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1. Introduction

Let F be a nonsingular (irreducible) algebraic surface over an algebraically
closed ground field/. A theorem of Castelnuovo asserts that if the arithmetic
genus pa and the bigenus P2 of F are both zero then F is a rational surface.
This theorem has now been proved for fields ]c of arbitrary characteristic p,
except in the case (K2) 1, where K is a canonical divisor on F. In our
cited paper MM (see footnote 2) we have stated that we have also a proof for
the case (K2) 1, and in the present paper we shall give this proof.
An immediate consequence of Castelnuovo’s criterion of rationality is the

well-known theorem of Castelnuovo on the rationality of plane involution.
This theorem, in the case of arbitrary characteristic, is to be stated as follows"

Le It(x, y) be a purely transcendenlal exlension of an algebraically closed
field tc, of ranscendence degree 2, and let be a field between ] and tc(x, y), also of
transcendence degree 2 over tc. If It(x, y) is a separable extension oj

is a pure lranscendental extension of
We shall show by an example that the condition of separability of k(x, y)/2

is essential.

2
We shall make use of results established in MM for the case of surfaces F

for which Pa P 0 and (K2) > 0. If (K) 1, then the Riemann-
Roch inequality shows that the dimension of the anticanonical system
Ka J(= -K J) is => 1. If JKa is reducible, then F is rational, by Propo-

sition 7.3 of MM. We shall therefore assume that K, is irreducible. In that
case we have dim K 1 (MM, Lemma 10.1), i.e., g is a pencil; it has
a single base point 0, every member Ka of K has a simple point at 0, and
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The theorem is also true if 2/] has transcendence degree 1 (without ny assumption
on separability), but in that case the theorem is an easy consequence of the theorem of
of Liiroth.
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two distinct K’s in K have distinct tangents at 0 (all this follows from
(K) 1).
From the irreducibility of]K follows (see MM, Lemm 10.2) that for

each n > 1 the system nK is irreducible, is free from base points, and has
dimensions n(n + 1)/2. We shall use the systems 2K l, 3K and 6K 1.
We have

(1) dim[2K, 3,

(2) dim 13K 6,

(3) dim ]6K 21,

An irreducible curve D on F will be a fundamental curve of nK, i, n > 1,
if and only if (K.D) 0 (since nK I, n > 1, has no base points). There
will then exist a member K of the pencil K such that D is a component of
K We cannot have K D since (K.K) 1 while (D.K) 0. Hence
K is not a prime cycle. Now we prove the following"

Piooswor 1.. If K is a member of lK which is not a prime cycle, then
some prime component of K is an exceptional curve of the first kind.

Proof. For every prime component E of K we must have p(E) 0
(MM, Lemma 7.2). Since K is irreducible (whence E is not a fixed
componen of K I), we have (K.E) >= O. Since (K) 1, it follows that
there exists one and only one prime component E of K such that (K.E) > 0,
and for that component E we must have (K.E) 1. Since p(E) 0 and
since (X) 2p(X) - 2 (Ka.X) for every cycle X on F, it follows that
(E) -1. Thus E is an exceptional curve of the first kind. QED.
The presence of an irreducible exceptional curve E of the first kind implies

that F can be transformed birationally into a surface F’ which is strictly
dominated by F and on which the self-intersection number of a canonical
divisor is 2. Hence F’ (and therefore also F) is rational, by the case (K) 2.
We may therefore assume that the systems nK I, n > 1, are free from

fundamental curves. By Proposigion 1, this is equivalent to assuming that
each member of lK is a prime cycle.
We summarize our assumptions concerning the nonsingular surface F:
(A) p P. O; (K) 1.
(B) Every member of lK is a prime cycle.
Our proof of the rationality of F will consist in showing that under the

assumptions (A) and (B) the surface F carries an exceptional curve of the first
ind (whence F is not a relatively minimal model). The rationality of F
follows then by the case (K) >= 2. As in the case (K) 2 (see MM, 10),
so also in the present case, our method of proof will consist in constructing the
entire algebraic family of surfaces satisfying assumptions (A) and (B).
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3
Let be a parameter of the pencil Ka 1"

