. If $m=k=1, y_{1}=x_{1}$. Assume the theorem true when there are $m-1 x$'s. Since $h_{1} \geqq b_{1} \geqq h_{m}$, there exists an integer s such that $h_{s} \geqq$ $b_{1} \geqq h_{s+1}$. Hence there exist o.n. vectors $y_{1}, y_{1}^{*} \in L\left(x_{s}, x_{s+1}\right)$ such that $\left(H y_{1}, y_{1}\right)=b_{1}$. Furthermore, $\left(H y_{1}^{*}, y_{1}^{*}\right)=h_{s}+h_{s+1}-b_{1}$, since if z_{1}, \cdots, z_{n-2} is an o.n. basis for the complement of $L\left(x_{s}, x_{s+1}\right)$ in U_{n},

$$
\begin{aligned}
\left(H y_{1}, y_{1}\right)+\left(H y_{1}^{*}, y_{1}^{*}\right)=\operatorname{tr} H & -\sum_{j=1}^{n-2}\left(H z_{j}, z_{j}\right) \\
& =\left(H x_{s}, x_{s}\right)+\left(H x_{s+1}, x_{s+1}\right)=h_{s}+h_{s+1}
\end{aligned}
$$

We shall show that $\left(b_{2}, \cdots, b_{k}\right)$ lies in

$$
T^{k-1}\left(h_{1}, \cdots, h_{s-1}, h_{s}+h_{s+1}-b_{1}, h_{s+2}, \cdots, h_{m}\right)
$$

Note first that $h_{s-1} \geqq h_{s} \geqq h_{s}+h_{s+1}-b_{1} \geqq h_{s+1} \geqq h_{s+2}$. Set $b_{j}^{\prime}=b_{j}$, $j=2, \cdots, k$. If $t \leqq s-1$, then $\sum_{j=1}^{t} b_{i_{j}}^{\prime} \leqq \sum_{j=1}^{t} h_{j}$ by hypothesis. If $s-1<t \leqq k-1$, then $b_{1}+\sum_{j=1}^{t} b_{i_{j}}^{\prime} \leqq \sum_{j=1}^{t+1} h_{j}$; hence $\sum_{j=1}^{t} b_{i_{j}}^{\prime} \leqq$ $\sum_{j=1}^{s-1} h_{j}+\left(h_{s}+h_{s+1}-b_{1}\right)+\cdots+h_{t+1}$. Thus condition (2) holds; (3) is verified similarly.

By the induction hypothesis, there exist o.n. vectors y_{2}, \cdots, y_{k} in $L\left(x_{1}, \cdots, x_{s-1}, y_{1}^{*}, x_{s+2}, \cdots, x_{m}\right)$ such that $\left(H y_{j}, y_{j}\right)=b_{j}, j=2, \cdots, k$. The vectors y_{1}, \cdots, y_{k} are o.n. in $L\left(x_{1}, \cdots, x_{m}\right)$. This completes the proof of the theorem.

Theorem 5. Let H be a Hermitian transformation on U_{n}, and let $\mu_{1} \geqq \ldots$ $\geqq \mu_{m}, \quad 1 \leqq m \leqq n$, be a subset of the eigenvalues of H. If $\left(b_{1}, \cdots, b_{k}\right) \epsilon$ $T^{k}\left(\mu_{1}, \cdots, \mu_{m}\right)$, then there exist o.n. vectors y_{1}, \cdots, y_{k} in U_{n} such that $\left(H y_{j}, y_{j}\right)=b_{j}, \quad j=1, \cdots, k$.

Proof. In Theorem 4, let x_{1}, \cdots, x_{m} be o.n. eigenvectors corresponding to μ_{1}, \cdots, μ_{m}.

Corollary 1. Let H be a Hermitian transformation with eigenvalues $\lambda_{1} \geqq \cdots \geqq \lambda_{n} . \quad$ Let $I_{k}, \quad 1 \leqq k \leqq n$, denote the closed interval

$$
\left[\left(\sum_{j=1}^{k} \lambda_{j}\right) / k,\left(\sum_{j=1}^{k} \lambda_{n-j+1}\right) / k\right]
$$

and let χ_{k} be the characteristic function of $I_{k} . \quad$ Let $M(c)$ be the largest number of o.n. solutions of the equation $(H x, x)=c$. Then $M(c)=\sum_{k=1}^{n} \chi_{k}(c)$.

Proof. ${ }^{3}$ Let I_{0} be the real line, and let I_{n+1} be the null set. Suppose that $c \in I_{q}, c \notin I_{q+1}$. Since $I_{j} \supseteq I_{j+1}$ for $j=0, \cdots, n, \quad \sum_{k=1}^{n} \chi_{k}(c)=q$. On the other hand, since $c \in I_{q}, \quad \sum_{j=1}^{t} \lambda_{j} \geqq t c \geqq \sum_{j=1}^{t} \lambda_{n-j+1}$ for $1 \leqq t \leqq q$. Hence ($c, \cdots, c) \in T^{q}(\lambda)$, and by Theorem 5 there exist q o.n. vectors y_{j} such that $\left(H y_{j}, y_{j}\right)=c, j=1, \cdots, q$. Since $c \notin I_{q+1}, \quad(c, \cdots, c) \notin T^{q+1}(\lambda)$, and the existence of $q+1$ o.n. y 's is denied by Fan's theorem. Hence $M(c)=q$.

Remark. Theorem 5 above may also be obtained from Theorem 4 of [2] and our remarks preceding Theorem 2.

[^1]
References

1. K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. I, Proc. Nat. Acad. Sci. U.S.A., vol. 35 (1949), pp. 652-655.
2. A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math., vol. 76 (1954), pp. 620-630.
3. M. Marcus, B. N. Moyls, and R. Westwick, Some extreme value results for indefinite Hermitian matrices, Illinois J. Math., vol. 1 (1957), pp. 449-457.
4. M. Marcus and J. L. McGregor, External properties of Hermitian matrices, Canad. J. Math., vol. 8 (1956), pp. 524-531.
5. M. Marcus, A note on values of a quadratic form, J. Washington Acad. Sci., vol. 47 (1957), pp. 97-99.

The University of British Columbia
Vancouver, Canada

[^0]: Received July 1, 1957.
 ${ }^{1}$ The work of the first two authors was supported in part by the United States Air Force Office of Scientific Research and Development Command. The work of the first author was partially completed under an NRC-NBS Postdoctoral Research Associateship 1956-1957 at the National Bureau of Standards, Washington, D. C. The work of the third author was sponsored in part by the National Research Council of Canada.

[^1]: ${ }^{3}$ For another proof of this result cf. [5].