() (t) c- c0,

where C, Co e]Ko I. For any n 1 we denote by (nCo) the space of func-
tions in/(F) such that () + nCo > 0. We have 1, t, e (2C0), and by
(1), we have dim (2C0) 4. We choose an element x in (2C0) such that
11, t, 2, x} is a basis of (2C0) over It. Since 12Ka is irreducible (therefore
not composite with a pencil), the field k(x, t), generated over/ by the homo-
geneous coordinates of the point (1, t, 2, x) in $3, cannot be of transcendence
degree 1. Hence x and are algebraically independent over It, and It(F) is an
algebraic extension of/c(x, t).
The locus, over /c, of the point (z0, Zl, z, z3) (1, t, , x) is the cone

W: ZoZ2 z O, and this cone is a rational transform of F, the plane sections
of W corresponding to the cycles of 12Ka ]. Since W has order 2 and 12K
has degree 4, it follows that

(5) [(F)’(z, t)] 2.

The 6 elements 1, t, , , x, xt belong to (3C0), and by (2) we hve
dim (3C0) 7. We can therefore find an element y in (3C0) such that
{1, t, , , x, xt, y} is basis of (3C0) over/.

It is at this stage that a short proof of the rationality of F can be given, provided
that the characteristic p of k is different from 2. We shall outline here this proof.

Since 2Ka has no base points and no fundamental curves and since F is nonsingular
(hence normal), F is a normalization of the cone W in the field k(F) (F is a double cover-
ing of the cone W). The pencil Ka on F corresponds to the pencil of generators of
the cone, each Ka being a double covering (a priori, not necessarily a normalization) of
the corresponding generator. Let D be the branch curve, on W, of the double covering
W F. It can be shown that D does not pass through the vertex of W. The general
generator g of the cone W cannot have a contact P with D such that the intersection
multiplicity of D and g at P is > 2, for in the contrary case it is easily seen that the
general cycle Ka would not be prime (one must remember that p(Ka) 1). It cannot
have a contact with intersection multiplicity 2 since p 2. From this it follows that
the general K is nonsingular and hence is elliptic. The general generator g of the cone W
must carry 4 branch points of the double covering g K. It is not difficult to see that
one of the branch points is at the vertex 0 of the cone W (it is an isolated branch point of
the covering W-- F, since 0 D). Hence (g-D) 3, and therefore D is a curve of order 6.
It can be shown that D is in fact complete intersection of W with a cubic surface.
By using this fact it is possible to derive the existence of a tritangent plane r of D. The
cycle in 2Ka which corresponds to the plane section W. r splits then into two prime
cycles D, E, neither one of which is a member of K [. This shows that there exist
cycles on F which are not linearly equivalent to an integral multiple of K, and thus the
rationality of F follows from Proposition 9.1 of MM. As a matter of fact, the curves D,
E are necessarily exceptional curves of the first kind; this is proved in the beginning
of 7. Thus F is not a relatively minimal surface.
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If is an (algebraic) place of k(F)/k such that tO and xO are finite, and if P
is the center of on F, then P cannot belong to Co, for in the contrary case P
would have to lie on each of the cycles (t) + 2C0, (tz) A- 2C0, (x) -t- 2C0,
and thus P would be a base point of 2K I. Since P Co it follows that also
yO . Hence y is integral function of and x.
I assert lhal y k(x, l) (whence y is a primitive element of k(F)/l(x, /);

see (5)). For in the contrary case y would be a polynomial in x, t,
tm-’Xsay y f(x, t) Let co + c -- c. - be the sum of terms

ctx in f(x, t) for which m i -- 2j is maximum. Were m > 3, then there
would have to be at least two such terms (since tx is infinite on Co to the
order i -- 2j, while y is infinite to the order 3 on Co), and the C-residue a of
x/t would have to satisfy the equation co -t- Cl a -- c. -- 0. Thus
a e It, and x at would belong to (C0), i.e., x at would be linearly
dependent on 1, t, in contradiction with the linear independence of 1, t, , x
over/. Hence m 3 and y f(t) + xf(t), where f and f are polynomials
of degree 1 and 3 respectively. This contradicts the linear independence of
1, t, , , x, xt, y over lc.
To find the irreducible equation (of degree 2) for y over/c(x, t), we observe

that the 23 functions

(6) txy, 0 <= q A- 2r A- 3s <= 6 (0 <= q,r,s),

belong to the vector spce (6C0), and that, by (3), this space has dimension
22. Hence the above 23 functions are linearly dependent. A relation of
linear dependence between these functions yields a relation of algebraic
dependence between t, x, and y, of degree _-< 2 in y. Since y lc(t, x), yZ
must be present in the relation, and thus we find that the equation of algebraic
(and integral) dependence for y over l[x, t] has the following form"

(7) g yZ A- [ga(t) + xg(t)]y + [g(t) + g(t)x + g.(t)x + go x] O,

where g(t) is a polynomial of degree _-< i (with coefficients in k). In particu-
lar, the coefficient go of x is a constant. It is important to observe that

(8) go 0.

To see this we note that if is any of the monomials w in (6) other than y
nd x, then either Co or C is component of the positive cycle () 6C0,
nd hence the base point 0 of the pencil ]K belongs to this cycle. Were
x missing in (7) it would then follow that 0 belongs also to the
cycle (y) - 3C0. Since 0 also belongs to the cycles (t) + 3C0 (i 0, 1, 2, 3),
(x) - 3C0, (xt) -{- 3C0, it would then follow that 0 belongs to each cycle in

13Ka [, in contradiction with the fact that 13K has no base points. In the
sequel we shall set go 1 (this amounts to replacing x by a constant multiple
of x).

Since equation (7) is irreducible, it is the only relation of linear dependence
between the monomials in (6). It follows that these monomials span the
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entire space (6C0). We denote by G the locus, over/c, of the point in the
projective space $2. whose homogeneous cohrdinates are the (actually G
lies in S.1, since the are linearly independent). Thus G is a rational trans-
form of our surface F, and is obtained by having the linear system 16Ka
cut out by hyperplanes. The surface G is a birational transform of F,
since k(t, x, y) tc(F). Since 6Ka has no base points and no fundamental
curves and since F is nonsingular (hence normal), it follows that F is a nor-
malization of G. We shall show, however, that G i itselJ normal, and from this
it will follow that G and F are biregularly equivalent surfaces and that, con-
sequently, G is nonsingular. To show the normality of G we shall show that
for any n >= 1 it is true that the linear system Ln cut out on G by the hyper-
surfaces of order n, in the ambient space S.1 of G, coincides with the complete
system 6nKa (and hence G is arithmetically normal;note that L1 6K, ],
by the definition of G, and that consequently Ln 16nKa[). If p is the
number of linearly independent monomials o’ of the form t"xy* such that
a - 2 - 3, =<_ 6n (a,/, , nonnegative integers), then dim L p= 1.
Since y is linearly dependent on the monomials t%y such that q -t- 2r -3s =< 6 and s 0, 1, it follows that the monomials w’ are linearly dependent
on these particular monomials o’ for which , is either zero or 1. An easy
computation shows that the number of these particular monomials o’ is
3n(6n + 1) + 1, and these monomials are linearly independent since and x
are algebraically independent over lc and since y k(t, x). Hence dim L
3n(6n + 1), i.e., dim L dim 6nK I, and this proves our assertion.

In this section we shall retrace in reverse the procedure of the preceding
section. We shall start with an affine surface g in $3 defined by an equation of
the form (7). We denote by G the projective surface in S: which is the locus,
over ]c, of the point whose homogeneous cohrdinates are the monomial ,
given in (6) (actually G lies in an $2). We make the following two assump-
tions-

(A’) The coefficient go of x in (7) is different from zero (and we shall as-
sume that go 1).

(B’) The surface G is nonsingular.

PROPOSITION 2. Under assumptions (A’) and (B’), the surface G satisfies
conditions (A) and (B) of Section 2.

Proof. If Ln denotes the system cut out on G by the hypersurfaces of order
n, then---as was shown in the preceding section--we have dim L 18n: -t- 3n.
Since the constant term of this quadratic polynomial is zero, it follows that
the arithmetic genus of G is zero.
For the rest of the proof (and also for other applications which will be made

in subsequent sections) we shall exhibit a suitable covering of G by three
affine representatives.
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We number the monomiMs o in (6) so as to have 0 1, o1 6, . y2.
Let G. (j 0, 1, 2) be the ffine representative of G on which M1 the quotients.
o,/o. re regular. It is clear that G0 cn be identified with the given ffine
surface g in S. We set

(9) t’ lit (= t/), x’ x/t (= xt/x), y’ y/t (= yt/).

Then , yx’, are among the quotients w/ and we see at once that all the
quotients/ are monomials in t’, x’, and y’. Hence Gx can be identified with
the affine surface g’ in S which is the locus, over k, of the point (t’, x, y’).
The equation of g’ has the same form as that of g"

g’ y’ + [ga(t’) + x gx(t’)]y’ + [g(t’) + g(t’)x’ + g(t’)x’ + x’] O,

where
g t’) g,(1/t’), 1 i 6.

As to the affine representative G: of G, we introduce the functions

(10) zt/y xty/), x/y xy/:), , x/y x/),
and we denote by g" the locus of (r, 8, v) over k. Since r, 8, v are regular
on G, the affine surface g" is a regular (and obviously birational) transform
of G. On the other hand, we have, for all nonnegative integers q, r and s
such that q + 2r + 3s 6,

tqxy/y= Tq6--q-2r--3sr-2+s.

Hence the functions which are regular on G are also regular at all points of
g" where v 0. These points of g" form an open subset which we shall
denote by g’ Thus g’ can be identified with a part of G.
We note that g" has the following equation"

(11)
+ [g (r, ) + g (r, )], + g (r, 8) 0,

where
g (, ) (/),}gi 1<i<6.

We shM1 show that

(12) G g u g’ u g’.

In fact, we shall show that the point } r 0, -1 is the only point of
go which is not covered by g u g’.

Let v be ny vMution of lc(G)/k whose center on G belongs neither to Go
nor to G,, i.e., let

min {v(t), v(x), v(y)} < 0,

rain {v(t’), v(x’), v(y’) < O.



CASTELNUOVOS CRITERION OF RATIONALITY 309

If v(x) >= 0, then necessarily v(t) < O, for otherwise we would have v(y) >= 0
since y is an integral function of x and t. But then, by (9), v(t’) O, v(x’) O,
and hence also v(y’) >= O, in contradiction with our assumption. Thus we
have necessarily v(x) < O, and similarly v(x’) < O.

Since x is an integral function of and y, and v(x) O, we hve either
v(t) < 0 or v(y) < O. Similarly, from v(x’) < 0 follows that either v(t’) < 0
or v(y’) < O. Were v(y) >-_ O, we would have v(t) < O, and consequently, by
(9), v(t’) > O, v(y’) > O, which is impossible. Hence we have necessarily
v(y) < O, and similarly v(y’) < O.
Thus our valuation v is necessarily such that

v(x), v(y), v(x’), v(y’)
are all negative.
We note that the expressions of r, , and in terms of p, x’, and y’ are similar

to their expressions (10) in terms of t, x, and y, with r and interchanged,
namely

r x’/y’, x’t’/y’, v x’3/y’2.

Hence we may assume that v(t) -> 0 (if not, then v(t’) > 0).
It is clear that in equation (7) of the surface g the terms y2 and x are the

only possible terms which have minimum v-value. Hence we must have
v(y2) v(x), v(y/x - 1) > 0, and 0 < v(y) < v(x).

This implies, by (10), that v(r) > 0, v() > 0, and v(v + 1) :> 0, showing
that the center of v on g" is the point r 0, v -1, as asserted. We
shall denote this point by A.
Thus the covering (12) of G is established.
We now show that the pencil C}:t const, consists of anticanonical curves

on G and that A is an ordinary simple base point of that pencil. In fact, con-
sider the differential o dtdx/(Og/Oy). We have o -dt’dx/(t’g’/Oy).
If we take into account the fact that both affine surfaces g and g’ are non-
singular and that the prt of G which is not covered by g t gP reduces to the
point A, we conclude that the divisor () of on G is equal to -Co, where
Co is the member of the pencil {C} which corresponds to the value of the
parameter t. This shows that the C’s are anticanonical cycles. This, of
course, implies already that all the plurigenera of G are zero. Furthermore, the
pencil {C} has only one base point on G, namely the point A. Equation
(11) shows that r and are uniformizing parameters at A, and since /
[by (10)], it follows that any two C’s have a simple intersection at A. Con-
sequently (Ka) 1 (where Ka denotes any anticanonical cycle on F).
The presence of the terms y and x in the equation (7) of the surface and

the fact that the coefficient of y is of degree _-< 1 in x imply that every cycle
t const, of the pencil /C} is prime. This completes the proof of Proposi-
tion 2.
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5
From now on we always assume that our surface G is nonsingular.

PROPOSITION 3. If the equation g(X, Y, t) O, regarded as an equation in
X, Y, over tc(t), has a solution of the form

(12’) X 2(t), Y

where i is a polynomial in/[t], of degree <= i, then the surface G is rational.
Furthermore, the irreducible curve E defined by (12’) is an exceptional curve on
G, of the first kind.

Proof. By assumption, the polynomial g(t, b2(t), Y), of degree 2 in Y, has
a root Y 3(t). Therefore, it has a second root Y o(t), where (t) is
also a polynomial of degree -< 3. We denote by D the irreducible curve
defined by

X 2(t), Y o(t).

The replacing of X and Y by X 2(t) and Y (t) respectively amounts
to a linear transformation of the homogeneous cohrdinates in the ambient
spce of G, and, furthermore, this transformation sends g into a polynomial of
the sme type [see (7)]. Hence we may assume that (t) o(t) 0.
Then in (7), g6(t) is zero, and the equations of the surfaces g and g’ hve the
following form"

g: y(y ba(t)) + x[g(t)y -t- g4(t) + g2(t)x + x] O,

g" y’(y’ b’(t’)) + x’[g;(t’)y’ + g’4(t’) - g’(t’)x’ + x’] O,

where ba(t’) t’ba(1/t’), g(t’)’ ’ig(1//’).

Let v and v be the prime divisors of It(G) defined by the curves E and D
respectively. We observe that 3(t) is not the constant zero, for if it were and
if we denote by to a root of g(t), then the point to, x y 0 would be
singular point of g. (If g4(t) is a constant, different from zero, then g’(t’) is
a constant multiple of ’, and the point t’ x’ y’ 0 would be a singular
point of g’.) Since v(x) > 0 and v(y (t)) > 0, it follows from (t) 0
that v(y) O. Hence v() v(x/y) > 0, showing that the point A :T

0, 1 of G does not belong to E. The preceding argument about the
nonvanishing of (t) shows also that g(t) is not zero; in fact, it also shows
that (t) and g(t) have no common factor. The presence of the terms
g(t)x (t)y in g implies that Vl(X) vl(y), since Vl(X) > 0 and v(y) > O.
Hence v() > 0, showing that also the curveD does not pass through A. We
have therefore proved that

E+Dgtg’.
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Since g(t) is zero, equation (11) of the surface g (fter division by ) hs the
form

(13) g"" 72 -4- [1 A- g’(r, ) -+- g’(r, )] A- g’(r, ) A- g’(r, ) 0.

Equations (10) define a birational transformation T of G onto g". Since
v(x) > 0 and v(y 3(t)) > 0, while 3(t) 0, it follows that v(y) v(t) O.
Hence v(t) O, v() > O, and v() > 0, showing that the center, on gpt, of the
prime divisor v is the origin 0. Thus E is an exceptional curve of T and
corresponds to the point 0.
We assert that E is the total T-l-transform of O. For let w be any zero-

dimensional valuation of k(G) having center 0 on gPt. Since 0, A e g and
A 0, it follows that the center P of w on G belongs to g u g’. Because of the
symmetric roles played by g and g’, we may assume that P e g, i.e., that
w(x) >= O,w(y) >= O, and w(1) >= O. Since x/y and w() > 0, itfollows
that w(x) O. Hence P e E - D. Suppose P e D, whence w(y) O.
Since w(x) > w(y), division of the equation g 0 by y shows that w(ba(t)) O,
i.e., P is the point to, x y 0, where to is a root of 3(t). But then P
belongs also to E, and this proves our assertion.
We also assert that T is regular at each point of E. We have only to show

that r, , and are regular at any point P of G such that P e E. We may
assume thatPeg (sinceE grog’). Left to,X 0, y yo (to) at
P. If yo 0, then (10) shows that r, , and are regular at P. Assume
yo 0, whence to is a root of 3(t). It was pointed out above that b(t) and
g4(t) can have no common root to (for otherwise the point (to, 0, 0) would be a
singular point of g). Hence g4(to) 0, and g4(t) + g2(t)x +x is a unit in
the local ring e of P. Therefore x/y --(y "- xgi)/8 e Op showing
that

x/ye,, r te, and xe,
as asserted.

Since it is obvious from (13) that 0 is a simple point of g", we have therefore
established the second part of our proposition: E is an irreducible exceptional
curve, of the first kind. It follows that G is not a relatively minimal model,
and thus the rationality of G follows from the case (K:) _- 2 and from Propo-
sition 2.

Note. Clearly, also, D is an exceptional curve of the first kind. Further-
more, assuming, as we may, that (t) is exactly of degree 3 in (if not, pass
to g’ and b(t’)), we see at once that the common points of E and D are the
points P(to, 0, 0), where to is any root of 3(t), and that the intersection
multiplicity of E and D at P is the multiplicity of to as a root of (t). Hence
(E.D) 3.

If, in (7), we allow the coefficients of the polynomials g(t) (0 <= i <= 6, i 5)
to vary arbitrarily in the universal domain, we obtain an irreducible algebraic
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system M of surfaces in $3, of dimension 22. It is easily verified that any
general member g of M/k is an absolutely irreducible, nonsingular (in the
absolute sense) surface, and that the projective surface G, defined in terms of
g as in Section 4, satisfies conditions (A) and (B) of Section 2.

t)ROeOSITIOSr 4. The general surface g of M/tc carries a curve X b(t),
Y 3(t), where b and are polynomials of degree 2 and 3 respectively (with
coecients in the universal domain).

Proof. We consider the most general surface h in M whose equation
h(X, Y, t) 0 has a rational solution X (t), Y Ca(t) of the above
indicated form. Then

(14)
h(X, Y, t) [Y (t)][Y (t)]

+ X[X (t)][hl(t)y -+- x - h(t)x + h4(t)],

where ), and the 21 coefficients of the polynomials a, , ., and
h (i 1, 2, 4) are indeterminates (the subscript indicates in each case the
degree of the polynomial). We have to show that the surface h is a general
member of M/. Let N be the irreducible subsystem of M which is the locus
of h over /c. We have to show that dimN 22. We denote by h* the
point in the affine space A, of dimension 22, whose coSrdinates are ), and the
coefficients of , 3, b, h (i 1, 2, 4). The locus, over/c, of the pair
(h*, h) is a rational transformation of As,. onto N. To prove that dim N 22
we have to show that dim T-1 h 0, or--equivalently--that dim h*/K O,
where K denotes here the field generated over lc by the coefficients of the
polynomial h(X, Y, t). Let E and D denote the curves X .(t), Y (t)
and X b(t), Y (t) respectively. Since both E and D are exceptional
curves of the first kind on the surface h, neither one can vary on h in an
algebraic system of positive dimension. Hence the coefficients of b:, Ca,
and are algebraic over K. From the identity (14) it follows at once that h
and the coefficients of h(t), h.(t), and h4(t) belong to the field generated over
K by the coefficients of b(t), b3(t), and a(t). This shows the point h* is
algebraic over K, and the proposition is proved.

7
We shall now proceed to the proof of the results which has been announced

at the end of Section 2, namely, that th surface F, under the assumptions
(A) and (B), carries an exceptional curve of the first kind. We may replace F
by the biregularly equivalent surface G which lies in a projective space
(see Section 3). This surface has order 36, since it is the image of the complete
system 16Ka (which has degree 36). By Proposition 3, it will be sufficient
to show that the equation (7) has two rational solutions X (t), Y (t)
and X .(t), Y (t) of the type stated in Proposition 3. Let us interpret
the existence of such a pair of solutions. Tb.ey would correspond to two
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irreducible exceptional curves E and D on G, of the first kind, and these two
curves would be the zeros (and the only zeros) on G of the function x 2(t).
Hence E + D is a cycle in 12K I. It is a composite cycle, consisting of two
(not necessarily distinct) prime cycles E and D. Moreover, neither one of
these two prime cycles is a member of the pencil Ka defined by const.
Conversely, assume that the system ]2Ka contains a cycle F which is not
prime but is not a sum of two cycles of K I. Since (r.Ko) 2 and since
by assumption (A) of Section 2 we have (A.K) > 0 for every prime cycle A
on G, it follows that F E D, where E and D are prime cycles, and that
(E" Ka) (D" Ka) 1. Neither E nor D can pass through the base point of
the pencil K I, for in the contrary case the cycles in Ka would have no
variable intersections with E (or D), and thus E (or D) would be a component
of some cycle of K 1, and this, in view of assumption (A), is impossible,
since EIKal and DeIKal. It follows that thetrceof KI onEisa
linear series of degree 1 and of dimension 1. Hence E is a rtional curve, and
similarly for D. The curve E has no singular points, since (E.K) 1 and
since E lKa[. Hence p(E)= 0. Similarly p(D)= 0. Since 1
(E.K) (E) 2p(E) -t- 2, it follows that (E2) -1, and thus E is an
exceptional curve of the first kind. Similarly D is an exceptional curve of the
first kind.
We therefore hve only to show that the system 12K on G contains a cycle

which is not prime and which is not a sum of two cycles of K I.
Now, let us consider the affine surface h in A3 which is the general member of

the system M/lc [see (14)]. This surface h defines a projective surface H in
$21 in the same way as G is defined by the affine surface g. From Prop-
osition 2 it follows that also H is a surface of order 36. Since g is
specialization of h over lc, it follows that G is specialization of H over/c. By
Proposition 3, the surface H carries two prime cycles E and D which are
exceptional curves of the first kind and such that (E.D) 3 [see Note at the
end of Section 5]. Moreover, E - D is the null cycle, on H, of the function

x .(t). By the specialization H h_, G we find on G a composite cycle
W/ which is the null cycle of a function of the form ,x .(t), whence at

any rate/ +/) e [2Ka I. Now, since (E.D) 3, we have also (./) 3,
and consequently elks, I, D e lKa I, since (K) 1. This completes the
proof of our original assertion made in Section 2.

Just in the way of (redundant) checking, we observe that since (E) (D) -1
and (E.D) 3 [see Note at the end of section 5], the self-intersection number of E -{- D
is equal to 4, while p(E - D) p(E) + p(D) - (E.D) 2. This checks with the
.characters of 12Ka I-

Under this assumption it would already follow from Proposition 9.1 of our paper
MM that G is either rational or is not a relatively minimal model (hence again rational,
by the case (K) ->_ 2), since G would then carry a cycle which is not linearly equivalent
to an integral multiple of K, However, we have assigned ourselves the task of proving
not only the rationality of G but also the assertion that G is not a relatively minimal
model.
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We now turn to the Castelnuovo theorem of rationality of plane involutions,

as formulated in Section 1. We fix a nonsingular proiective model F of
2//c, and we choose a nonsingular model F’ of }(x, y)/t such that F’ dominates
the normalization of F in /(x, y). The rational transformation f:F’ -- F
is regular, and the inverse transformation f-l"F -- F’ has only a finite number
of fundamental points on F. The multicanonical systems nKI on F can be
defined by regular differential forms o A (dxdy)’, of weight n, on F. The
separability of tc(x, y)/ implies that if 0 0 then the inverse image 0’ of
0 by f is also different from zero, and is of course also regular on F’. Since
F’ is rational, it follows that we cannot have 0. Thus all the plurigenera
of F are zero.
The rational mapping f of F’ onto F defines a rational mapping of the

Albanese variety of F’ onto the Albanese variety of F. Since the former is a
point, it follows that also the Albanese variety of F reduces to a point, i.e.,
the irregularity q of F is zero. Since po 0, it follows that q -p, whence
p 0 (see, for instance, Y. NAKAI, On the characteristic linear systems of
algebraic families, Illinois J. Math., vol. 1 (1957), pp. 552-561). Thus we
have shown that P2 p 0 for F, and consequently F is a rational surface.

Let us call a surface F unirational if it is a rational transform of a rational
surface F’. The theorem of Castelnuovo asserts that under the separability
assumption concerning lc(F’)/k(F) a unirational surface F is in fact rational.
Now consider, for characteristic p 0, any surface F in $3 given by an equa-
tion of the form

(5) z f(x, y),

where f(x, y) is a polynomial. Any such surface F is unirational, for
k(x, y, z) c/(x1/, yl/). Now we shall find a surface F of this type such that
the geometric genus p of F is > 0, and this will show that the condition of
separability in Castelnuovo’s theorem is essential.
The following is well known, and is true for arbitrary characteristic" if a

surface F in $3 is such that its only singularities are isolated double points,
and if each double point of F is no worse than a biplanar point (i.e., the tangent
quadric cone at the point is either irreducible or splits into two distinct planes),
then every surface in $3 is an adjoint surface of F. Thus, if such a surface F
has order

____
4, the geometric genus of F will be positive. This being so, let

the characteristic p be different from 2, and let us consider the surface F
defined by the equation

(16) F(x, y, z) z + x+1 - y+ (x + y)/2 O,

In other words, if f(x, y, z) 0 is the irreducible equation of the surface F, and if
n is the degree of f, then (under the assumption that f is a separable polynomial in z)
every double differential of the form (_4(x, y, z)/f’)dx dy, where is an arbitrary
polynomial of degree -_< n 4, is regular (not only on F but also) on every nonsingular
model of the field k(x, y, z).
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which is of type (15). One finds at once that the only singular points of the
surface are the points x m, y n, z {(n + m)/2}1/, where m and n
are arbitrary elements of the prime field of characteristic p (there are no
singular points at infinity). It is also immediately seen that these p singular
points are biplanar double points. Since the order of the surface F is
p + 1 >__ 4, its geometric genus is positive,
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An example, of similar nature, could also be given for p 2. It would be similar
to (16), but the degree in z would have to be a power 2 of 2, n > 1.


